Heat Transfer from Extended Surfaces: Fins

Ranjan Ganguly

Strategies of increasing heat transfer from $\dot{Q}_{conv} = hA_s(T_s - T_{\infty})$ a surface

•Increase the temperature difference $(T_s - T_\infty)$ [may lead to surface overheating] •Increase the heat transfer coefficient h [there is always a practical upper bound*] •Increase area A_s

But the fin surface temperature is not T_s (because the fin material has a finite *k*)

[* Would require installing a larger fan/ pump, would entail larger pressure drop, may not be economically viable]

Fins used in engineering

applications

- Electronics cooling
- Heat exchanger tubes
- Car radiators
- Engine cylinders
- $AC...$

Fins in car radiators Fins on engine cylinders

Fins from nature

Radial Fin Heat Sink With Square Fins

Plate Fin Heat Sink

Radial Fin Heat Sink With Circular Fins

Temperature distribution on the extended surface

1-D heat transfer

- **Temperature within the fin varies primarily** in the *x* direction
- \Box Nearly homogeneous $T(x)$ within the fin at a particular cross-section

1-D analysis of pin fin

Assumptions:

- 1-D, steady state heat conduction
- Uniform *k* and *h* along the *x*

conv
 $q(x) = q(x+dx) + dq_{conv}$ *Energy balance across the slice* (i)

Fourier's Law of Heat Conduction

$$
q(x) = -kA_c(x)\frac{dT}{dx}
$$

Taylor series expansion

$$
q(x+dx) = q(x) + \frac{d}{dx} \{q(x)\} dx
$$

$$
ax^2
$$

= $q(x) + \frac{d}{dx} \left\{-kA_c(x) \frac{dT}{dx}\right\} dx$ (ii)

$$
dq_{conv} = hdA_s(x)(T - T_{\infty})
$$
 (iii)

From (i), (ii) and (iii)

$$
dq_{conv} = hdA_s(x)(T - T_{\infty})
$$
 (i)

$$
-q(x) = q(x) + \frac{d}{dx} \left\{-kA_c(x)\frac{dT}{dx}\right\} dx + hdA_s(x)(T - T_{\infty})
$$
 (ii)

$$
=
$$

1-D analysis of pin fin, contd…

$$
\begin{cases}\n\frac{d^2T}{dx^2} + \frac{1}{A_c(x)} \left\{ \frac{dA_c(x)}{dx} \right\} \left\{ \frac{dT}{dx} \right\} - \frac{1}{A_c(x)} \frac{h}{k} \frac{dA_s(x)}{dx} (T - T_{\infty}) = 0\n\end{cases}
$$

 θ can be looked up as the "excess temperature"; *m* as the ratio of convective to conductive HT

Fin Equation

General Equation $\Theta(x) = C_1 e^{mx} + C_2 e^{-mx}$

Boundary Conditions *At the Fin Base* $\theta(0) = \theta_b = T_b - T_{\infty}$

At the Fin Tip???

Prescribed fin tip temperature

$$
\theta(0) = \theta_b \qquad \qquad \boxed{\theta_b = C_1 + C_2}
$$

$$
\theta(L) = \theta_L \qquad \boxed{\theta_L = C_1 e^{mL} + C_2 e^{-mL}}
$$

$$
\frac{\theta}{\theta_b} = \frac{(\theta_L/\theta_b)\sinh mx + \sinh m(L - x)}{\sinh mL}
$$

$$
\theta_b \qquad \text{sinh } mL
$$
\n
$$
\dot{Q}_{f,T_L} = -k A_c \frac{dT}{dx}\bigg|_{x=0} = \sqrt{h P k A_c} \ \theta_b \frac{(\cosh mL - \theta_L/\theta_b)}{\sinh mL}
$$

Insulated fin tip

General Sol: $\theta(x) = C_1 e^{mx} + C_2 e^{-mx}$

BC 1:
$$
\theta(0) = T_b - T_\infty \equiv \theta_b
$$
 BC 2: $\frac{dU}{dx}|_{x=L} = 0$

 \overline{d}

$$
\frac{\theta}{\theta_b} = \frac{\cosh(m(L - x))}{\cosh mL}
$$

$$
\left| \dot{Q}_{f,adiabatic} \right| = -k A_c \left. \frac{dT}{dx} \right|_{x=0} = \sqrt{h P k A_c} \left. \theta_b \tanh mL \right|
$$

When do you have insulated fin tip?

