Heat Exchangers

Ranjan Ganguly

Purpose of heat exchangers

- Purpose: To transfer heat from one fluid to another, achieving heating or cooling of the target fluid
 - Uses the energy content (latent and/or sensible) of one fluid to alter energy content of the other fluid
- Examples:
 - Power plants: Boiler, condenser, cooling tower, regenerative feedwater heaters, oil coolers, etc.
 - Process plants: process heat exchangers
 - Car radiators
 - Electronics cooling systems
 - AC and ventilation systems
 - ••••

Classification of heat exchangers

Flow arrangement

- Parallel-flow
- Counter-flow
- Cross-flow

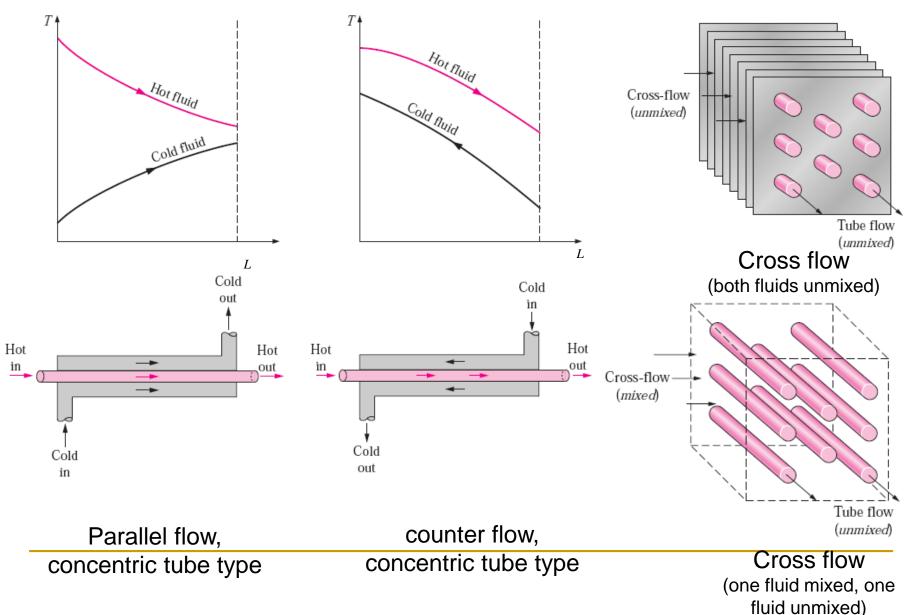
Geometry of construction

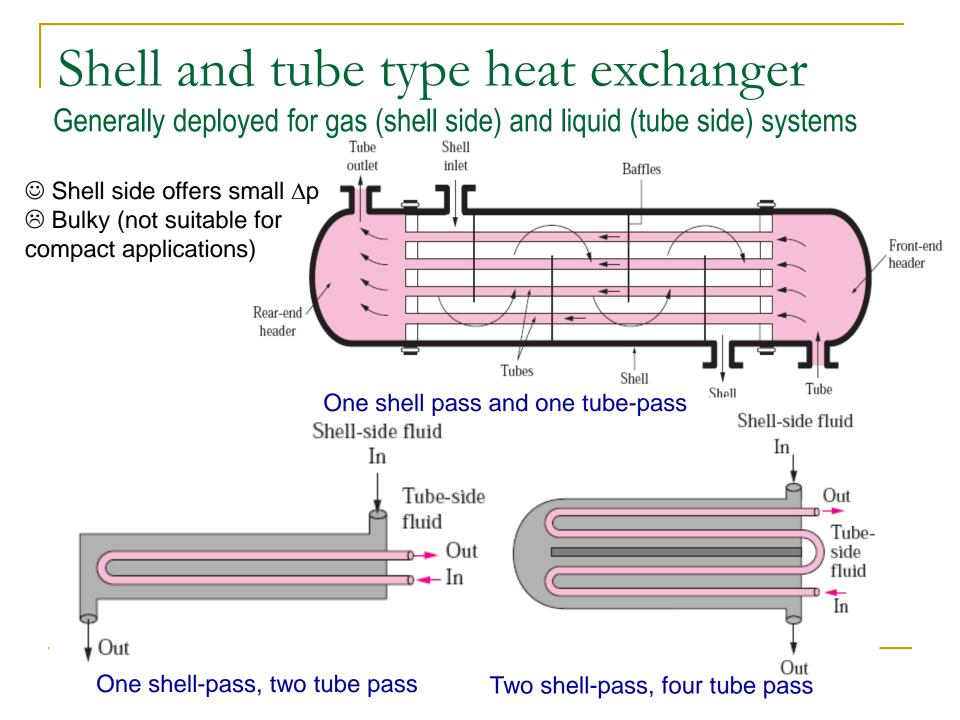
- Concentric tubes
- Shell and tube
- Plate

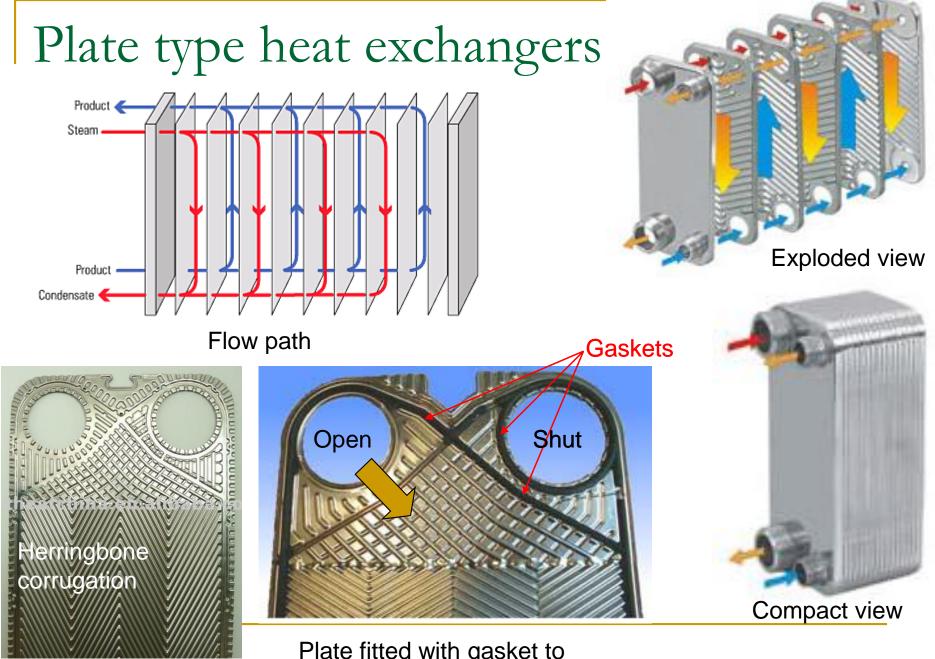
Heat transfer mechanism

- Direct and contact Indirect contact (surface) types
- Single phase or phase change
- Recuperative and regenerative

