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Purpose of  heat exchangers

 Purpose: To transfer heat from one fluid to another, 
achieving heating or cooling of the target fluid
 Uses the energy content (latent and/or sensible) of one 

fluid to alter energy content of the other fluid

 Examples:
 Power plants: Boiler, condenser, cooling tower, 

regenerative feedwater heaters, oil coolers, etc.

 Process plants: process heat exchangers

 Car radiators

 Electronics cooling systems

 AC and ventilation systems

 … 



Classification of  heat exchangers

 Flow arrangement
 Parallel-flow

 Counter-flow

 Cross-flow

 Geometry of construction
 Concentric tubes

 Shell and tube

 Plate

 Heat transfer mechanism
 Direct and contact Indirect contact (surface) types

 Single phase or phase change

 Recuperative and regenerative



Parallel, counter and cross flows

Parallel flow, 

concentric tube type Cross flow
(one fluid mixed, one 

fluid unmixed)

Cross flow
(both fluids unmixed)

L
L

counter flow, 

concentric tube type



Shell and tube type heat exchanger

One shell-pass, two tube pass Two shell-pass, four tube pass

One shell pass and one tube-pass 

Generally deployed for gas (shell side) and liquid (tube side) systems

 Shell side offers small p

 Bulky (not suitable for 

compact applications)



Plate type heat exchangers

Flow path

Exploded view

Compact view

Plate fitted with gasket to 

selectively restrict flow The plate
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Flow path in plate heat exchanger

https://www.youtube.com/watch?v=7TTF4aU3Pcs

To learn more of how Plate Hex works:



Regenerative vs recuperative Hex

Regnerative Air Preheater Recuperative Air Preheater

Requires an energy storing matrix Direct energy transfer 

between the fluids



Compact heat exchangers
 Surface area to volume ratio 

Heat Transfer Surface Area

Heat Exchanger Volume
 

 > 700 m-1 Compact heat exchanger

 Car radiators: ~ 1000 m-1

 Glass ceramic gas turbine heat exchanger: ~ 6000 m-1

 Regenerative heat exchanger of Stirling engine: ~ 15000 m-1

 Human lung: ~ 20000 m-1



Overall heat transfer coefficient (HTC)

 Fouling factor: Additional thermal resistance due 

to physical/chemical/biological deposition of 

materials on the inner and/or outer heat transfer 

surface

Overall HTC without fouling

Overall HTC with internal and external 

fouling
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Some typical fouling factors

Fouling of ash on SH tubes



Effect of  fouling on overall HTC

Hints:

R= 0.0532 K/W, Ui = 399 W/m2K, Uo = 315 W/m2K

~ 19% of resistance contributed by fouling, ~5% due to the thermal resistance of 

the metal, the remaining ~76% is offered by the inner and outer convection 

resistances 



Analysis of  heat exchanger performance

 Questions we seek to answer…

 Want to achieve a specified T of a fluid stream: 

How much surface should we provide? [design]

 Log Mean Temperature difference (LMTD) method is 

preferred

 Have a specified heat exchanger: How much T 

change will it produce in the hot and cold streams? 

[testing and performance]

 Effectiveness () - NTU method is preferred



Salient assumptions
 Heat exchanger is insulated from the 

surrounding

 Axial conduction in the fluids are 

negligible as compared to the energy 

transaction between the two fluids 

 Changes in potential and kinetic energy 

negligible

 Thermophysical properties remain 

constant 

 Overall HTC remain constant

Heat transferred to cold fluid:

Heat transferred from hot fluid:

Parallel flow

Heat Capacity Rates



Effect of  Ch and Cc

Counter flow

Ch  Cc

Th  Tc

Ch  Cc

Ch  Cc

Ch = Cc

Th

Tc



LMTD analysis of  heat transfer

For the hot stream:

For the cold stream:

But, 

(1) 

(2) 

(3) 

(4) 

Substituting (5) in (4), and rearranging 

(6) 

(5) [convective heat trf.] 



