Forced Convection through pipes and ducts

(1) Laminar vs. turbulent flow

 \bullet Flow through tubes, transition Reynolds number Re_{D_I} is

(2) Entrance vs. fully developed region

- · Classification based on velocity and temperature profiles:
 - (i) Entrance region
 - (ii) Fully developed region

(3) Surface boundary conditions

- · Two common boundary conditions::
 - (i) Uniform surface temperature
 - (ii) Uniform surface heat flux

Average velocity and Reynolds Number

$$Re = \frac{Inertial forces}{Viscous forces} = \frac{V_{avg}D}{\nu} = \frac{\rho V_{avg}D}{\mu}$$

$$V_{\text{avg}} = \frac{\int_{A_c} \rho u(r) \, dA_c}{\rho A_c} = \frac{\int_0^R \rho u(r) 2\pi r \, dr}{\rho \pi R^2} = \frac{2}{R^2} \int_0^R u(r) r \, dr$$

 $Re \lesssim 2300$

- 1000

 $2300 \lesssim \text{Re} \lesssim 4000$

Re ≥ 4000

laminar flow

transitional flow

turbulent flow

Hydrodynamic and thermal entry regions

Flow Field (1) Entrance Region (Developing Flow, $0 \le x \le L_h$).

- Name: hydrodynamic entrance region.
- Length: L_h (hydrodynamic entrance length).
- · Streamlines are not parallel.
- Core velocity u_c increases with distance
- Pressure decreases with distance (dp/dx < 0).
- δ < D/2.

(2) Fully Developed Flow Region. $x \ge L_h$

- Streamlines are parallel $(v_r = 0)$.
- $\partial u/\partial x = 0$ for two-dimensional incompressible fluid.

Temperature Field

(1) Entrance Region (Developing Temperature, $0 \le x \le L_t$)

- · Name: Thermal entrance region.
- Length: L_t (thermal entrance length).
- Core temperature T_c is uniform, $T_c = T_i$.
- $\delta_t < D/2$

(2) Fully Developed Temperature Region. $x \ge L_t$

• Temperature varies radially and axially, $\partial T/\partial x \neq 0$.

Hydrodynamic and thermal entry lengths

- Hydrodynamic Entrance Length L_h
- Starting with external flow result

at
$$x = L_h$$
:
 $\delta \sim D$ and $Re_{L_h} = Re_D \frac{L_h}{D} \Rightarrow \left(\frac{L_h/D}{Re_D}\right)^{1/2} \sim 1$

Thermal Entrance Length L_t

$$\frac{L_t}{L_h} \sim Pr$$

Concept of bulk mean temperature

Energy flow through a particular section:

$$\dot{E}_{\text{fluid}} = \dot{m}C_p T_m = \int_{\dot{m}} C_p T \delta \dot{m} = \int_{A_c} \rho C_p T V dA_c$$

Bulk Mean Temperature:

$$T_{m} = \frac{\int_{\dot{m}} C_{p} T \delta \dot{m}}{\dot{m} C_{p}} = \frac{\int_{0}^{R} C_{p} T(\rho V 2 \pi r dr)}{\rho V_{m}(\pi R^{2}) C_{p}} = \frac{2}{V_{m} R^{2}} \int_{0}^{R} T(r, x) V(r, x) r dr$$

Nondimensional Temperature

$$\theta(x,r) = \frac{\left[T_s(x) - T(x,r)\right]}{\left[T_s(x) - T_m(x)\right]} \qquad \theta = 0 \text{ at } r = R$$

Hydrodynamically & Thermally Fully developed flow

Hydrodynamically fully developed: $\frac{\partial \mathcal{V}(r, x)}{\partial x} = 0 \longrightarrow \mathcal{V} = \mathcal{V}(r)$