Parallel, counter and cross flows

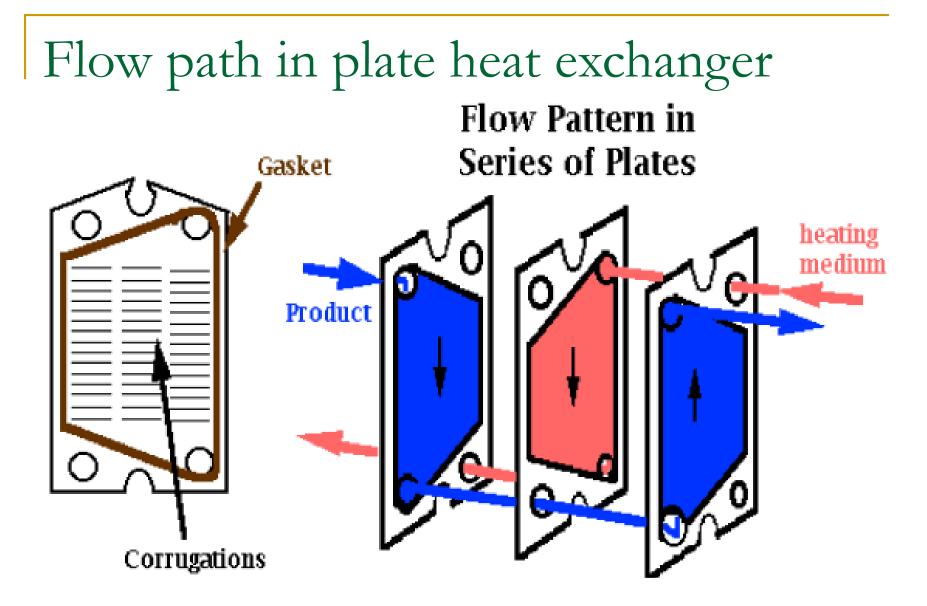






The plate

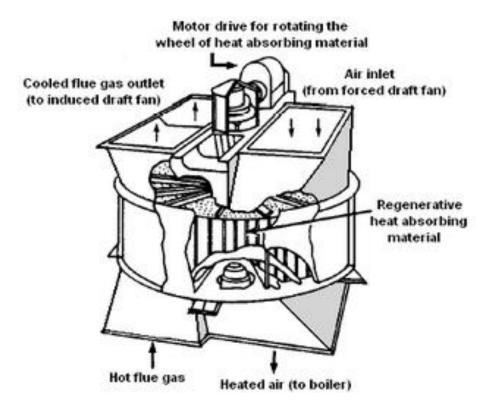
Plate fitted with gasket to selectively restrict flow



To learn more of how Plate Hex works:

https://www.youtube.com/watch?v=7TTF4aU3Pcs

Regenerative vs recuperative Hex



Regnerative Air Preheater

Flue Gas Inlet Tubesheet Expansion Joint Tubes Baffle Air Outlet Cold Air Bypass Damper Air Inlet Baffle Expansion Flue Gas . Joint Outlet Tubesheet Dust and Water Wash Hopper

Recuperative Air Preheater

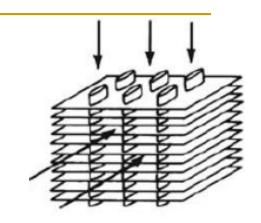
Requires an energy storing matrix

Direct energy transfer between the fluids

Compact heat exchangers

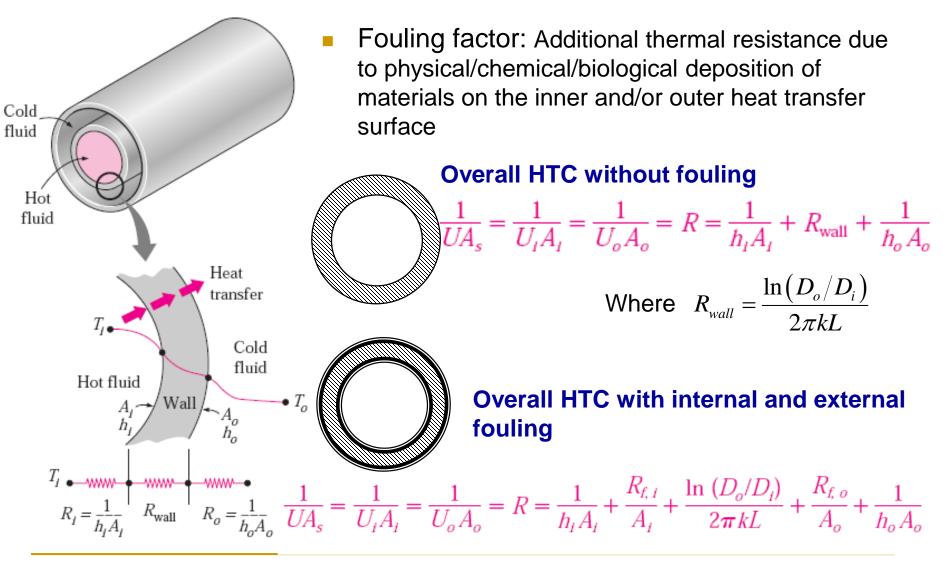
Surface area to volume ratio

 $\beta = \frac{Heat \ Transfer \ Surface \ Area}{Heat \ Exchanger \ Volume}$



- β > 700 m⁻¹ ⇒ Compact heat exchanger
 - Car radiators: β~ 1000 m⁻¹
 - □ Glass ceramic gas turbine heat exchanger: β ~ 6000 m⁻¹
 - □ Regenerative heat exchanger of Stirling engine: β ~ 15000 m⁻¹
 - □ Human lung: β~ 20000 m⁻¹

Overall heat transfer coefficient (HTC)



 $A_i = \pi D_i L; \quad A_o = \pi D_o L$

Some typical fouling factors

Fouling of ash on SH tubes

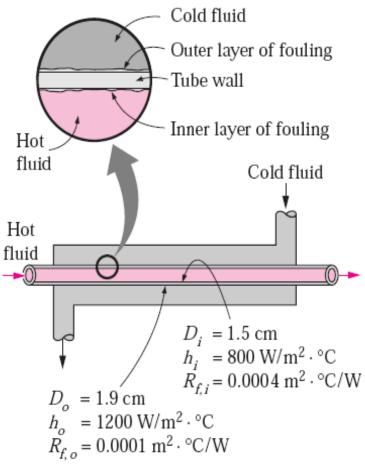
 R_f , m² · °C/W Fluid Distilled water, seawater, river water, boiler feedwater: Below 50°C 0.0001 Above 50°C 0.0002 Fuel oil 0.0009 0.0001 Steam (oil-free) Refrigerants (liquid) 0.0002 Refrigerants (vapor) 0.0004 0.0001 Alcohol vapors Air 0.0004

