Radiation Part 2: View Factor Algebra

Ranjan Ganguly

Radiation exchange between two surfaces

- Radiation exchange between two or more surfaces depends strongly on
- Temperatures of the surfaces
- their radiative properties
- the surface geometries and orientations
- We already know about the first two factors
- How does the shape and relative orientation of the surfaces??
- Need to introduce the concept of view factor/ shape factor/ configuration factor

The concept of solid angle

Radiation

$$
d \omega=\frac{d S}{r^{2}}=\sin \theta d \theta d \phi
$$

Intensity of emitted radiation

- Radiant power $d \dot{Q}_{e}$ emitted per unit solid angle in a direction (θ, ϕ), per unit area of the emitter
 projected normal to the line of view of the receiver from the radiating element

$$
d \omega=\frac{d S}{r^{2}}=\sin \theta d \theta d \phi
$$

$$
\begin{equation*}
I_{e}(\theta, \phi)=\frac{d \dot{Q}_{e}}{d A \cos \theta \cdot d \omega}=\frac{d \dot{Q}_{e}}{d A \cos \theta \sin \theta d \theta d \phi} \tag{2}
\end{equation*}
$$

Radiation flux: $\quad d E=\frac{d \dot{Q}_{e}}{d A}=I_{e}(\theta, \phi) \cos \theta \sin \theta d \theta d \phi$
Hemispherical emission

$$
E=\int_{\text {hemisphere }} d E=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi / 2} I_{e}(\theta, \phi) \cos \theta \sin \theta d \theta d \phi \quad\left(\mathrm{~W} / \mathrm{m}^{2}\right)
$$

Diffusely emitting surface: $I_{e}=$ constant $\Rightarrow E=\pi I_{e}$
For blackbody surface: $I_{b}(T)=\frac{E_{b}(T)}{\pi}=\frac{\sigma T^{4}}{\pi}$

Example 2 A small surface of area $A_{1}=3 \mathrm{~cm}^{2}$ emits radiation as a blackbody at $T_{1}=$ 600 K . Part of the radiation emitted by A_{1} strikes another small surface of area $A_{2}=5 \mathrm{~cm}^{2}$ oriented as shown in Fig. 21-23. Determine the solid angle subtended by A_{2} when viewed from A_{1}, and the rate at which radiation emitted by A_{1} strikes A_{2}.

Assumptions:

1. A_{1} emits as blackbody (diffuse)

2. Both surface dimensions $\ll r$; surfaces may be treated as differential areas

$$
\begin{aligned}
& I_{1}=\frac{E_{h}\left(T_{1}\right)}{\pi}=\frac{\sigma T_{1}^{4}}{\pi}=\frac{\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)(600 \mathrm{~K})^{4}}{\pi}=2339 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{sr} \\
& \omega_{2-1} \cong \frac{A_{n, 2}}{r^{2}}=\frac{A_{2} \cos \theta_{2}}{r^{2}}=\frac{\left(5 \mathrm{~cm}^{2}\right) \cos 40^{\circ}}{(75 \mathrm{~cm})^{2}}=\mathbf{6 . 8 1} \times \mathbf{1 0}^{-4} \mathrm{sr}
\end{aligned}
$$

$$
\begin{aligned}
\dot{Q}_{1-2} & =I_{1}\left(A_{1} \cos \theta_{1}\right) \omega_{2-1} \\
& =\left(2339 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{sr}\right)\left(3 \times 10^{-4} \cos 55^{\circ} \mathrm{m}^{2}\right)\left(6.81 \times 10^{-4} \mathrm{sr}\right) \\
& =2.74 \times 10^{-4} \mathrm{~W}
\end{aligned}
$$

Incident radiation and Irradiation

- Intensity of incident radiation $\left(I_{i}\right)$ is the rate at which radiation energy dG is incident from the (θ, ϕ) direction per unit area of the receiving surface normal to this direction and per unit solid angle about this direction

Irradiation:

$$
\begin{equation*}
G=\int_{\text {hemisphere }} d G=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi / 2} I_{I}(\theta, \phi) \cos \theta \sin \theta d \theta d \phi \tag{2}
\end{equation*}
$$

Diffusely incident radiation:

$$
\begin{equation*}
G=\pi I_{t} \tag{2}
\end{equation*}
$$

View factor/ Shape factor/ Configuration factor*

* Applicable for Blackbody and Diffuse Grey Surfaces only

Point

Radiation from dA_{1} falling on dA_{2} :

$$
\dot{Q}_{d A_{1} \rightarrow d A_{2}}=I_{1} \cos \theta_{1} d A_{1} d \omega_{21}=I_{1} \cos \theta_{1} d A_{1} \frac{d A_{2} \cos \theta_{2}}{r^{2}}
$$