Thermally fully developed: $\frac{d\{\theta(x,y)\}}{dx} = \frac{\partial}{\partial x} \left[\frac{T_s(x) - T(r,x)}{T_s(x) - T_m(x)} \right] = 0$

$$\frac{\partial}{\partial r} \left(\frac{T_s - T}{T_s - T_m} \right) \Big|_{r=R} = \frac{-(\partial T/\partial r)|_{r=R}}{T_s - T_m} \neq f(x)$$

Now, we define the local heat transfer coefficient h_x as

$$\dot{q}_s = h_x(T_s - T_m) = k \frac{\partial T}{\partial r}\Big|_{r=R} \longrightarrow h_x = \frac{k(\partial T/\partial r)\Big|_{r=R}}{T_s - T_m}$$

Therefore, for TFD flow, h, does not vary with x

so, for T.F.D. flow, we don't need to worry about the Local HTC

Thermally fully developed (TFD) flow: q" = constant

$$\dot{m}C_p dT_m = \dot{q}_s(pdx) \rightarrow \frac{dT_m}{dx} = \frac{\dot{q}_s p}{\dot{m}C_p} = constant$$
 $\frac{dT_m}{dx} = \frac{dT_s}{dx}$

$$\frac{dT_m}{dx} = \frac{dT_s}{dx}$$

For a fully developed temperature profile,

$$\frac{\partial}{\partial x} \left(\frac{T_s - T}{T_s - T_m} \right) = 0 \quad \rightarrow \quad \frac{1}{T_s - T_m} \left(\frac{\partial T_s}{\partial x} - \frac{\partial T}{\partial x} \right) = 0 \quad \rightarrow \quad \frac{\partial T}{\partial x} = \frac{dT_s}{dx}$$

$$\frac{\partial T}{\partial x} = \frac{dT_s}{dx} = \frac{dT_m}{dx} = \frac{\dot{q}_s p}{\dot{m} C_n} = constant$$

The shape of the temperature profile remains unchanged in the fully developed region of a tube subjected to constant surface heat flux

$$\frac{\partial T}{\partial x} = \frac{dT_s}{dx} = \frac{dT_m}{dx} = \frac{2\dot{q}_s}{\rho V_m C_p R} = constant$$

TFD flow: constant wall heat flux case (contd...)

$$\dot{Q} = \dot{q}_s A_s = \dot{m} C_p (T_e - T_i)$$

$$T_e = T_i + \frac{\dot{q}_s A_s}{\dot{m} C_p}$$

$$\dot{q}_s = h(T_s - T_m) \rightarrow T_s = T_m + \frac{\dot{q}_s}{h}$$

In fully developed region: $\frac{dT_m}{dx} = \frac{dT_s}{dx}$ (as h is constant)

TFD flow: $T_s = constant$

Energy balance gives:

Integrating from x = 0 to x = L

$$\ln \frac{T_s - T_e}{T_s - T_i} = -\frac{hA_s}{\dot{m}C_p} \qquad A_s = pL$$

$$T_e = T_s - (T_s - T_i) \exp(-hA_s/\dot{m}C_p)$$

Possible to find out temperature at any x by replacing $A_s = px$

TFD flow: $T_s = C$ (contd...)

Note that the temperature difference between the fluid and the surface decays exponentially in the flow direction, and the rate of decay depends on the magnitude of the exponent $hA_x/m.C_p$

$\mathrm{NTU}=hA_s/\dot{m}C_p$	T_e , °C
0.01	20.8
0.05	23.9
0.10	27.6
0.50	51.5
1.00	70.6
5.00	99.5
10.00	100.0

This dimensionless parameter is called the number of transfer units, denoted by NTU, and is a measure of the effectiveness of the heat transfer systems

TFD flow: T_s = C (contd...): Logarithmic mean temperature difference (LMTD = ΔT_{ln})

* We will see more about *LMTD* and *NTU* later on, while discussing Heat Exchangers

How long does the entrance length persist?

