Page 2

Thursday, April 8, 2021 12:41 PM

Forced Convection through
pipes and ducts

(1) Laminar vs. turbulent flow

e Flow through tubes, transition Reynolds number Re,,, is

(2) Entrance vs. fully developed region
e (lassification based on velocity and temperature profiles:
(i) Entrance region
(ii) Fully developed region
(3) Surface boundary conditions
e Two common boundary conditions::

(1) Uniform surface temperature
(i) Uniform surface heat flux
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Circular tube:

HmD4
=L=D

h mD

Square duct:

_ 4a? _
h™ 4q

a

Rectangular duct:

4ab

a

b

2ab

h= 2(a+ b) - a+b
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Average velocity and Reynolds Number

‘:ng 1
—'
:l Dye trace
1 'y [nertial forces VD Vi lD == \
I \ C - - E — =
! 7 Viscous forces v 7 H
]
|

(a) Laminar flow

;:?/ f Dye injection

‘R
l pu(ry dA, pu(r)27mr dr i
“A, “0 2 Dye trace
VMg — = - =— u(ryrdr ’
PA, pmR" R —
V“!
Re = 2300 laminar flow I
i " Dye injection
2300 = Re = 4000 transitional flow f(m,l,urh:m:“ e

Re = 4000 turbulent flow
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H yd rOdy n a m IC a n d Fl()“' Field (1) Entrance Region (Developing Flow,0< x< L, ).
h I . e Name: hvdrodynamic entrance region.
thermal entry regions o Length: L, (hydrodynamic entrance length)
e Streamlines are not parallel.
Core velocity u, increases with distance

r, Pressure decreases with distance (dp/dv < 0).
= e O<D/2.
>
—> . (2) Fully Developed Flow Region. x>/,
Vi — !.\‘ et _u = e Streamlines are parallel (v, = 0).
= il' T ) e (u/éx =0 fortwo-dimensional incompressible fluid.
>

L, —>I<— fully developed Temperature Field
(1) Entrance Region (Developing Temperature, 0 <x</.,)
0y ->‘-TE izi l ""—‘ "’1 e Name: Thermal entrance region.
T e Length: L, (thermal entrance length).
e Core temperature 7, is uniform, 7, =7;.
e 0, <D/2

(2) Fully Developed Temperature Region. x> L,

e Temperature varies radially and axially.
oT /ox # 0.
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Hydrodynamic and thermal entry lengths

Hydrodynamic Entrance Length L, e Starting with external flow result

o 1

—

X 1/Re.‘.

at x=1L,:

P L,/D\"?
0 ~Dand Re;, =Rep l; = Rep ~1

Thermal Entrance Length L,

Developing zone
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Concept of bulk mean temperature

Energy flow through a particular section: 1,

min

I

Epa = mC,T,, = J C,Tom = L pC, TV dA,

(a) Actual
Bulk Mean Temperature:

Jm

‘R
C, 16 m I C,IpV2mr dn) )
Jo

f.;.’(;ﬁ, - P 1;!”(175‘2) CP - ‘inrRe

Irn =

R
l N x) V(g x) rdr I,
Jo

(h) Idealized
Nondimensional Temperature

0(x.r)= [7(x)-T(xr)] 6=0 at r=R

AOEAD
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Hydrodynamically & Thermally Fully developed flow

h
?f
, aV(r, x) S
Hydrodynamically fully developed: - 0 — V=V
d{é(x,y)} I(x) — Ir, x)
n.?t’f‘.-'ﬂéif:fi'ﬁff{l"d?i-Pf()})P(f,’T dY W = . |
: .|1;?[I::%Irf;;!}wd
T T - (a 71/('“') | =R ! ! region
m, =R m oL, — !
!J
Now, we define the local heat transfer coefficient h, as %_ [Fully developed _
.} ?}f.) f‘) r : flow
q = h T - T)) = k i T e 2 I = r?*(—?lwh h “ Thermal boundary layer
r=R m

“~Velocity boundary layer

54, for TED: Fiow, we dont
ne2d ‘o wotvy abowt P LO(.AlhTL

Therefore, for TFD flow, h, does not vary with x
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Thermally fully developed (TFD) flow: g" = constant

. AT q.p dT,, dT,
= =15 _ _m_-s
mCydTy, = §,(pdx) - ax = c constant I i

For a fully developed temperature profile,

a(T,—T 1 ar, aT aT  dT,
— = 0 - = 0 =, =
0x\Ty=Tp Ts—Tm 9x  ox dx dx
aT  dT, dT, fpr 80 = MT -T_)dA
3% ax ax mcp = constant r-‘ -
Tir) Tin Tm..,_-: L_,T + dT"