Effect of fouling on overall HTC

A double-pipe (shell-and-tube) heat exchanger is constructed of a stainless steel ($k = 15.1 \text{ W/m} \cdot ^{\circ}\text{C}$) inner tube of inner diameter $D_i = 1.5 \text{ cm}$ and outer diameter $D_o = 1.9 \text{ cm}$ and an outer shell of inner diameter 3.2 cm. The convection heat transfer coefficient is given to be $h_i = 800 \text{ W/m}^2 \cdot ^{\circ}\text{C}$ on the inner surface of the tube and $h_o = 1200 \text{ W/m}^2 \cdot ^{\circ}\text{C}$ on the outer surface. For a fouling factor of $R_{f,i} = 0.0004 \text{ m}^2 \cdot ^{\circ}\text{C/W}$ on the tube side and $R_{f,o} = 0.0001 \text{ m}^2 \cdot ^{\circ}\text{C/W}$ on the shell side, determine (a) the thermal resistance of the heat exchanger per unit length and (b) the overall heat transfer coefficients, U_i and U_o based on the inner and outer surface areas of the tube, respectively.

Hints:

$$R = \frac{1}{UA_s} = \frac{1}{U_i A_i} = \frac{1}{U_o A_o} = \frac{1}{h_i A_i} + \frac{R_{f,i}}{A_i} + \frac{\ln(D_o/D_i)}{2\pi kL} + \frac{R_{f,o}}{A_o} + \frac{1}{h_o A_o}$$
$$A_i = \pi D_i L = \pi (0.015 \text{ m})(1 \text{ m}) = 0.0471 \text{ m}^2$$
$$A_o = \pi D_o L = \pi (0.019 \text{ m})(1 \text{ m}) = 0.0597 \text{ m}^2$$



 $R=0.0532 \text{ K/W}, U_i = 399 \text{ W/m}^2\text{K}, U_o = 315 \text{ W/m}^2\text{K}$

~ 19% of resistance contributed by fouling, ~5% due to the thermal resistance of the metal, the remaining ~76% is offered by the inner and outer convection resistances

Analysis of heat exchanger performance

- Questions we seek to answer...
 - Want to achieve a specified ∆T of a fluid stream: How much surface should we provide? [design]
 - Log Mean Temperature difference (LMTD) method is preferred
 - Have a specified heat exchanger: How much ∆T change will it produce in the hot and cold streams? [testing and performance]
 - Effectiveness (ε) NTU method is preferred

Salient assumptions

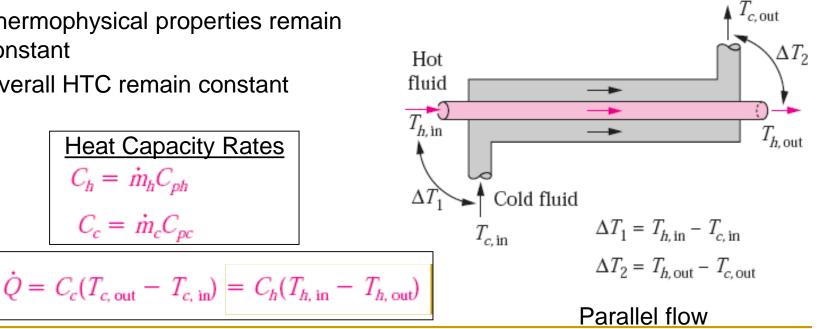
- Heat exchanger is insulated from the surrounding
- Axial conduction in the fluids are negligible as compared to the energy transaction between the two fluids
- Changes in potential and kinetic energy negligible
- Thermophysical properties remain constant
- **Overall HTC remain constant**

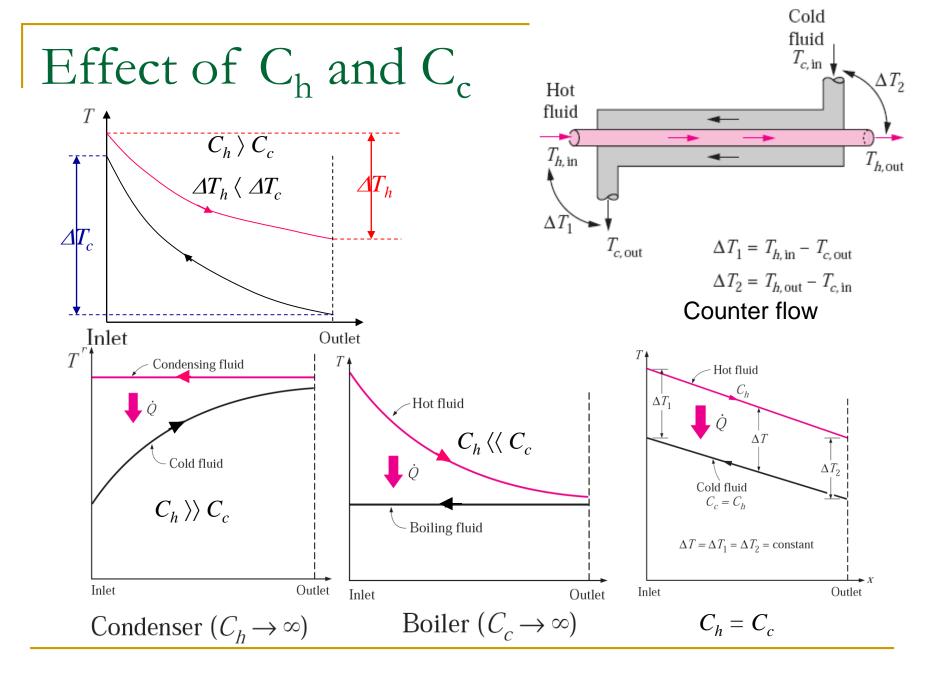
Heat transferred from hot fluid:

 $Q = \dot{m}_h C_{ph} (T_{h, \text{ in}} - T_{h, \text{ out}})$

Heat transferred to cold fluid:

$$\dot{Q} = \dot{m}_c C_{pc} (T_{c, \text{ out}} - T_{c, \text{ in}})$$





LMTD analysis of heat transfer

$$\delta \dot{Q} = -\dot{m}_{h}C_{ph} dT_{h} = \dot{m}_{c}C_{pc} dT_{c} \quad (1)$$

$$T_{h,in}$$
For the hot stream: $dT_{h} = -\frac{\delta \dot{Q}}{\dot{m}_{h}C_{ph}} \quad (2)$
For the cold stream: $dT_{c} = \frac{\delta \dot{Q}}{\dot{m}_{c}C_{pc}} \quad (3)$

$$T_{c,in}$$

$$T_{c} = d(T_{h} - T_{c}) = -\delta \dot{Q} \left(\frac{1}{\dot{m}_{h}C_{ph}} + \frac{1}{\dot{m}_{c}C_{pc}}\right) \quad (4)$$
But, $\delta \dot{Q} = U(T_{h} - T_{c}) dA_{s} \quad (5)$ [convective heat trf.]
Substituting (5) in (4), and rearranging
$$-\frac{d(T_{h} - T_{c})}{T_{h} - T_{c}} = -U dA_{s} \left(\frac{1}{\dot{m}_{h}C_{ph}} + \frac{1}{\dot{m}_{c}C_{pc}}\right) - (6)$$

$$Cold fluid$$

LMTD method (contd...)

