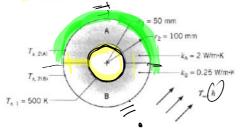
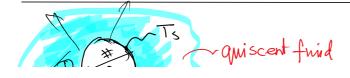


Heat Transfer Page 1

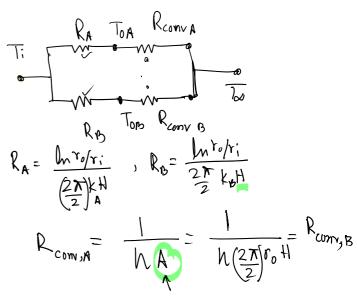


Heat Transfer Page 2

With the contact resistance



7 Steam flowing through a long, thin-walled pipe maintains the pipe wall at a uniform temperature of 500 K. The pipe is covered with an insulation blanket comprised of two different materials, A and B.



The interface between the two materials may be assumed to have an infinite contact resistance, and the entire outer surface is exposed to air for which $T_x = 300$ K and h = 25 W/m² · K.

- (a) Sketch the thermal circuit of the system. Label (using the above symbols) all pertinent nodes and resistances.
- (b) For the prescribed conditions, what is the total heat loss from the pipe? What are the outer surface temperatures T_{x,2(A)} and T_{x,2(B)}?

||

b

Find h=

Find h=

$$R_{sy} = \frac{1}{4\pi k r_{i}}$$

 $\Rightarrow Q = \frac{\Delta T}{R_{sy}}$
 $h A \Delta T = \frac{\Delta T}{R_{sy}}$
 $h = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $h = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{4\pi k r_{i}}{4\pi r_{i}^{2}} = \frac{k}{r_{i}}$
 $R = \frac{1}{A R_{sy}} = \frac{k}{R_{sy}}$
 $R = \frac{1}{A R_{sy}} = \frac{1}{R_{sy}}$
 $R = \frac{1}{A R_{sy}} = \frac{1}{R_{sy}}$
 $R = \frac{1}{R_{sy}} = \frac{1}{R_{sy}} = \frac{1}{R_{sy}}$
 $R = \frac{1}{R_{sy}} = \frac{1}{R_{sy}}$
 $R = \frac{1}{R_{sy}} = \frac{1}{R_{sy}}$
 $R = \frac{1}{R_{sy}} = \frac{1}{R_{sy}$

Critical insulation thickness for spheres
Sphere of valies T; , covered by an insulation of
the chain
$$\delta = (r - r;)$$
 (r= variable outer radius)
Does a critical insulation thickness appear here
also ?
To Mh
R_{sp} R_{con}
R_{sp} R_{con}
R_{sp} R_{con}
R_{torn} = $\frac{1}{hR} = \frac{1}{4\pi r_{1}^{2}h}$
R_{sp} R_{con}
R_{torn} = $\frac{1}{hR} = \frac{1}{4\pi r_{1}^{2}h}$
R_{torn} = $\frac{1}{4\pi r_{1}} \left[\frac{1}{r_{1}} - \frac{1}{r_{1}}\right] + \frac{1}{4\pi r_{1}^{2}h}$
R_{torn}
R_{torn} Home Work: Find R_{cit} for spherical
Shell

Heat Transfer Page 4