Problem Sheet on Heat Exchanger

1. A feed water heater uses a shell and tube exchanger with condensing steam in one shell pass at $120^{\circ} \mathrm{C}$. Water enters the tubes at $30^{\circ} \mathrm{C}$ and makes four passes to produce an overall U value of $2000 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$. Calculate the area of the exchanger for $2.5 \mathrm{~kg} / \mathrm{s}$ mass flow of the water, with a water exit temperature of $100^{\circ} \mathrm{C}$.
2. A reaction mixture having a mean heat capacity of $2.85 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$ is flowing at a rate of $7260 \mathrm{~kg} / \mathrm{h}$ and is to be cooled from 377.6 K to 344.3 K . Cooling water $\left(\mathrm{C}_{\mathrm{p}}=4179\right.$ $\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$) at 288.8 K is available and the flow rate is $4536 \mathrm{~kg} / \mathrm{h}$. The overall heat transfer coefficient based on the outer area is $653 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$. Determine the effectiveness NTU of the heat exchanger if it is operated in (a) counterflow mode, and (b) parallel flow mode.
3. Oil flowing at the rate of $7258 \mathrm{~kg} / \mathrm{h}$ with a mean heat capacity of $2.01 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$ is cooled from 394.3 K to 338.9 K in a counterflow heat exchanger by water entering at 294.3 K and leaving at 305.4 K . Calculate the flow rate of the water and the overall heat transfer coefficient based on the inner area U_{i} if the inner area is $5.11 \mathrm{~m}^{2}$.
4. The liquid metal bismuth enters a tube having an inside diameter of 35 mm at $425^{\circ} \mathrm{C}$ and is heated to $430^{\circ} \mathrm{C}$ in the tube. The flow rate of the bismuth is $2.00 \mathrm{~kg} / \mathrm{s}$. The tube wall is maintained at a temperature of $25^{\circ} \mathrm{C}$ above the liquid bulk temperature. Calculate the tube length required. The physical propoerties of bismuth are as follows: $\mathrm{k}=15.6 \mathrm{~W} /(\mathrm{m} \mathrm{K}), \mathrm{C}_{\mathrm{p}}=149 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$, viscosity $=1.34 \times 10^{-3} \mathrm{~Pa} \mathrm{~s}$.
5. After a long time in service, a counterflow heat exchanger for cooling of turbine lube oil in a power plant is checked to ascertain if its performance has deteriorated due to fouling. In the test SAE 50 oil flowing at $2.0 \mathrm{~kg} / \mathrm{s}$ is cooled from 420 K to 310 K by a water supply of 1.0 kg / s at 300 K . If the overall heat transfer surface is $3.33 . \mathrm{m}^{2}$ and the design value of overall heat transfer coefficient is $930 \mathrm{~W} / \mathrm{m}^{2}$, find the percentage degradation of the overall heat transfer coefficient from design value. C_{p} for SAE oil is $2330 \mathrm{~J} / \mathrm{kgK}$ nd that fr water is 4187 J/kgK.
6. You are asked to design a double-pipe counterflow heat exchanger for an application that will continuously heat a process stream ($\mathrm{C}_{\mathrm{p}}=4.85 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, mass flow rate $=0.584$ kg / s) from $25^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$. The heat-transfer fluid will be Thermatic ${ }^{\circledR}$ ($\mathrm{C}_{\mathrm{p}}=12.8 \mathrm{~kJ} / \mathrm{kg}$ K), which will be fed at $125^{\circ} \mathrm{C}$. The mass flow rate of the Thermatic ${ }^{\circledR}$ is not specified and must be chosen in the design process. The viscosities of the process fluid and of the Thermatic ${ }^{\circledR}$ may be assumed to be constant (not a function of temperature). The overall heat-transfer coefficient U for the heat exchanger is $100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the heat transfer surface needed.