$I_{l}=$ Radiation Intensity (magnitude of radiation emitted in a particular direction, per unit area, from A_{1}

Total radiation from $\mathrm{dA}_{1}: \dot{Q}_{d A_{1}}=J_{1} d A_{1}=\pi I_{1} d A_{1}$
Its fraction falling on $\mathrm{dA}_{2}: \quad d F_{d A_{1} \rightarrow d A_{2}}=\frac{\dot{Q}_{d A_{1} \rightarrow d A_{2}}}{\dot{O}_{d \Lambda} .}=\frac{\cos \theta_{1} \cos \theta_{2}}{\pi r^{2}} d A_{2}$
Integrating over surface $A_{2}: F_{d A_{1} \rightarrow A_{2}}=\int_{A_{2}} \frac{\cos \theta_{1} \cos \theta_{2}}{\pi r^{2}} d A_{2}$
Fraction of radiation emitted from dA_{1} that falls on A_{2}
$F_{i j}=$ the fraction of the radiation leaving surface i that strikes surface j directly

View factor (contd...)
Radiation leaving the ENTIRE A ${ }_{1}$:

$$
\dot{Q}_{A_{1}}=J_{1} A_{1}=\pi I_{1} A_{1}
$$

Radiation falling on dA_{2} :

$$
\dot{Q}_{A_{1} \rightarrow d A_{2}}=\int_{A_{1}} \dot{Q}_{d A_{1} \rightarrow d A_{2}}=\int_{A_{1}} \frac{I_{1} \cos \theta_{1} \cos \theta_{2} d A_{2}}{r^{2}} d A_{1}
$$

Integrating over A_{2} :

$$
\begin{gathered}
\dot{Q}_{A_{1} \rightarrow A_{2}}=\int_{A_{2}} \dot{Q}_{A_{1} \rightarrow d A_{2}}=\int_{A_{2}} \int_{A_{1}} \frac{I_{1} \cos \theta_{1} \cos \theta_{2}}{r^{2}} d A_{1} d A_{2} \\
F_{12}=F_{A_{1} \rightarrow A_{2}}=\frac{\dot{Q}_{A_{1} \rightarrow A_{2}}}{\dot{Q}_{A_{1}}}=\frac{1}{A_{1}} \int_{A_{2}} \int_{A_{1}} \frac{\cos \theta_{1} \cos \theta_{2}}{\pi r^{2}} d A_{1} d A_{2}
\end{gathered}
$$

$F_{i j}=$ the fraction of the radiation leaving surface i that strikes surface j directly
View factor (contd...)

$$
\begin{aligned}
& F_{12}=F_{A_{1} \rightarrow A_{2}}=\frac{\dot{Q}_{A_{1} \rightarrow A_{2}}}{\dot{Q}_{A_{1}}}=\frac{1}{A_{1}} \int_{A_{2}} \int_{A_{1}} \frac{\cos \theta_{1} \cos \theta_{2}}{\pi r^{2}} d A_{1} d A_{2} \\
& F_{21}=F_{A_{2} \rightarrow A_{1}}=\frac{\dot{Q}_{A_{2} \rightarrow A_{1}}}{\dot{Q}_{A_{2}}}=\frac{1}{A_{2}} \int_{A_{2}} \int_{A_{1}} \frac{\cos \theta_{1} \cos \theta_{2}}{\pi r^{2}} d A_{1} d A_{2}
\end{aligned}
$$

$$
F_{1 \rightarrow 2}=1
$$

$$
A_{1} F_{12}=A_{2} F_{21} \quad \text { Reciprocily relation }
$$

What is F_{21} ?

Self view factor

(a) Plane surface
$F_{i \rightarrow i}=$ the fraction of radiation leaving surface i that strikes itself directly

(b) Convex surface

(c) Concave surface

$$
F_{2 \rightarrow 2}=?
$$

View Factor Algebra: Summation Rule

The sum of the view factors from surface i of an enclosure to all surfaces of the enclosure, including to itself, must equal unity.