T,

L

|

I‘ mC, (T, +dT,,
|
|

]

For a circular tube, p=2nR and m= pV, A.= me(n'Rz)
The shape of the temperature profile remains unchanged in the fully

developed region of a tube subjected to constant surface heat flux ar _dTs _dTwm _ 24, _ U

x dx dx PViCpR
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TFD flow: constant wall heat flux case (contd...)

| " Ao [

Q= qAs= mCp(Te — T1) i

q,4s : n

=T 3 I

Te i + me i . E

g. T : T |

qs=h(Ts-Tm) - Ts=Tm+T,'E | E
|

i |

‘ 2 4, = constant ’-% :

dT dT H&éHH&iH#H
In fully developed region: n. 2 r@ :
(as h is constant) dx dx Vi |
EEERIEEERERELE
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TFD flow: T, = constant

Energy balance gives:

T, = constant

NN

C,dTy, = h(T; — Tpp)dA,

ATy = ~d(Ts—Tp)

L S . S— § R

constant
d(Ts — Tp) hp
\\ = e dx i
Integrating fromx=0tox =L (T tppronches 7, srymyeolically)
T,—T, me : .
Te=Ts—(Ts—T) exp(_hAs/me) —
Possible to find out temperature atany x =~ 320 \ T, = constant x=l

by replacing Ag = px
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TFD flow: T, = C (contd...)

Note that the temperature difference - 7,= constant |

between the fluid and the surface decays A BAT,
exponentially in the flow direction, and the }
rate of decay depends on the :
magnitude of the exponen :
|
T :
|
T, =100°C (T, approaches T, asymptotically) i

0 L#I +

Ah This dimensionless parameter is called the

number of transfer units, denoted by

NTU=hA,/mC,  T,,°C NTU, and is a measure of the effectiveness

0.01 208 of the heat transfer systems
0.05 239
0.10 276
0.50 51.5
1.00 70.6
5.00 9.5
10.00 100.0
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TFD flow: T, = C (contd...):
Logarithmic mean temperature difference (LMTD = AT,,)

7; = constant Il

B hA,
P (T, — TONT, — T)]

AT,

L= 1)

(T, approaches T, asymptotically)

Q = GsA;=mCyT,—T)

I
|
|
|
!
!
!
!
|
|
I
|
I
1] T Ir

" Atthe same time, O = hA,AT,, (I 10 1)~1- 1)

Ts—T,  hé4; iy T,-T, AT, — AT,
. In

T,—T,; me - In[(T, — TONT, — T))] - In(AT,/AT))

* We will see more about LMTD and NTU later on, while discussing Heat Exchangers
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How long does the

LaminarEntrance length coefficients €', and C, [1]

entrance length persist? G
geometry C uniform uniform
L, _ | surface flux surface
D =C h Re De temperature
e .
() 0.056 |  0.043 0.033
L
L = (.‘! PI'R()D a
D, 5 /b =1 0.09 0.066 0.041
d
b wb=2 | 0.085 0.057 0.049
Turbulent flow: L=L;, =L,
a
L <10 b alb=4 0.075 0.042 0.054
D
0.011 0.012 0.008
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Nusselt number for fully developed pipe flows

T, = constant A similar analysis can be performed for

fully developed laminar flow in a circular
_ 64 tube for the case of constant surface

__________ Re B 2\ Ve temperature T,. The solution procedure

in this case is more complex as it requires

Nu=3.66 Vo iterations, but the Nusselt number relation
. obtained is equally simple
Fully developed
laminar flow
. ) ~ hD
Circular tube, laminar (T = constant): Nu = = 3.66

(9" = constant) Nu = h_D - 436
k
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MNusselt number and friction factor for fully developed laminar flow in tubes of
various cross sections (Dy = 4A./p, Re = Vi, Dy /v, and Nu = hDy/k)

alb Nusselt Number Friction Factor
Tube Geometry or@° | T,=Const. | g, = Const. f
Circle —_ 3.66 4.36 64.00/Re Laminar FlOWS
Nu and
P friction factor
1 2.98 3.61 56.92/Re
2 3.39 4.12 62.20/Re for
3 3.96 4.79 68.36/Re .
4 4.44 5.33 72.92/Re -
41 pafoss | ke pon-circular tubes
8 5.60 6.49 82.32/Re
= 7.54 8.24 96.00/Re
Ellipse alb
1 3.66 4.36 64.00/Re
2 3.74 4.56 67.28/Re
a4 3.79 4.88 72.96/Re
8 3.72 5.09 76.60/Re
4 16 3.65 5.18 78.16/Re
10° 161 2.45 50.80/Re
30° 2.26 291 52.28/Re
60° 2.47 3.11 53.32/Re
a0° 2.34 2.98 52.60/Re
120° 2.00 2.68 50.96/Re
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Variation of local Nusselt number
along a tube in turbulent flow

