Forced Convection: External Flows

HTC for External Flow over a flat plate

Local and average HTC and Nu for flat plates (Constant Wall Temperature)

	Laminar	Turbulent		
Local	Nu _x = $\frac{h_x x}{k}$ = 0.332 Re ^{0.5} _x Pr ^{1/3} Pr > 0.60 $C_{f,x} = \frac{0.664}{\text{Re}_x^{1/2}}$ $\delta = 5xRe_x^{-0.5};$ $\delta_t = \delta \cdot \text{Pr}^{-1/3}$	$\begin{aligned} \mathrm{Nu}_{x} &= \frac{h_{x}x}{k} = 0.0296 \ \mathrm{Re}_{x}^{0.8} \ \mathrm{Pr}^{1/3} & \begin{array}{c} 0.6 \leq \mathrm{Pr} \leq 60 \\ 5 \times 10^{5} \leq \mathrm{Re}_{x} \leq 10^{7} \\ \\ C_{f,x} &= \frac{0.0592}{\mathrm{Re}_{x}^{1/5}} & \begin{array}{c} \delta = 0.37 x R e_{x}^{-0.2}; \\ \delta_{t} = \delta \cdot \mathrm{Pr}^{-1/3} \\ \end{array} \end{aligned}$		
Average	$\overline{Nu}_{L} = \frac{\overline{h}L}{k} = 0.664 \operatorname{Re}_{L}^{1/2} \operatorname{Pr}^{1/3} \operatorname{Pr} \ge 0.6$ $\overline{C}_{f} = \frac{1.328}{\operatorname{Re}_{L}^{1/2}}$	$\overline{Nu_{L}} = \frac{\overline{hL}}{k} = 0.037 \operatorname{Re}_{x}^{4/5} \operatorname{Pr}^{1/3} 0.6 \le \operatorname{Pr} \le 60 \qquad 5 \times 10^{5} \le \operatorname{Re}_{L} \le 10^{7}$ $\overline{C_{f}} = \frac{0.074}{\operatorname{Re}_{L}^{1/5}} \qquad 5 \times 10^{5} \le \operatorname{Re}_{L} \le 10^{7}$		

If $Nu_x = Px^m$, then the average Nusselt Number is

$$\boxed{Nu_x} = \int_0^x \frac{Nu_x}{x} dx = \int_0^x \frac{Px^m}{x} dx = \frac{Px^m}{m} = \frac{1}{m} Nu_x$$

Laminar versus turbulent convection

Combined Laminar and Turbulent flow

$$\overline{C}_{f} = \frac{1}{L} \left(\int_{0}^{x_{cr}} C_{f,x,La\min ar} dx + \int_{x_{cr}}^{L} C_{f,x,Turbulent} dx \right)$$

$$\overline{h} = \frac{1}{L} \left(\int_{0}^{x_{cr}} h_{x,La\min ar} dx + \int_{x_{cr}}^{L} h_{,x,Turbulent} dx \right)$$

$$\overline{Nu} = \frac{\overline{h}L}{k} = \left(0.037 \operatorname{Re}_{x}^{4/5} - 871 \right) \operatorname{Pr}^{1/3} \quad 0.6 \le \operatorname{Pr} \le 60$$

$$5 \times 10^{5} \le \operatorname{Re}_{L} \le 10^{7}$$

$$\overline{C}_{f} = \frac{0.074}{\operatorname{Re}_{L}^{1/5}} - \frac{1742}{\operatorname{Re}_{L}} \quad 5 \times 10^{5} \le \operatorname{Re}_{L} \le 10^{7}$$

HTC correlations for other conditions

Constant Wall Heat Flux Condition

$$Nu_{x} = \frac{hx}{k} = 0.453 \operatorname{Re}_{x}^{0.5} \operatorname{Pr}^{1/3} \quad \text{Laminar (isoflux plate)}$$
$$Nu_{x} = \frac{hx}{k} = 0.0308 \operatorname{Re}_{x}^{0.8} \operatorname{Pr}^{1/3} \quad \text{Turbulent (isoflux plate)}$$

Low Pr fluids (Liquid Metals)

 $Nu_x = 0.565 (Re_x Pr)^{1/2}$ Pr < 0.05

Example

Engine oil at 60°C flows over the upper surface of a 5-m-long flat plate whose temperature is 20°C with a velocity of 2 m/s (Fig. 19–12). Determine the rate of heat transfer per unit width of the entire plate.