Integrating (5) over the length (i.e., the total HT area) of the heat exchanger,

$$\ln \frac{T_{h, \text{ out}} - T_{c, \text{ out}}}{T_{h, \text{ in}} - T_{c, \text{ in}}} = -UA_s \left(\frac{1}{\dot{m}_h C_{ph}} + \frac{1}{\dot{m}_c C_{pc}} \right)$$
(6)

Reckoning
$$\frac{1}{\dot{m}_h C_{ph}} = \frac{\left(T_{h,in} - T_{h,out}\right)}{\dot{Q}}$$
 and $\frac{1}{\dot{m}_c C_{pc}} = \frac{\left(T_{c,out} - T_{c,in}\right)}{\dot{Q}}$

From (6)
$$ln \frac{(T_{h,out} - T_{c,out})}{(T_{h,in} - T_{c,in})} = -UA_s \frac{(T_{h,in} - T_{h,out}) + (T_{c,out} - T_{c,in})}{\dot{Q}}$$
Rearranging,

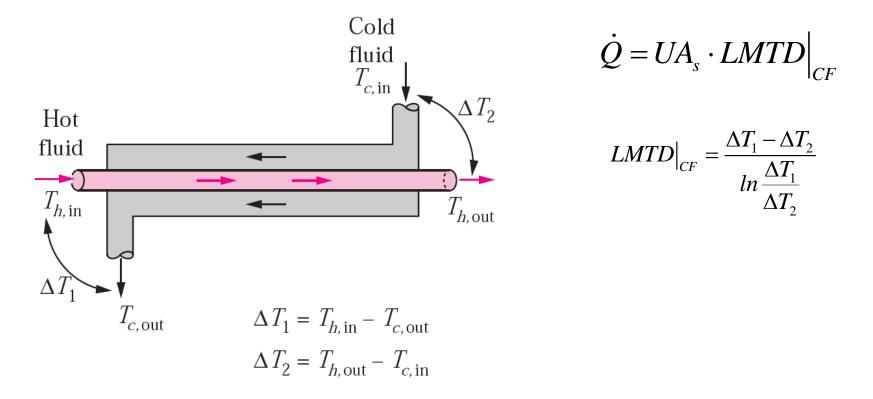
$$\dot{Q} = -UA_s \frac{(T_{h,in} - T_{h,out}) + (T_{c,out} - T_{c,in})}{ln \frac{(T_{h,out} - T_{c,out})}{(T_{h,in} - T_{c,in})}}$$

$$= UA_s \frac{(T_{h,in} - T_{c,in}) - (T_{h,out} - T_{c,out})}{ln \frac{(T_{h,out} - T_{c,out})}{(T_{h,out} - T_{c,out})}} = UA_s \cdot LMTD|_{PF}$$

$$LMTD|_{PF} = \frac{\Delta T_1 - \Delta T_2}{ln \frac{\Delta T_1}{\Delta T_2}}$$

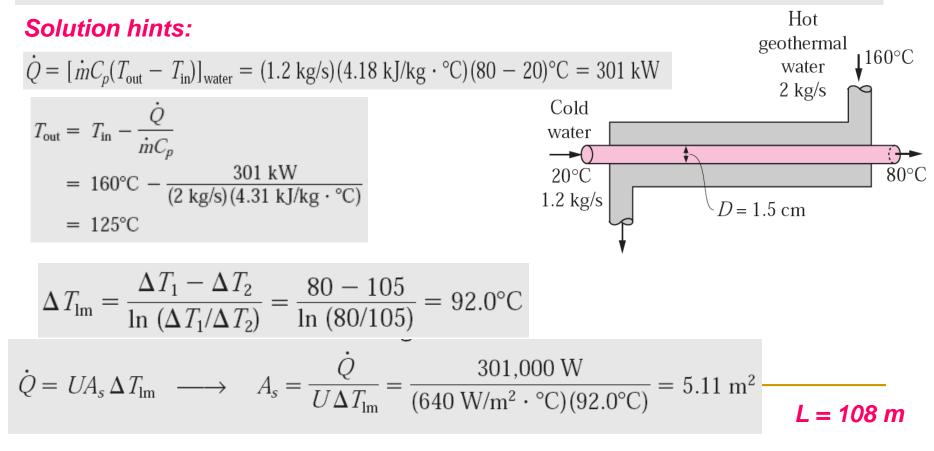
For counterflow heat exchanger

Similar analysis holds true...



EXAMPLE 23–4 Heating Water in a Counter-Flow Heat Exchanger

A counter-flow double-pipe heat exchanger is to heat water from 20°C to 80°C at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water available at 160°C at a mass flow rate of 2 kg/s. The inner tube is thin-walled and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m² · °C, determine the length of the heat exchanger required to achieve the desired heating.



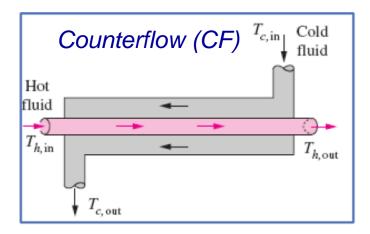
Logarithmic vs arithmetic mean temperature difference

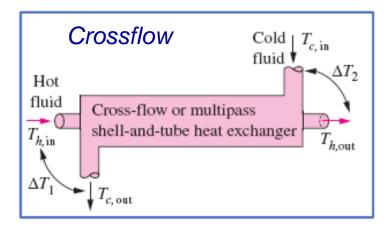
- The Arithmetic mean temperature difference $AMTD = \frac{1}{2} (\Delta T_1 + \Delta T_2)$
- The logarithmic mean temperature difference (LMTD) is an exact representation of the average temperature difference between the hot and cold fluids
- LMTD is always less than AMTD for parallel flow, and more than AMTD for counterflow
- when ΔT_1 and ΔT_2 differs by no more than 40%, the error in using AMTD is less than 1%. But the difference increases drastically at larger difference
- For a given $T_{h,in} T_{c,in} T_{h,out} T_{c,out}$ the LMTD for counterflow is greater than that for parallel flow
- What is LMTD for $\Delta T_1 = \Delta T_2$?