Radiation leaving any surface i of an enclosure must be intercepted completely by the surfaces of the enclosure. Therefore, the sum of the view factors from surface i to each one of the surfaces of the enclosure must be unity.

$$
\sum_{j=1}^{3} F_{1 \rightarrow j}=F_{1 \rightarrow 1}+F_{1 \rightarrow 2}+F_{1 \rightarrow 3}=1
$$

Flat Surface

$$
\mathrm{F}_{11}=0
$$

$$
\begin{aligned}
& \text { Reciprocity rule } \\
& \qquad A_{1} F_{12}=A_{2} F_{21} \Rightarrow F_{21}=\frac{A_{1}}{A_{2}} F_{12}
\end{aligned}
$$

Summation rule

$$
\begin{aligned}
& F_{11}+F_{12}=1 \Rightarrow F_{12}=1 \Rightarrow F_{21}=\frac{A_{1}}{A_{2}} \\
& F_{21}+F_{22}=1 \Rightarrow F_{22}=1-F_{21}=\left(1-\frac{A_{1}}{A_{2}}\right)^{2}
\end{aligned}
$$

View factor algebra: Symmetry rule

$$
\begin{gathered}
F_{12}=F_{13}=F_{14}=F_{15} \\
\sum_{j=1}^{5} F_{1 j}=F_{11}+F_{12}+F_{13}+F_{14}+F_{15}=1 \\
F_{11}=0 \\
F_{12}=F_{13}=F_{14}=F_{15}=0.25
\end{gathered}
$$

Assignment

Show that:

$$
\begin{aligned}
& F_{12}=\frac{A_{1}+A_{2}-A_{3}}{2 A_{1}}=\frac{L_{1}+L_{2}-L_{3}}{2 L_{1}} \\
& F_{13}=\frac{A_{1}+A_{3}-A_{2}}{2 A_{1}}=\frac{L_{1}+L_{3}-L_{2}}{2 L_{1}} \\
& F_{23}=\frac{A_{2}+A_{3}-A_{1}}{2 A_{2}}=\frac{L_{2}+L_{3}-L_{1}}{2 L_{2}}
\end{aligned}
$$

Examples

Sphere within a cube

$$
\begin{aligned}
& F_{11}=0 ; \quad F_{12}=1 \\
& A_{1} F_{12}=A_{2} F_{21} \Rightarrow F_{21}=\frac{A_{1}}{A_{2}} F_{12}=\frac{\pi a^{2}}{6 a^{2}}=\frac{\pi}{6}
\end{aligned}
$$

Infinitely long right angle triangular prism

By observation: $\quad F_{11}=0$;
Summation Rule: $F_{11}+F_{12}+F_{13}=1 \Rightarrow F_{12}+F_{13}=1$

By observation, A_{3} and A_{2} are symmetrically placed $\quad F_{12}=F_{13}$

$$
\therefore F_{12}=F_{13}=\frac{1}{2}
$$

Reciprocity Rule:

$$
\begin{aligned}
& \text { Rule: } \\
& A_{1} F_{12}=A_{2} F_{21} \Rightarrow \sqrt{2} a \frac{1}{2}=a F_{21} \Rightarrow F_{21}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
F_{21}+F_{22}+F_{23}=1 ; F_{22}=0 ; \quad F_{23}=1-F_{21}=1-\frac{1}{\sqrt{2}}
$$

Hottel's Crossedstring Method

$$
F_{1 \rightarrow 2}=\frac{\left(L_{5}+L_{6}\right)-\left(L_{3}+L_{4}\right)}{2 S_{1}}
$$

View Factors between Infinitely Long

Surfaces

developed by H. C. Hottel in the 1950s
Wrong expression in Cengel and Ozisik

Correct Expression:
$F_{i \rightarrow j}=\frac{\sum \text { (Crossed strings) }-\Sigma \text { (Uncrossed strings) }}{2 \times \text { Curved Length of surface } 1}$

Hottel's Crossed-string Method $\quad F_{i \rightarrow j}=\frac{\Sigma(\text { Crossed strings })-\Sigma(\text { Uncrossed strings })}{2 \times(\text { String on surface } i)}$
Find $\mathrm{F}_{12}, \mathrm{~F}_{21}, \mathrm{~F}_{1 \infty}$ and $\mathrm{F}_{2 \infty}$

$$
\begin{aligned}
& F_{12}=\frac{\left(L_{5}+L_{6}\right)-\left(L_{3}+L_{4}\right)}{2 L_{1}}=0.25 \\
& F_{21}=\frac{\left(L_{5}+L_{6}\right)-\left(L_{3}+L_{4}\right)}{2 L_{2}}=0.6 \text { verify reciprocity relation }
\end{aligned}
$$

View Factor of the background with respect to the plates:

$$
F_{1 \infty}=1-F_{12}=0.75 \quad F_{2 \infty}=1-F_{21}=0.4
$$

$$
F_{A B}=\frac{(a+a)-(\sqrt{2} a+0)}{2 a}=1-\frac{1}{\sqrt{2}}
$$

Attention: Use the correct form of Hottel's crossed-string method!

