Radiation Part 2: View Factor Algebra

Ranjan Ganguly

Radiation exchange between two surfaces

• Radiation exchange between two or more surfaces depends strongly on

- Temperatures of the surfaces
- their radiative properties
- the surface geometries and orientations
- We already know about the first two factors
- How does the shape and relative orientation of the surfaces??
 - Need to introduce the concept of view factor/ shape factor/ configuration factor

The concept of solid angle

Intensity of emitted radiation

• Radiant power $d\dot{Q}_e$ emitted per unit solid angle in a direction (θ, ϕ), per unit area of the emitter projected normal to the line of view of the receiver from the radiating element

$$I_e(\theta, \phi) = \frac{d\dot{Q}_e}{dA\cos\theta \cdot d\omega} = \frac{d\dot{Q}_e}{dA\cos\theta\sin\theta \, d\theta \, d\phi}$$

Radiation flux: $dE = \frac{d\dot{Q}_e}{dA} = I_e(\theta, \phi)\cos\theta\sin\theta \, d\theta \, d\phi$

Hemispherical emission

$$E = \int_{\text{hemisphere}} dE = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} I_e(\theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi \qquad (W/m^2)$$

Diffusely emitting surface: $I_e = \text{constant} \implies E = \pi I_e$ (W/m²)

For blackbody surface: $I_b(T) = \frac{E_b(T)}{\pi} = \frac{\sigma T^4}{\pi}$ (W/m² · sr)

 $(W/m^2 \cdot sr)$

Example 2 A small surface of area $A_1 = 3 \text{ cm}^2$ emits radiation as a blackbody at $T_1 = 600 \text{ K}$. Part of the radiation emitted by A_1 strikes another small surface of area $A_2 = 5 \text{ cm}^2$ oriented as shown in Fig. 21–23. Determine the solid angle subtended by A_2 when viewed from A_1 , and the rate at which radiation emitted by A_1 strikes A_2 .

Assumptions:

- 1. A₁ emits as blackbody (diffuse)
- Both surface dimensions << r; surfaces may be treated as differential areas

$$I_1 = \frac{E_h(T_1)}{\pi} = \frac{\sigma T_1^4}{\pi} = \frac{(5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4)(600 \text{ K})^4}{\pi} = 2339 \text{ W/m}^2 \cdot \text{sr}$$

$$\omega_{2-1} \cong \frac{A_{n,2}}{r^2} = \frac{A_2 \cos \theta_2}{r^2} = \frac{(5 \text{ cm}^2) \cos 40^\circ}{(75 \text{ cm})^2} = \mathbf{6.81 \times 10^{-4} \text{ sr}}$$

 $\dot{Q}_{1-2} = I_1(A_1 \cos \theta_1) \omega_{2-1}$

 $= (2339 \text{ W/m}^2 \cdot \text{sr})(3 \times 10^{-4} \cos 55^{\circ} \text{ m}^2)(6.81 \times 10^{-4} \text{ sr})$

 $= 2.74 \times 10^{-4} \,\mathrm{W}$

 $\theta_1 = 55$

 $A_1 = 3 \text{ cm}^2$

 $T_1 = 600 \text{ K}$

 $A_2 = 5 \text{ cm}^2$

Incident radiation and Irradiation

• Intensity of incident radiation (I_i) is the rate at which radiation energy dG is incident from the (θ, ϕ) direction per unit area of the receiving surface normal to this direction and per unit solid angle about this direction

Irradiation:

$$G = \int dG = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} I_{I}(\theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi \qquad (W/m^{2})$$
hemisphere

Diffusely incident radiation: $G = \pi I_i$ (W/m²) $I_i = \text{constant}$

 F_{ij} = the fraction of the radiation leaving surface i that strikes surface j directly

View factor (contd...)

Radiation leaving the ENTIRE A_1 :

$$\dot{Q}_{A_1} = J_1 A_1 = \boldsymbol{\pi} I_1 A_1$$

Radiation falling on dA₂ :

$$\dot{Q}_{A_1 \to dA_2} = \int_{A_1} \dot{Q}_{dA_1 \to dA_2} = \int_{A_1} \frac{I_1 \cos \theta_1 \cos \theta_2 \, dA_2}{r^2} \, dA_1$$

Integrating over A₂ :

$$\dot{Q}_{A_1 \to A_2} = \int_{A_2} \dot{Q}_{A_1 \to dA_2} = \int_{A_2} \int_{A_1} \frac{I_1 \cos \theta_1 \cos \theta_2}{r^2} \, dA_1 \, dA_2$$

$$F_{12} = F_{A_1 \to A_2} = \frac{\dot{Q}_{A_1 \to A_2}}{\dot{Q}_{A_1}} = \frac{1}{A_1} \int_{A_2} \int_{A_1} \frac{\cos \theta_1 \cos \theta_2}{\pi r^2} \, dA_1 \, dA_2$$

 F_{ij} = the fraction of the radiation leaving surface i that strikes surface j directly

View factor (contd...)

$$F_{12} = F_{A_1 \to A_2} = \frac{\dot{Q}_{A_1 \to A_2}}{\dot{Q}_{A_1}} = \frac{1}{A_1} \int_{A_2} \int_{A_1} \frac{\cos \theta_1 \cos \theta_2}{\pi r^2} dA_1 dA_2$$
$$F_{21} = F_{A_2 \to A_1} = \frac{\dot{Q}_{A_2 \to A_1}}{\dot{Q}_{A_2}} = \frac{1}{A_2} \int_{A_2} \int_{A_1} \frac{\cos \theta_1 \cos \theta_2}{\pi r^2} dA_1 dA_2$$

What is F₂₁?