LMTD method (contd…)
Integrating (5) over the length (i.e., the total HT area) of the heat exchanger, 

(6) 
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For counterflow heat exchanger

 Similar analysis holds true…
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Solution hints:

L = 108 m



Logarithmic vs arithmetic mean 

temperature difference 
 The Arithmetic mean temperature difference

 The logarithmic mean temperature difference (LMTD) is an exact 

representation of the average temperature difference between the 

hot and cold fluids

 LMTD is always less than AMTD for parallel flow, and more than 

AMTD for counterflow 

 when T1 and T2 differs by no more than 40%, the error in using 

AMTD is less than 1%. But the difference increases drastically at 

larger difference

 For a given                              the LMTD for counterflow is greater 

than that for parallel flow 

 What is LMTD for T1 =T2 ?
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Cross flow heat exchanger
The LMTD for cross flow is “somewhat” less than that of a counterflow HEX

Counterflow (CF) Crossflow

The correction factor depends on

So we assume, for the crossflow HEX 

 The suffix CF stands for Counterflow, NOT cross flow



Bowman’s chart for Correction Factor







Rationale of  LMTD method
 Suitable for determining the size of a heat exchanger to realize the 

prescribed outlet temperatures when the mass flow rates and the 
terminal temperatures are specified

 With LMTD method, the task is to select a heat exchanger that will 
meet the prescribed heat transfer requirements 

 Select the type of heat exchanger for the application

 Determine any unknown inlet or outlet temperature and heat 
transfer rate using an energy balance

 Calculate the LMTD (for cross flow use Bowman’s chart for F)

 Obtain (select or calculate) the value of overall HTC, i.e., U

 Calculate the requisite heat transfer surface area, As

 The task is completed by selecting a heat exchanger that has a 
heat transfer surface area equal to or larger than As

 Merit: Straightforward

 Limitation: Requires iterative solution if direct energy balance is not 
possible (e.g., only the two inlet stream temperatures specified)



Effectiveness-NTU method
 How to find the heat transfer rate and the outlet 

temperatures of the hot and cold fluids, provided the 

inlet temperatures, the heat capacity rates, and UAs

are specified?

 LMTD method would require iterative calculations

Heat Exchanger Effectiveness

T

L

Cc  Ch

T

L

Ch  Cc

Fluid with the smaller C experience the maximum T

Th  TcTh  Tc



NTU: the number of  transfer unit 

 Dimensionless “heat transfer area” or “thermal size factor”

If  is known in terms of the flow rates, thermophysical properties, and HEX 

geometry, then one can calculate the actual heat transfer as: 

Rationale of  -NTU analysis

How to evaluate ?



-NTU analysis for a Parallel Flow HEX

(6)

Also, from energy balance:

(7)

Substituting in eq. (6) and adding and subtracting Tc,in in the numerator on the left:

Simplifies to: (8)



-NTU analysis for a Parallel Flow HEX

(continued…)
Also, from the definition of HEX effectiveness



Substituting back in (8)

(9)

Show that, for either Ch = Cmin, 

or Cc = Cmin , Eq. (9) reduces to  



Kays-London chart
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Thus, for the parallel flow geometry

• NTU is specified from the HEX 

design datasheet, where the HT 

surface area, HTC and the heat 

capacity rates are specified.

• Cr will vary with operating condition  
Note: for one fluid 

experiencing phase 

change, Cr = 0, 

 1 exp NTU   
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Larger NTU value indicates that the 

limit has reached for heat transfer 

whereas smaller value of NTU indicates 

more opportunities for heat transfer.



-NTU relations for different HEX



NTU-  relations for different HEX



Cpc= 1800 J/kgK

Cpw= 4180 J/kgK

U= 1200 W/m2K

Example 1: -NTU analysis                    As= 7 m2

Calculate the outlet temperatures of 

both the fluids, and the heat transfer 
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Example 2: -NTU analysis

Solve the same problem (example 

discussed for the LMTD technique using -

NTU analysis:












L = 108 m



Comparison: PF vs CF

At Cr = 0, both parallel and counterflow HEX have the same 

 1PF CF exp NTU    





Selection of  Heat Exchangers

Operating cost = pumping power hours of operation  tariff 



Reference:

 Heat Transfer, a Practical Approach by Y. Çengel

 ASPEN Plus literature

 Interesting videos:

 https://www.youtube.com/watch?v=OyQ3SaU4KKU

 https://www.youtube.com/watch?v=M_jOsTWVIH8

 Applications of Heat Exchangers in industry

 https://youtu.be/WAiTFp54xZQ

https://www.youtube.com/watch?v=OyQ3SaU4KKU
https://www.youtube.com/watch?v=M_jOsTWVIH8
https://youtu.be/WAiTFp54xZQ