Film Temperature

$$T_f = (T_s + T_x)/2 = (20 + 60)/2 = 40^{\circ}\text{C}$$
 $T_x = 60^{\circ}\text{C}$

 Properties at Film Temperature
 $\rho = 876 \text{ kg/m}^3$
 $\Pr = 2870$
 $V = 242 \times 10^{-6} \text{ m}^2/\text{s}$
 $k = 0.144 \text{ W/m} \cdot ^{\circ}\text{C}$
 $v = 242 \times 10^{-6} \text{ m}^2/\text{s}$
 $V = 2 \text{ m/s}$

 Flow Regime?
 $L = 5 \text{ m}$
 $\operatorname{Re}_L = \frac{\Psi L}{v} = \frac{(2 \text{ m/s})(5 \text{ m})}{0.242 \times 10^{-5} \text{ m}^2/\text{s}} = 4.13 \times 10^4$
 $L = 5 \text{ m}$

 Nu Correlation
 $\operatorname{Nu} = \frac{hL}{k} = 0.664 \operatorname{Re}_L^{0.5} \operatorname{Pr}^{1/3} = 0.664 \times (4.13 \times 10^4)^{0.5} \times 2870^{1/3} = 1918$

 HTC
 $h = \frac{k}{L} \operatorname{Nu} = \frac{0.144 \text{ W/m} \cdot ^{\circ}\text{C}}{5 \text{ m}}$
 $(1918) = 55.2 \text{ W/m}^2 \cdot ^{\circ}\text{C}$

Total Heat Transfer

$$\dot{Q} = hA_s(T_{\infty} - T_s) = (55.2 \text{ W/m}^2 \cdot {}^{\circ}\text{C})(5 \times 1 \text{ m}^2)(60 - 20){}^{\circ}\text{C} = 11,040 \text{ W}$$

The local atmospheric pressure in Denver, Colorado (elevation 1610 m), is 83.4 kPa. Air at this pressure and 20°C flows with a velocity of 8 m/s over a $1.5\text{-m} \times 6\text{-m}$ flat plate whose temperature is 140°C (Fig. 19–13). Determine the rate of heat transfer from the plate if the air flows parallel to the (*a*) 6 m long side and (*b*) the 1.5-m side.

 $T_f = (T_s + T_\infty)/2 = 80^{\circ}C$

Hint: Kinematic viscosity varies inversely with density

External flows over cylinders

Re ≈ 100

Re ≈ 10 000

Re ≈ 20

Re ≈ 10 000 000

$$\operatorname{Nu}_{\text{cyl}} = \frac{hD}{k} = 0.3 + \frac{0.62 \operatorname{Re}^{1/2} \operatorname{Pr}^{1/3}}{[1 + (0.4/\operatorname{Pr})^{2/3}]^{1/4}} \left[1 + \left(\frac{\operatorname{Re}}{282,000}\right)^{5/8}\right]^{4/5}$$