Self view factor

(a) Plane surface

 $F_{i \rightarrow i}$ = the fraction of radiation leaving surface *i* that strikes itself directly

(b) Convex surface

(c) Concave surface

View Factor Algebra: Summation Rule

The sum of the view factors from surface i of an enclosure to all surfaces of the enclosure, including to itself, must equal unity.

View factor algebra: Symmetry rule

$$F_{1 \rightarrow 2} = F_{1 \rightarrow 3}$$

(Also, $F_{2 \rightarrow 1} = F_{3 \rightarrow 1}$)

$$F_{12} = F_{13} = F_{14} = F_{15}$$

$$\sum_{i=1}^{5} F_{1i} = F_{11} + F_{12} + F_{13} + F_{14} + F_{15} = 1$$

$$F_{11} = 0$$

$$F_{12} = F_{13} = F_{14} = F_{15} = 0.25$$

Show that:

$$F_{12} = \frac{A_1 + A_2 - A_3}{2A_1} = \frac{L_1 + L_2 - L_3}{2L_1}$$

$$F_{13} = \frac{A_1 + A_3 - A_2}{2A_1} = \frac{L_1 + L_3 - L_2}{2L_1}$$

$$F_{23} = \frac{A_2 + A_3 - A_1}{2A_2} = \frac{L_2 + L_3 - L_1}{2L_2}$$

Examples

For Surface 2:

Sphere within a cube

$$F_{11} = 0; \quad F_{12} = 1$$
$$A_1 F_{12} = A_2 F_{21} \Longrightarrow F_{21} = \frac{A_1}{A_2} F_{12} = \frac{\pi a^2}{6a^2} = \frac{\pi}{6}$$

Hottel's Crossedstring Method

View Factors between Infinitely Long Surfaces

developed by H. C. Hottel in the 1950s

Wrong expression in Cengel and Ozisik

Correct Expression: $F_{i \to j} = \frac{\sum (\text{Crossed strings}) - \sum (\text{Uncrossed strings})}{2 \times Curved \, Length \, of \, surface \, 1}$

 $F_{1\infty} = 1 - F_{12} = 0.75$ $F_{2\infty} = 1 - F_{21} = 0.4$

Assignment

What fraction of radiation leaves from the open lid of the infinitely long square cavity? $F_{21} = ?$ View factor algebra: how many equations do we need?

 Radiation exchange in an enclosure of N surfaces: N² view factors required

$$\begin{bmatrix} F_{11} & F_{12} & -- & F_{1N} \\ F_{21} & F_{22} & -- & F_{2N} \\ - & - & - & - \\ F_{N1} & F_{N2} & -- & F_{NN} \end{bmatrix}$$

N=3, N²=9 Summation Rule: 3 Reciprocity Rule = 3 (F_{12} & F_{21} , F_{23} & F_{32} , and F_{13} & F_{31}) Remaining: 3

- Summation rule can be applied to get N equations which gives N view factors
- Application of Reciprocity relation for N(N-1)/2 times gives N(N-1)/2 view factors
- So we need essentially N²-N-N(N-1)/2

View factor algebra: Additive property of view factor

Radiation falling on a composite surface

$$\begin{split} F_{i(j)} &= \sum_{k=1}^{n} F_{ik} \quad \text{Multiply } A_i \text{ on both sides,} \\ & & \\ A_i F_{i(j)} &= A_i \sum_{k=1}^{n} F_{ik} = A_i F_{i1} + A_i F_{i2} + A_i F_{i3} + - - - + A_i F_{in} \\ & A_j F_{j(i)} &= A_1 F_{1i} + A_2 F_{2i} + A_3 F_{3i} + - - - + A_n F_{ni} \\ & A_j F_{j(i)} &= \sum_{k=1}^{n} A_k F_{ki} \end{split}$$

$$F_{j(i)} = \frac{\displaystyle\sum_{k=1}^{n} A_k F_{ki}}{\displaystyle\sum_{k=1}^{n} A_k}$$

View Factors of more complicated 3-D

View factor expressions for some common geometries of finite size (3D)

Examples: Determine the view factors F_{12} and F_{21}

From summation rule,	$F_{11} + F_{12} + F_{13} = 1$
where	$F_{11} = 0$
By symmetry,	$F_{12} = F_{13}$
Hence	$F_{12} = 0.50$
By reciprocity,	$F_{21} = \frac{A_1}{A_2} F_{12} = \frac{\sqrt{2}L}{L} \times 0.5 = 0.71$