Assignment

$$
F_{A B}=\frac{(\sqrt{5} R+\sqrt{5} R)-(R+R)}{4 R}=0.618
$$

$$
F_{B A}=\frac{(\sqrt{5} R+\sqrt{5} R)-(R+R)}{2 \boldsymbol{\pi} \boldsymbol{R}}=0.393
$$

Find $F_{A B}, F_{B A}, F_{A A}$ and $F_{B B}$. Also find $F_{A \infty}$ and $F_{B \infty}$
Summation

$$
\begin{aligned}
& F_{A A}+F_{A B}+F_{A \infty}=1 \\
& F_{B B}+F_{B A}+F_{B \infty}=1
\end{aligned}
$$

Observation $F_{A A}=0$
Reciprocity relation between Curved surface B and the hypothetical open face (C)

$$
\pi R F_{B C}=2 R F_{C B} \Rightarrow F_{B C}=\frac{2}{\pi} F_{C B}=\frac{2}{\pi}
$$

$$
\begin{aligned}
& F_{A \infty}=1-F_{A B}=1-0.618=0.382 \\
& F_{B \curvearrowleft}=1-F_{B B}-F_{B A}=1-0.393-0.363 \\
& =0.244
\end{aligned}
$$

$$
F_{B B}=1-2 / \pi=0.363
$$

Assignment

$$
N=3, N^{2}=9
$$

View factor algebra: how many equations do we need?

- Radiation exchange in an enclosure of N surfaces: N^{2} view factors required

$$
\left[\begin{array}{cccc}
\mathrm{F}_{11} & \mathrm{~F}_{12} & -- & \mathrm{F}_{1 \mathrm{~N}} \\
\mathrm{~F}_{21} & \mathrm{~F}_{22} & -- & \mathrm{F}_{2 \mathrm{~N}} \\
- & - & - & - \\
\mathrm{F}_{\mathrm{N} 1} & \mathrm{~F}_{\mathrm{N} 2} & -- & \mathrm{F}_{\mathrm{NN}}
\end{array}\right]
$$

Summation Rule: 3
Reciprocity Rule $=3\left(F_{12}\right.$ \&
$F_{21}, F_{23} \& F_{32}$, and $F_{13} \& F_{31}$)
Remaining: 3

(3) $a \quad 600 \mathrm{~K}$

- Summation rule can be applied to get N equations which gives N view factors
- Application of Reciprocity relation for $\mathrm{N}(\mathrm{N}-1) / 2$ times gives $\mathrm{N}(\mathrm{N}-1) / 2$ view factors
- So we need essentially $\mathrm{N}^{2}-\mathrm{N}-\mathrm{N}(\mathrm{N}-1) / 2$

$$
\begin{aligned}
& F_{12}=F_{13}=\frac{1}{2} \\
& \mathrm{~F}_{11}=\mathrm{F}_{22}=\mathrm{F}_{33}=0, \\
& \mathrm{~F}_{21}=\mathrm{F}_{31}=\frac{1}{\sqrt{2}}, \\
& \mathrm{~F}_{23}=\mathrm{F}_{32}=1-\frac{1}{\sqrt{2}}
\end{aligned}
$$

View factor algebra: Additive property of view factor

Radiation falling on a composite surface

$$
\begin{gathered}
\mathrm{F}_{\mathrm{i}(\mathrm{j})}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{ik}} \quad \text { Multiply } \mathrm{A}_{\mathrm{i}} \text { on both sides, } \\
\mathrm{A}_{\mathrm{i}} \mathrm{~F}_{\mathrm{i}(\mathrm{j})}=\mathrm{A}_{\mathrm{i}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{ik}}=\mathrm{A}_{\mathrm{i}} \mathrm{~F}_{\mathrm{i} 1}+\mathrm{A}_{\mathrm{i}} \mathrm{~F}_{\mathrm{i} 2}+\mathrm{A}_{\mathrm{i}} \mathrm{~F}_{\mathrm{i} 3}+----+\mathrm{A}_{\mathrm{i}} \mathrm{~F}_{\mathrm{in}} \\
\mathrm{~A}_{\mathrm{j}} \mathrm{~F}_{\mathrm{j}(\mathrm{i})}=\mathrm{A}_{1} \mathrm{~F}_{1 \mathrm{i}}+\mathrm{A}_{2} \mathrm{~F}_{2 \mathrm{i}}+\mathrm{A}_{3} \mathrm{~F}_{3 \mathrm{i}}+----+\mathrm{A}_{\mathrm{n}} \mathrm{~F}_{\mathrm{ni}} \\
\mathrm{~A}_{\mathrm{j}} \mathrm{~F}_{\mathrm{j}(\mathrm{i})}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{k}} \mathrm{~F}_{\mathrm{ki}} \\
\mathrm{~F}_{\mathrm{j}(\mathrm{i})}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{k}} \mathrm{~F}_{\mathrm{ki}}}{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{k}}}
\end{gathered}
$$