Cross flow heat exchanger

The LMTD for cross flow is "somewhat" less than that of a counterflow HEX

So we assume, for the crossflow HEX $\Delta T_{\text{lm}} = F \Delta T_{\text{lm, CF}}$





The correction factor depends on $P = \frac{t_2 - t_1}{T_1 - t_1} \qquad R = \frac{T_1 - T_2}{t_2 - t_1} = \frac{(\dot{m}C_p)_{\text{tube side}}}{(\dot{m}C_p)_{\text{shell side}}}$

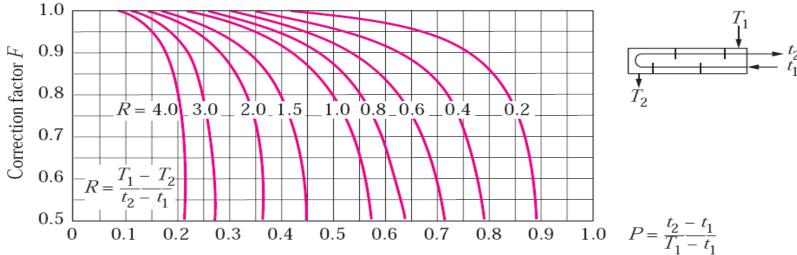
The subscripts 1 and 2 represent the inlet and outlet, respectively..

T and t represent the shell- and tube-side temperatures, respectively

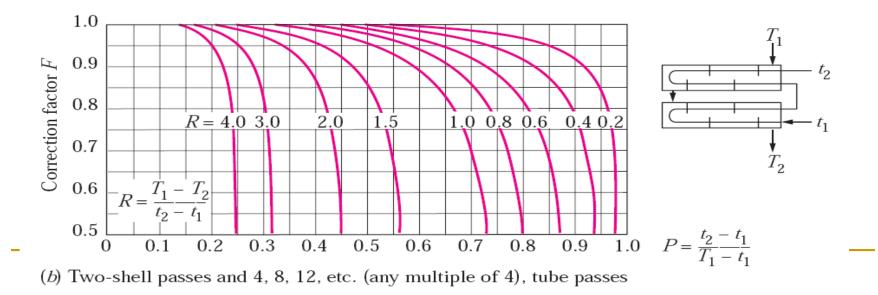
Heat transfer rate: $\dot{Q} = UA_s F \Delta T_{lm, CF}$ where $\Delta T_{lm, CF} = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1 / \Delta T_2)}$ $\Delta T_1 = T_{h,in} - T_{c,out}$ $\Delta T_2 = T_{h,out} - T_{c,in}$

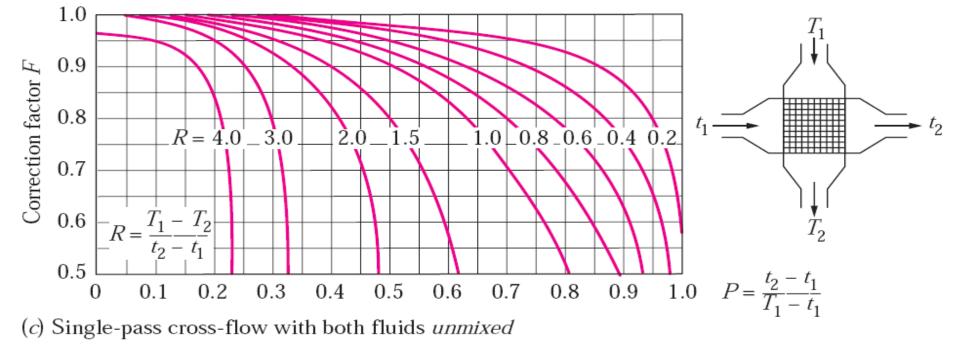
The suffix CF stands for Counterflow, NOT cross flow

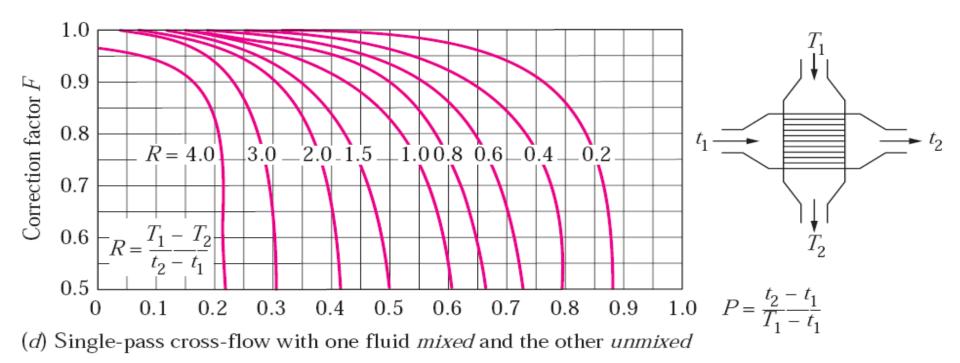
Bowman's chart for Correction Factor



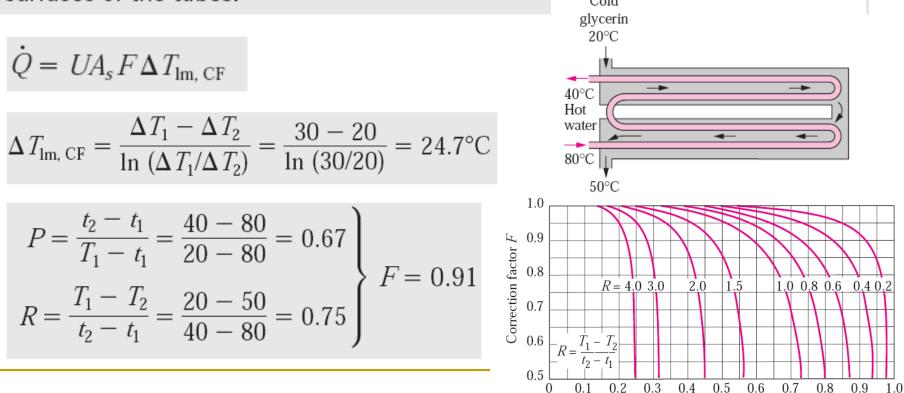
(a) One-shell pass and 2, 4, 6, etc. (any multiple of 2), tube passes







A 2-shell passes and 4-tube passes heat exchanger is used to heat glycerin from 20°C to 50°C by hot water, which enters the thin-walled 2-cm-diameter tubes at 80°C and leaves at 40°C (Fig. 23–21). The total length of the tubes in the heat exchanger is 60 m. The convection heat transfer coefficient is 25 W/m² · °C on the glycerin (shell) side and 160 W/m² · °C on the water (tube) side. Determine the rate of heat transfer in the heat exchanger (*a*) before any fouling occurs and (*b*) after fouling with a fouling factor of 0.0006 m² · °C/W occurs on the outer surfaces of the tubes.