$\mbox{\bf Laminar} \mbox{\bf Entrance length coefficients} \ \ C_h \ \ \mbox{and} \ \ C_t \ \ \mbox{\bf [1]}$

$\frac{L_h}{D_e} = C_h Re_{D_e}$	
$\frac{L_t}{D_e} = C_t PrRe_D$	

Turbulent flow:
$$L = L_h = L_t$$

$$\frac{L}{D} \approx 10$$

		·	
geometry	C_h	uniform surface flux	uniform surface temperature
	0.056	0.043	0.033
b	0.09	0.066	0.041
b	0.085	0.057	0.049
b a/b = 4	0.075	0.042	0.054
	0.011	0.012	0.008

 C_t

Nusselt number for fully developed pipe flows

Fully developed laminar flow A similar analysis can be performed for fully developed laminar flow in a circular tube for the case of constant surface temperature T_s . The solution procedure in this case is more complex as it requires iterations, but the Nusselt number relation obtained is equally simple

Circular tube, laminar (T_s = constant):
$$Nu = \frac{hD}{k} = 3.66$$

(q" = constant)
$$Nu = \frac{hD}{k} = 4.36$$

Nusselt number and friction factor for fully developed laminar flow in tubes of various cross sections ($D_h=4A_c/p$, Re = \mathcal{V}_mD_b/v , and Nu = hD_b/k)

	a/b	Nusse	Friction Factor	
Tube Geometry	or θ°	$T_s = Const.$	$\dot{q}_s = \text{Const.}$	f
Circle	_	3.66	4.36	64.00/Re
Rectangle	<u>a/b</u>			
Ellipse	1 2 3 4 6 8 ∞ a/b 1 2 4 8	2.98 3.39 3.96 4.44 5.14 5.60 7.54 3.66 3.74 3.79 3.72	3.61 4.12 4.79 5.33 6.05 6.49 8.24 4.36 4.56 4.88 5.09	56.92/Re 62.20/Re 68.36/Re 72.92/Re 78.80/Re 82.32/Re 96.00/Re 64.00/Re 67.28/Re 72.96/Re 76.60/Re
a	16	3.65	5.18	78.16/Re
Triangle	θ 30° 60° 90° 120°	1.61 2.26 2.47 2.34 2.00	2.45 2.91 3.11 2.98 2.68	50.80/Re 52.28/Re 53.32/Re 52.60/Re 50.96/Re

Laminar Flows

Nu and friction factor for non-circular tubes

Variation of local Nusselt number along a tube in turbulent flow

Note: beyond the entry region, the Nu is constant and does not depend on whether constant heat flux or T_s boundary condition prevails

For turbulent flows

For fully developed turbulent flow in smooth tubes, a simple relation for the Nusselt number can be obtained by substituting the simple power law relation $f = 0.184 \text{ Re}^{-0.2}$ for the friction factor into

$$Nu = 0.125 f RePr^{1/3}$$

Nu = 0.023 Re^{0.8} Pr^{1/3}
$$\begin{pmatrix} 0.7 \le Pr \le 160 \\ Re > 10,000 \end{pmatrix}$$

The accuracy of this equation can be improved by modifying it as

 $Nu = 0.023 \text{ Re}^{0.8} \text{ Pr}^n$

where n = 0.4 for heating and 0.3 for cooling of the fluid flowing through the tube. This equation is known as the Dittus-Boelter equation [Dittus and Boelter (1930),

Other correlations

Gnielinski (1976) (More accurate)

$$Nu = \frac{(f/8)(Re - 1000) Pr}{1 + 12.7(f/8)^{0.5}(Pr^{2/3} - 1)} \qquad \begin{pmatrix} 0.5 \le Pr \le 2000 \\ 3 \times 10^3 < Re < 5 \times 10^6 \end{pmatrix}$$

Liquid metals, T_s = constant: Nu = 4.8 + 0.0156 Re^{0.85} Pr_s^{0.93} Liquid metals, \dot{q}_s = constant: Nu = 6.3 + 0.0167 Re^{0.85} Pr_s^{0.93}