Parallel plates with midlines
connected by perpendicular line

Inclined plates of equal width and with a common edge

$$
\begin{aligned}
F_{i \rightarrow j} & =1-\left[1-\left(\frac{D}{s}\right)^{2}\right]^{1 / 2} \\
& +\frac{D}{s} \tan ^{-1}\left(\frac{s^{2}-D^{2}}{D^{2}}\right)^{1 / 2}
\end{aligned}
$$

View factor of infinitely long parallel surfaces

View Factors of more complicated 3-D surface (analytical and graphical methods)

View factor expressions for some common geometries of finite size (3D)

Geometry	Relation
Aligned parallel rectangles	$\begin{aligned} & \bar{X}= X / L \text { and } \bar{Y}=Y / L \\ & \begin{aligned} F_{i \rightarrow j} & =\frac{2}{\pi \bar{X} \bar{Y}}\left\{\ln \left[\frac{\left(1+\bar{X}^{2}\right)\left(1+\bar{Y}^{2}\right)}{1+\bar{X}^{2}+\bar{Y}^{2}}\right]^{1 / 2}\right. \\ & +\bar{X}\left(1+\bar{Y}^{2}\right)^{1 / 2} \tan ^{-1} \frac{\bar{X}}{\left(1+\bar{Y}^{2}\right)^{1 / 2}} \\ & \left.+\bar{Y}\left(1+\bar{X}^{2}\right)^{1 / 2} \tan ^{-1} \overline{\bar{Y}} \overline{\bar{X}^{2}}\right)^{1 / 2} \\ & \left.-\bar{X} \tan ^{-1} \bar{X}-\bar{Y} \tan ^{-1} \bar{Y}\right\} \end{aligned} \end{aligned}$
Coaxial parallel disks	$\begin{aligned} R_{i} & =r_{i} / L \text { and } R_{j}=r_{j} / L \\ S & =1+\frac{1+R_{j}^{2}}{R_{i}^{2}} \\ F_{i \rightarrow j} & =\frac{1}{2}\left\{S-\left[S^{2}-4\left(\frac{r_{j}}{r_{i}}\right)^{2}\right]^{1 / 2}\right\} \end{aligned}$
Perpendicular rectangles with a common edge	$\begin{aligned} H= & Z I X \text { and } W=Y I X \\ F_{i \rightarrow j} & =\frac{1}{\pi W}\left(W \tan ^{-1} \frac{1}{W}+H \tan ^{-1} \frac{1}{H}\right. \\ & -\left(H^{2}+W^{2}\right)^{1 / 2} \tan ^{-1} \frac{1}{\left(H^{2}+W^{2}\right)^{1 / 2}} \\ & +\frac{1}{4} \ln \left\{\frac{\left(1+W^{2}\right)\left(1+H^{2}\right)}{1+W^{2}+H^{2}}\right. \\ & \times\left[\frac{W^{2}\left(1+W^{2}+H^{2}\right)}{\left(1+W^{2}\right)\left(W^{2}+H^{2}\right)}\right]^{W^{2}} \\ & \left.\left.\times\left[\frac{H^{2}\left(1+H^{2}+W^{2}\right)}{\left(1+H^{2}\right)\left(H^{2}+W^{2}\right)}\right]^{H^{2}}\right\}\right) \end{aligned}$

Examples: Determine the view factors F_{12} and F_{21}

From summation rule, where

$$
\begin{aligned}
& F_{11}+F_{12}+F_{13}=1 \\
& F_{11}=0 \\
& F_{12}=F_{13} \\
& F_{12}=0.50 \\
& F_{21}=\frac{A_{1}}{A_{2}} F_{12}=\frac{\sqrt{2} L}{L} \times 0.5=0.71
\end{aligned}
$$