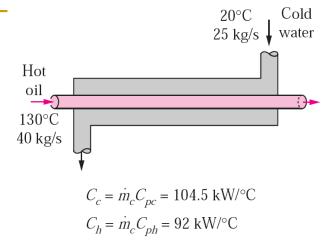


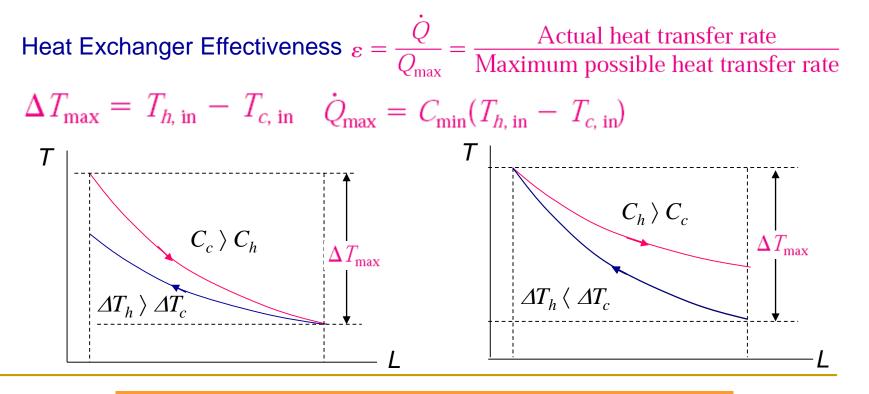
Rationale of LMTD method

- Suitable for determining the size of a heat exchanger to realize the prescribed outlet temperatures when the mass flow rates and the terminal temperatures are specified
- With LMTD method, the task is to select a heat exchanger that will meet the prescribed heat transfer requirements
 - Select the type of heat exchanger for the application
 - Determine any unknown inlet or outlet temperature and heat transfer rate using an energy balance
 - □ Calculate the LMTD (for cross flow use Bowman's chart for *F*)
 - □ Obtain (select or calculate) the value of overall HTC, i.e., U
 - Calculate the requisite heat transfer surface area, A_s
 - The task is completed by selecting a heat exchanger that has a heat transfer surface area equal to or larger than A_s
- Merit: Straightforward
- Limitation: Requires iterative solution if direct energy balance is not possible (e.g., only the two inlet stream temperatures specified)

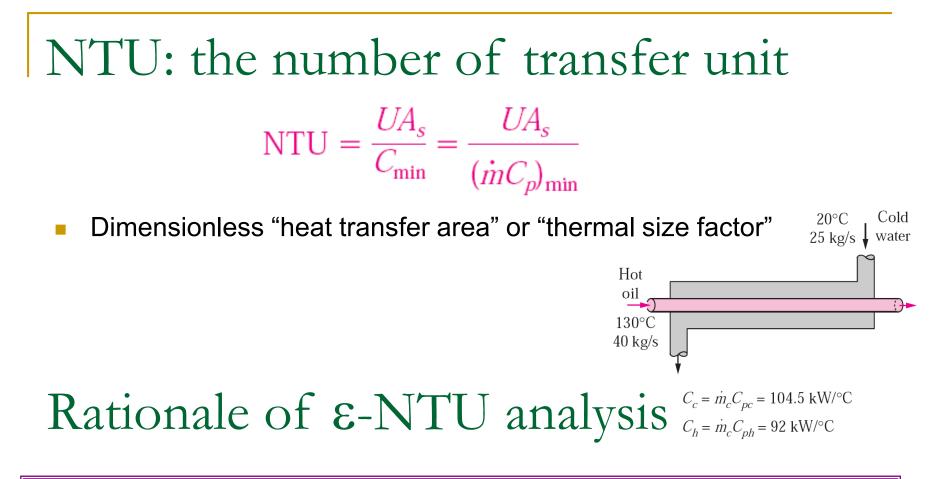
Effectiveness-NTU method

- How to find the heat transfer rate and the outlet temperatures of the hot and cold fluids, provided the inlet temperatures, the heat capacity rates, and UA_s are specified?
- LMTD method would require iterative calculations





Fluid with the smaller C experience the maximum ΔT

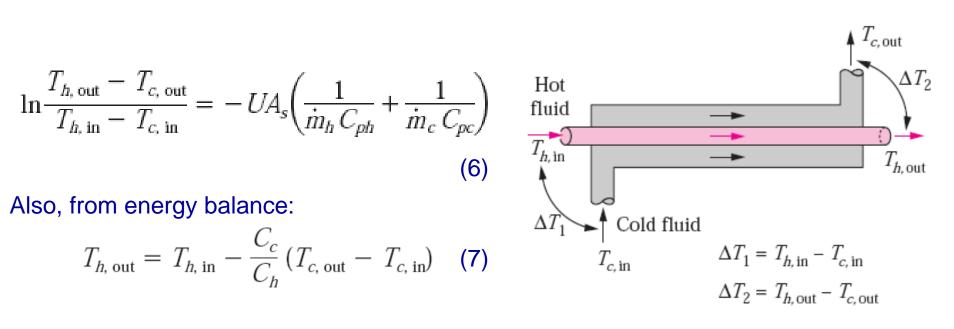


If ϵ is known in terms of the flow rates, thermophysical properties, and HEX geometry, then one can calculate the actual heat transfer as:

$$\dot{Q} = \varepsilon \dot{Q}_{\max} = \varepsilon C_{\min} (T_{h, \text{ in}} - T_{c, \text{ in}})$$

How to evaluate ε ?

$\epsilon\text{-NTU}$ analysis for a Parallel Flow HEX



Substituting in eq. (6) and adding and subtracting $T_{c,in}$ in the numerator on the left:

$$\ln \frac{T_{h, \text{ in}} - T_{c, \text{ in}} + T_{c, \text{ in}} - T_{c, \text{ out}} - \frac{C_c}{C_h} (T_{c, \text{ out}} - T_{c, \text{ in}})}{T_{h, \text{ in}} - T_{c, \text{ in}}} = -\frac{UA_s}{C_c} \left(1 + \frac{C_c}{C_h}\right)$$

Simplifies to: $\ln \left[1 - \left(1 + \frac{C_c}{C_h}\right) \frac{T_{c, \text{ out}} - T_{c, \text{ in}}}{T_{h, \text{ in}} - T_{c, \text{ in}}}\right] = -\frac{UA_s}{C_c} \left(1 + \frac{C_c}{C_h}\right)$ (8)

ε-NTU analysis for a Parallel Flow HEX (continued...)