7. Engine oil ($\mathrm{C}_{\mathrm{p}}=2100 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$) is to be heated from $20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ by steam in a heat exchanger. The oil is passed through a 2 cm diameter copper pipe at $0.3 \mathrm{~kg} / \mathrm{s}$ rate, while steam at $130^{\circ} \mathrm{C}\left(\mathrm{h}_{f g}=2174 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}\right)$ is condensed as it passes through the annular space between the outer and the inner tubes. The outside walls of the outer tubes are insulated such that there is no heat loss. If the overall heat transfer coefficient (based on the inner tube) is $650 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$, determine the rate of heat transfer and the length of tube required to achieve this. Also calculate the effectiveness of the heat exchanger if it operates (i) in parallel flow and (ii) in counterflow mode. Neglect the thickness of the inner tube, and assume steady state.
8. Water flowing at a rate of $0.667 \mathrm{~kg} / \mathrm{s}$ enters a countercurrent, double-pipe heat exchanger at 308 K and is heated by an oil stream entering at 383 K at a rate of 2.85 $\mathrm{kg} / \mathrm{s}\left(\mathrm{c}_{\mathrm{p}}=1.89 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})\right.$. The overall heat transfer coefficient of the heat exchanger is $300 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$ and the heat transfer area in the exchanger is $15.0 \mathrm{~m}^{2}$. Calculate the heat-transfer rate and the exit water temperature.
9. Steam at 1.00 atm pressure (absolute) and $100^{\circ} \mathrm{C}$ is condensing on a bank of 5 vertical tubes each 0.305 m high and having an outer diameter of 1.00 in . The tubes are
arranged in a bundle spaced far enough apart so that they do not interfere with each other. The surface temperature of the tubes is $97.78^{\circ} \mathrm{C}$. Calculate the average heattransfer coefficient and the total mass flow rate of condenstate (kg / h).
10. A 1-2 shell-and-tube heat exchanger with one shell pass and two tube passes is used to heat a cold fluid from $37.8^{\circ} \mathrm{C}$ to $121.1^{\circ} \mathrm{C}$ by using a hot fluid entering at $315.6^{\circ} \mathrm{C}$. The temperature of the hot fluid leaving the exchanger is measured to be $148.9^{\circ} \mathrm{C}$. Calculate the log-mean temperature difference in the exchanger and the mean temperature difference in the exchanger. Comment on these answers - why are they different? Are they different in the way you expected?
11. Oil flowing at a rate of $5.04 \mathrm{~kg} / \mathrm{s}$ (mean $\mathrm{C}_{\mathrm{p}}=2.09 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$) is cooled in a $1-2$ shell-and-tube heat exchanger from 366.5 K to 344.3 K by water flowing at $2.02 \mathrm{~kg} / \mathrm{s}$ entering at 283.2 K . The overall heat-transfer coefficient based on the outer area is 340 . $\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$. Calculate the area required.
12. Hot oil at a flow rate of $3.00 \mathrm{~kg} / \mathrm{s}$ (heat capacity $\mathrm{C}_{\mathrm{p}}=1.92 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$) enters an existing counterflow exchanger at $400 . \mathrm{K}$ and is cooled by water entering at 325 K (under pressure) and flowing at a rate of $0.70 \mathrm{~kg} / \mathrm{s}$. The overall heat-transfer coefficient is 350 . $\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$ and the heat-transfer area is $12.9 \mathrm{~m}^{2}$. Calculate the heat-transfer rate and the exit oil temperature.
13. A countercurrent, double-pipe heat exchanger (inner heat transfer area $=42.6 \mathrm{~m}^{2}$, overall heat-transfer coefficient based on the area given $\left.=340 . \mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)\right)$ was designed to cool a vegetable oil (mean heat capacity $=5.62 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$, flow rate $=5.3$ kg / s) from $120 .{ }^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ using city water as the cooling fluid. The city water is supplied at a temperature of $18^{\circ} \mathrm{C}$.
a. What is the outlet temperature of the city water for the conditions given?
b. What will be the area of the heat exchanger if the same performance is to be achieved by a parallel flow heat exchanger?