800 T T T T T T T T T
700 — A
Nu_ (7, = constant) / \

600fF @ ————a Nu, 4 (g, = constant) / 7
x S00F -\ .‘ 4
Z
- 400 E
Z Re=2 X 10

300

200 1\ 105 .

6 x 104
100 % 3 x 10t 7
104
1 1 1 L 1 1
0 2 1 6 8 10 12 14 16 18 20

vD
Note: beyond the entry region, the Nu is constant and does not depend on whether constant heat flux or T,

boundary condition prevails
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For turbulent flows

For fully developed turbulent flow in smooth tubes, a simple relation for the
Nusselt number can be obtained by substituting the simple power law relation
f =0.184 Re?2 for the friction factor into

Nu = 0.125 fRePr'?

Nu = 0.023 Re®$ Pr'? (0-7 =Prs= 160)

Re > 10,000

The accuracy of this equation be imprpved by modifying it as

?\th‘“\"Q

where n = 0.4 for heating and0.3 for cooling of the fluid flowing through
the tube. This equation is known as the Dittus—Boelter equation [Dittus
and Boelter (1930),
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Other correlations

Gnielinski (1976) (More accurate)

Nu " ( f/g)(Rt' - 1000) Pl' 05 < Pl' <= 2000
1+ 12.7( 78)%3 (Pr#3 — 1) 3IX10°<Re< 5 X 10°
Liguid metals, T, = constant: Nu = 4.8 + 0.0156 Re"85 Pr093
Liquid metals, ¢, = constant: Nu = 6.3 + 0.0167 Re"# Py09

All the turbulent equations are applicable for non-circular ducts: Replace D by D, [= 4A/P]

,
Flow through concentric tubes @ D,, = Annular area / wetter perimeter = (d, —d,,)

Heat Transfer Page 17
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Example

_—L=60C

b—— 19m —
L,~1,~10D=10X02m=2m

We can consider FD flow

Hot air at atmospheric pressure and 80°C enters an 19-m-long uninsulated
square duct of cross section 0.2 m X 0.2 m that passes through the attic of a
house at a rate of 0.15 m3/s (Fig. 19-37). The duct is observed to be nearly
isothermal at 60°C. Determine the exit temperature of the air and the rate of
heat loss from the duct to the attic space.

How to calculate the Bulk mean temperature?

p = 0.9994 kg/m* C,= 1008 J/kg - °C
k= 0.02953 W/m - °C Pr=0.7154
v=2.097 X 10~ m%s

v =V _015m¥s
@ A (0.2m)?

_V,D, - (3.75 m/s)(0.2 m)
v 2.097 X 1075 m%s

flow is turbulent

= 3.75 m/s

Re = 35,765

hD,
Nu = Th = 0.023 Re"® Pr3 = 0.023(35,765)"® (0.7154)"3 = 91.4
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Example (contd...)

_ k. _ 0.02953 W/m-®
h=pNu=""—4m

A;= pL=4al = 4 X (0.2 m)(19 m)=15.2 m?
m= pV=(1.009 kg/m%(0.15 m¥s) = 0.151 kg/s

C (01.4) = 135 Wim? - °C

T,=T.- (T, T) exp (~hA,/inC)

= 60°C — [(60 — 80)°C] exp [ (13.5 W/m® - °C)(15.2m°) ]

" (0.151 kg/s) (1008 J/kg - °C)

=65.1 °C
_ L-T. _ 80-651 _ .,
AT,,,-l =T, 60=e1 10.9°C
=T 60 — 80

Q= hA, AT, = (13.5 W/m? - °C)(15.2m) (-10.9 °C) = -2237.4W

_—1,=60°C
0.2m
Air L,
1 atm
80°C
I|= 19m =|]
Alternately:

0= mC, (80—65.1) =2268W

Mismatch in the two results is less than 1.5%
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