	Cross section of the cylinder	Fluid	Range of Re	Nusselt number
General correlations: All shapes	Circle	Gas or liquid	0.4–4 4–40 40–4000 4000–40,000 40,000–400,000	$\begin{split} \text{Nu} &= 0.989 \text{Re}^{0.330} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0.911 \text{Re}^{0.385} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0.683 \text{Re}^{0.466} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0.193 \text{Re}^{0.618} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0.027 \text{Re}^{0.805} \ \text{Pr}^{1/3} \end{split}$
	Square	Gas	5000–100,000	$Nu = 0.102 Re^{0.675} Pr^{1/3}$
Compact Form $Nu_{cyl} = \frac{hD}{k} = C \operatorname{Re}^{m} \operatorname{Pr}^{n}$	Square (tilted 45°)	Gas	5000–100,000	$Nu = 0.246 Re^{0.588} Pr^{1/3}$
$n = \frac{1}{3}$	Hexagon	Gas	5000–100,000	$Nu = 0.153 Re^{0.638} Pr^{1/3}$
	Hexagon (tilted 45°)	Gas	5000–19,500 19,500–100,000	Nu = 0.160Re ^{0.638} Pr ^{1/3} Nu = 0.0385Re ^{0.782} Pr ^{1/3}
	Vertical plate	Gas	4000–15,000	$Nu = 0.228 Re^{0.731} Pr^{1/3}$
	Ellipse	Gas	2500–15,000	$Nu = 0.248 Re^{0.612} Pr^{1/3}$

External flows over Spheres

• Expression of Nu: $\operatorname{Nu}_{\text{sph}} = \frac{hD}{k} = 2 + [0.4 \text{ Re}^{1/2} + 0.06 \text{ Re}^{2/3}] \operatorname{Pr}^{0.4} \left(\frac{\mu_{\infty}}{\mu_{s}}\right)^{1/4}$

valid for $3.5 \le \text{Re} \le 80,000$ and $0.7 \le \text{Pr} \le 380$. Fluid properties (except μ_s) are evaluated at T_{∞}

For U₀=0, Nu = 2.0

(Minimum Nu over a sphere in a quiescent flow)

HW: Obtain the same expression from steady heat conduction equations

Cooling of a sphere

Calculate time required to cool from 1100 to 933 K

Assumptions: (i) Lumped capacitance model valid (?) (ii) Negligible radiation (iii) Constant properties

$$t = \frac{\rho \forall c}{\overline{h} A_{s}} \ln \frac{\theta_{i}}{\theta} = \frac{\rho c D}{6\overline{h}} \ln \frac{T_{i} - T_{\infty}}{T_{f} - T_{\infty}}$$

Bi = $\overline{h} (D/6)/k = 4 \times 10^{-4}$
$$= \frac{(2500 \text{ kg/m}^{3}) 1200 \text{ J/kg} \cdot \text{K} (0.0005 \text{m})}{6 \times 975 \text{ W/m}^{2} \cdot \text{K}} \ln \left(\frac{800}{633}\right) = 0.06 \text{ s}$$

 $6 \times 975 \,\mathrm{W/m^2 \cdot K}$

What is the average HTC?

Properties

Helium $(T_{co} = 300 \text{ K}): v = 122 \times 10^{-6} \text{ m}^2/\text{s}, \mu = 199 \times 10^{-7} \text{ N} \cdot \text{s}/\text{m}^2$ $k = 0.152 \text{ W} / \text{m} \cdot \text{K}, \text{Pr} = 0.68.$ Helium $(T_s = 1000 \text{ K})$: $\mu_s = 446 \times 10^{-7} \text{ N} \cdot \text{s/m}^2$ Aluminum: $\rho = 2500 \text{ kg}/\text{m}^3$, c = 1200 J/kg·K, k = 200 W/m·K.

Reynolds number $\text{Re}_{\text{D}} = \text{VD}/\nu = 3 \text{ m/s} (5 \times 10^{-4} \text{ m}) / 122 \times 10^{-6} \text{ m}^2 / \text{s} = 12.3$

Heat Transfer Correlation (Whitekar)

Nu_{sph} =
$$\frac{hD}{k}$$
 = 2 + [0.4 Re^{1/2} + 0.06 Re^{2/3}] Pr^{0.4} $\left(\frac{\mu_{\infty}}{\mu_{s}}\right)^{1/4}$

$$\overline{h} = 975 \,\mathrm{W/m^2 \cdot K}$$