Also, from the definition of HEX effectiveness $\varepsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} = \frac{C_c(T_{c, \text{ out}} - T_{c, \text{ in}})}{C_{\text{min}}(T_{h, \text{ in}} - T_{c, \text{ in}})}$ $\Rightarrow \frac{T_{c, \text{ out}} - T_{c, \text{ in}}}{T_{h, \text{ in}} - T_{c, \text{ in}}} = \varepsilon \frac{C_{\text{min}}}{C_c}$ Substituting back in (8)

$$\Delta T_{2}$$

$$T_{h, \text{out}}$$

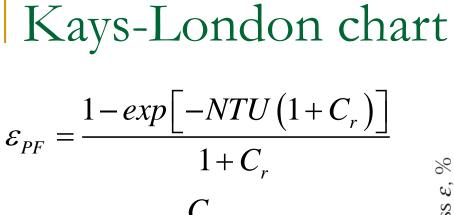
$$T_{c, \text{in}}$$

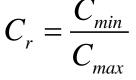
$$\Delta T_{1} = T_{h, \text{in}} - T_{c, \text{in}}$$

$$\Delta T_{2} = T_{h, \text{out}} - T_{c, \text{out}}$$

 $\overline{}$

$$\varepsilon_{\text{parallel flow}} = \frac{1 - \exp\left[-\frac{UA_s}{C_c}\left(1 + \frac{C_c}{C_h}\right)\right]}{\left(1 + \frac{C_c}{C_h}\right)\frac{C_{\min}}{C_c}}$$
(9)
Show that, for either $C_h = C_{\min}$, or $C_c = C_{\min}$, Eq. (9) reduces to
$$\varepsilon_{\text{parallel flow}} = \frac{1 - \exp\left[-\frac{UA_s}{C_{\min}}\left(1 + \frac{C_{\min}}{C_{\max}}\right)\right]}{1 + \frac{C_{\min}}{C_{\max}}}$$

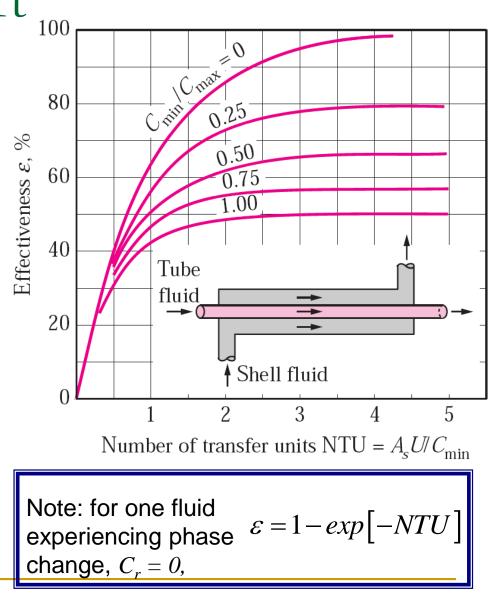




Thus, for the parallel flow geometry

 $\varepsilon_{PF} = f\left[NTU, C_r\right]$

- NTU is specified from the HEX design datasheet, where the HT surface area, HTC and the heat capacity rates are specified.
- C_r will vary with operating condition



$$\varepsilon_{CF} = \frac{1 - exp\left[-NTU\left(1 - C_{r}\right)\right]}{1 - C_{r} exp\left[-NTU\left(1 - C_{r}\right)\right]} \quad (for C_{r} < 1)$$

$$= \frac{NTU}{1 + NTU} \quad (for C_{r} = 1)$$

$$= 1 - exp\left[-NTU\right] \quad (for C_{r} = 0)$$

$$(for C_{r} = 0)$$

$$\varepsilon_{CF} = 0$$

$$\varepsilon_{CF}$$

L

ϵ -NTU relations for different HEX

Effectiveness relations for heat exchangers: NTU = UA_s/C_{min} and $c = C_{min}/C_{max} = (\dot{m}C_p)_{min}/(\dot{m}C_p)_{max}$ (Kays and London)

	primit primax is a	
Heat exchanger type	Effectiveness relation	
1 <i>Double pipe:</i> Parallel-flow	$\varepsilon = \frac{1 - \exp\left[-NTU(1+c)\right]}{1+c}$	
Counter-flow	$\varepsilon = \frac{1 - \exp\left[-NTU(1 - c)\right]}{1 - c \exp\left[-NTU(1 - c)\right]}$	
2 <i>Shell-and-tube:</i> One-shell pass 2, 4, tube passes	$\varepsilon = 2 \left\{ 1 + c + \sqrt{1 + c^2} \frac{1 + \exp\left[-NTU\sqrt{1 + c^2}\right]}{1 - \exp\left[-NTU\sqrt{1 + c^2}\right]} \right\}^{-1}$	1 Counter-flow
3 <i>Cross-flow</i> (<i>single-pass</i>) Both fluids		Cross-flow with both fluids unmixed
unmixed C _{max} mixed,	$\varepsilon = 1 - \exp\left\{\frac{NTU^{0.22}}{c} \left[\exp\left(-c \ NTU^{0.78}\right) - 1\right]\right\}$	0.5 – Parallel-flow
C _{min} unmixed	$\varepsilon = \frac{1}{c} (1 - \exp\left\{1 - c\left[1 - \exp\left(-NTU\right)\right]\right\})$	
C _{min} mixed, C _{max} unmixed 4 <i>All heat</i>	$\varepsilon = 1 - \exp\left\{-\frac{1}{c}[1 - \exp(-c \text{ NTU})]\right\}$	(for c = 1)
exchangers with $c = 0$	$\varepsilon = 1 - \exp(-NTU)$	
		$-$ NTU = UA_s/C_{min}

NTU- ε relations for different HEX

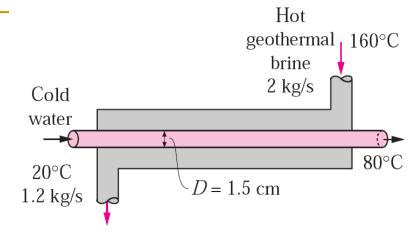
NTU relations for heat exchangers: NTU = UA_s/C_{min} and $c = C_{min}/C_{max}$ = $(\dot{m}C_p)_{min}/(\dot{m}C_p)_{max}$ (Kays and London)

Heat exchanger type		NTU relation
1	<i>Double-pipe:</i> Parallel-flow	$NTU = -\frac{\ln\left[1 - \varepsilon(1 + c)\right]}{1 + c}$
	Counter-flow	$NTU = -\frac{\ln [1 - \varepsilon (1 + c)]}{1 + c}$ $NTU = \frac{1}{c - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon c - 1}\right)$
2	<i>Shell and tube:</i> One-shell pass 2, 4, tube passes	$NTU = -\frac{1}{\sqrt{1+c^2}} \ln \left(\frac{2/\varepsilon - 1 - c - \sqrt{1+c^2}}{2/\varepsilon - 1 - c + \sqrt{1+c^2}} \right)$
3	<i>Cross-flow</i> (<i>single-pass</i>): <i>C</i> _{max} mixed, <i>C</i> _{min} unmixed	$NTU = -\ln\left[1 + \frac{\ln\left(1 - \varepsilon c\right)}{c}\right]$
4	C_{min} mixed, C_{max} unmixed <i>All heat exchangers</i> <i>with</i> $c = 0$	$NTU = -\frac{\ln [c \ln (1 - \varepsilon) + 1]}{c}$ $NTU = -\ln(1 - \varepsilon)$