All the turbulent equations are applicable for non-circular ducts: Replace D by D_h [= 4A/P]

 $D_h = Annular area / wetter perimeter = (d_{out} - d_{in})$

Example

Hot air at atmospheric pressure and 80° C enters an 19-m-long uninsulated square duct of cross section 0.2 m \times 0.2 m that passes through the attic of a house at a rate of 0.15 m³/s (Fig. 19–37). The duct is observed to be nearly isothermal at 60°C. Determine the exit temperature of the air and the rate of heat loss from the duct to the attic space.

$$L_h \approx L_t \approx 10D = 10 \times 0.2 \text{ m} = 2 \text{ m}$$

We can consider FD flow

How to calculate the Bulk mean temperature?

$$ho = 0.9994 \text{ kg/m}^3$$
 $C_p = 1008 \text{ J/kg} \cdot ^{\circ}\text{C}$ $k = 0.02953 \text{ W/m} \cdot ^{\circ}\text{C}$ $Pr = 0.7154$ $v = 2.097 \times 10^{-5} \text{ m}^2\text{/s}$

$$D_h = \frac{4A_c}{P} = \frac{4a^2}{4a} = a = 0.2 \text{ m}$$

$$V_m = \frac{\dot{V}}{A_c} = \frac{0.15 \text{ m}^3/\text{s}}{(0.2 \text{ m})^2} = 3.75 \text{ m/s}$$

$$Re = \frac{V_m D_h}{D} = \frac{(3.75 \text{ m/s})(0.2 \text{ m})}{2.097 \times 10^{-5} \text{ m}^2/\text{s}} = 35,765$$

flow is turbulent

$$\text{Nu} = \frac{hD_h}{k} = 0.023 \text{ Re}^{0.8} \text{ Pr}^{0.3} = 0.023(35,765)^{0.8} (0.7154)^{0.3} = 91.4$$

Example (contd...)

$$h = \frac{k}{D_h} \text{Nu} = \frac{0.02953 \text{ W/m} \cdot {}^{\circ}\text{C}}{0.2 \text{ m}} (91.4) = 13.5 \text{ W/m}^2 \cdot {}^{\circ}\text{C}$$

$$A_s = pL = 4aL = 4 \times (0.2 \text{ m})_{(19 \text{ m})} = 15.2 \text{ m}^2$$

$$\dot{m} = \rho \dot{V} = (1.009 \text{ kg/m}^3)(0.15 \text{ m}^3\text{/s}) = 0.151 \text{ kg/s}$$

$$T_e = T_s - (T_s - T_i) \exp(-hA_s/\dot{m}C_\rho)$$

$$= 60^{\circ}\text{C} - [(60 - 80)^{\circ}\text{C}] \exp\left[-\frac{(13.5 \text{ W/m}^2 \cdot {}^{\circ}\text{C})(15.2\text{m}^2)}{(0.151 \text{ kg/s})(1008 \text{ J/kg} \cdot {}^{\circ}\text{C})}\right]$$

$$= 65.1 {}^{\circ}\text{C}$$

$$\Delta T_{\text{ln}} = \frac{T_i - T_e}{\ln \frac{T_s - T_e}{T_s - T_i}} = \frac{80 - 65.1}{\ln \frac{60 - 65.1}{60 - 80}} = -10.9 \,^{\circ}\text{C}$$

$$\dot{Q} = hA_s \, \Delta T_{\text{ln}} = (13.5 \,\text{W/m}^2 \cdot ^{\circ}\text{C})(15.2 \text{m}^2)(-10.9 \,^{\circ}\text{C}) = -2237.4 \text{W}$$

Alternately:

$$\dot{Q}=\dot{m}C_{p}\left(80-65.1\right)=2268W$$
 Mismatch in the two results is less than 1.5%