Example 1:
$$\varepsilon$$
-NTU analysis
Calculate the outlet temperatures of
both the fluids, and the heat transfer
 $C_{min} = 5400 \text{ J/kgK},$
 $C_{max} = 8360 \text{ J/kgK},$
 $C_r = 0.646$
 $TUU = \frac{UA_x}{C_{min}} = \frac{1200 \times 7}{5400} = 1.556$
 $\varepsilon_{PF} = \frac{1 - exp[-NTU(1+C_r)]}{1+C_r} = 0.561$
 $Q_{max} = C_{min}(T_{hi} - T_{ci}) = 5400 \times 90 = 486000 \text{ W}$
 $C_{actual} = \varepsilon Q_{max} = 0.561 \times 486000 = 272646 \text{ W}$
 $T_{b,o} = 110 \cdot 32.61 = 77.39 \text{ °C}$
 $T_{c,o} = 20 + 50.49 = 70.49 \text{ °C}$

 $T_{h,o} = 110 - 32.61 = 77.39 \text{ °C}$

Solve the same problem (example discussed for the LMTD technique using ϵ -NTU analysis:



C_h =
$$\dot{m}_h C_{ph}$$
 = (2 kg/s) (4.31 kJ/kg · °C) = 8.62 kW/°C
C_c = $\dot{m}_c C_{pc}$ = (1.2 kg/s) (4.18 kJ/kg · °C) = 5.02 kW/°C
C = C_{min} / C_{max} = 5.02/8.62 = 0.583
 \dot{Q}_{max} = C_{min} (T_{h, in} − T_{c, in})
= (5.02 kW/°C) (160 − 20)°C
= 702.8 kW

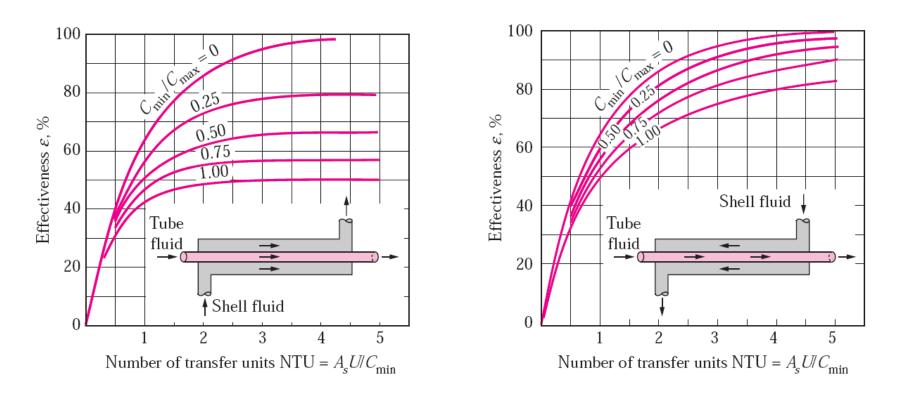
$$\hat{Q} = [\dot{m}C_{p}(T_{out} - T_{in})]_{water} = (1.2 \text{ kg/s})(4.18 \text{ kJ/kg} \cdot ^{\circ}\text{C})(80 - 20)^{\circ}\text{C} = 301.0 \text{ kW}$$

$$\hat{P} \text{NTU} = \frac{1}{c-1} \ln\left(\frac{\varepsilon - 1}{\varepsilon c - 1}\right) = \frac{1}{0.583 - 1} \ln\left(\frac{0.428 - 1}{0.428 \times 0.583 - 1}\right) = 0.651$$

$$\Rightarrow A_{s} = \frac{\text{NTU } C_{\min}}{U} = 5.11 \text{ m}^{2}$$

$$L = 108 \text{ m}$$

Comparison: PF vs CF



At $C_r = 0$, both parallel and counterflow HEX have the same ε

$$\varepsilon_{PF} = \varepsilon_{CF} = 1 - exp\left[-NTU\right]$$

Observations from the effectiveness relations and charts

- The value of the effectiveness ranges from 0 to 1. It increases rapidly with NTU for small values (up to about NTU = 1.5) but rather slowly for larger values. Therefore, the use of a heat exchanger with a large NTU (usually larger than 3) and thus a large size cannot be justified economically, since a large increase in NTU in this case corresponds to a small increase in effectiveness.
- For a given NTU and capacity ratio c = C_{min} /C_{max}, the counterflow heat exchanger has the highest effectiveness, followed closely by the cross-flow heat exchangers with both fluids unmixed. The lowest effectiveness values are encountered in parallel-flow heat exchangers.
- The effectiveness of a heat exchanger is independent of the capacity ratio c for NTU values of less than about 0.3.
- The value of the capacity ratio *c* ranges between 0 and 1. For a given NTU, the effectiveness becomes a *maximum* for *c* = 0 (e.g., boiler, condenser) and a *minimum* for *c* = 1 (when the heat capacity rates of the two fluids are equal).

Selection of Heat Exchangers

The uncertainty in the predicted value of *U* can exceed 30 percent. Thus, it is natural to tend to overdesign the heat exchangers.

- Heat transfer enhancement in heat exchangers is usually accompanied by increased pressure drop, and thus higher pumping power.
- Therefore, any gain from the enhancement in heat transfer should be weighed against the cost of the accompanying pressure drop.
- Usually, the *more viscous fluid is more suitable for the shell side*(larger passage area and thus lower pressure drop) and *the fluid with the higher pressure for the tube side*

The proper selection of a heat exchanger depends on several factors:

- Heat Transfer Rate
- Cost
- Pumping Power
- Size and Weight
- Type
- Materials

The *rate of heat transfer* in the prospective heat exchanger

 $\dot{Q} = \dot{m}c_p(T_{\rm in} - T_{\rm out})$

The annual cost of electricity associated with the operation of the pumps and fans

Operating cost = pumping power × hours of operation × tariff

Reference:

- Heat Transfer, a Practical Approach by Y. Çengel
- ASPEN Plus literature
- Interesting videos:
 - https://www.youtube.com/watch?v=OyQ3SaU4KKU
 - https://www.youtube.com/watch?v=M_jOsTWVIH8
- Applications of Heat Exchangers in industry
 - https://youtu.be/WAiTFp54xZQ