Convective fin tip boundary condition

Fin Performance

Heat in at base = heat lost from fin surface

The difference
\n**Heat in at base = heat lost from fin surface**
\n
$$
\hat{Q}_{\text{tan}}
$$
\n
$$
\hat{Q}_{\text{base}} = \hat{Q}_{\text{tan}}
$$
\n
$$
\hat{Q}_{\text{base}} = -kA_c \frac{dT}{dx}\Big|_{x=0}
$$
\n
$$
\hat{Q}_{\text{fin}} = \int_{A_{\text{fin}}} h[T(x) - T_{\infty}] dA_{\text{fin}} = \int_{A_{\text{fin}}} h\theta(x) dA_{\text{fin}}
$$

Heat transfer by fin can be determined by either method

Heat transfer rate from $= \frac{Q_{\text{fin}}}{hA_b(T_b-T_{\infty})} = \frac{\text{the min or base area}}{\text{Heat transfer rate from}}$ the surface of *area* A_h

$$
log_{\text{fin}} = \frac{\dot{Q}_{\text{fin}}}{\dot{Q}_{\text{nofin}}} = \frac{\sqrt{hPkA_c}(T_b - T_{\infty})}{hA_b(T_b - T_{\infty})} = \sqrt{\frac{kP}{hA_c}}
$$

What is the right effectiveness?

- Does not affect the heat transfer at all.
- Fin act as insulation (if low k material is used) $\varepsilon_{\hat{m}} < 1$

$$
\varepsilon_{fin} > 1
$$
 Enhancing heat transfer (use of fins justified if $\varepsilon_{fin} > 2$)

Factors leading to high fin effectiveness

- 1. k should be as high as possible, (copper, aluminum, iron). Aluminum is preferred: low cost and weight, resistance to corrosion.
- 2. p/A_c should be as high as possible. (Thin plate fins and slender pin fins)
- 3. Most effective in applications where h is low. (Use of fins justified if when the medium is gas and heat transfer is by natural convection).

Fin Efficiency

 Q_{fin} Actual heat transfer rate from the fin
Ideal heat transfer rate from the fin $\eta_{\rm fin}$ if the entire fin were at base temperature

 T_{∞}

$$
\dot{Q}_{fin} = \eta_{fin} \dot{Q}_{fin, max} = \eta_{fin} h A_{fin} (T_b - T_{\infty})
$$

$$
\eta_{\text{long fin}} = \frac{Q_{\text{fin}}}{\dot{Q}_{\text{fin, max}}} = \frac{\sqrt{h P k A_c} (T_b - T_{\infty})}{h A_{\text{fin}} (T_b - T_{\infty})}
$$

$$
= \frac{1}{L} \sqrt{\frac{k A_c}{h P}} = \frac{1}{m L}
$$

mL> 5 is not necessary

Overall fin efficiency

$$
A_{\text{no fin}} = w \times H
$$

\n
$$
A_{\text{unfin}} = w \times H - 3 \times (t \times w)
$$

\n
$$
A_{\text{fin}} = 2 \times L \times w + t \times w \text{ (one fin)}
$$

\n
$$
\approx 2 \times L \times w
$$

\n
$$
\mathcal{E}_{\text{fin, over}}
$$

When determining the rate of heat transfer from a finned surface, we must consider the unfinned portion of the surface as well as the fins. Therefore, the rate of heat transfer for a surface containing n fins can be expressed as

$$
\dot{Q}_{total, fin} = \dot{Q}_{unfin} + \dot{Q}_{fin}
$$
\n
$$
= hA_{unfin} (T_b - T_\infty) + \eta_{fin} hA_{fin} (T_b - T_\infty)
$$
\n
$$
= h(A_{unfin} + \eta_{fin} A_{fin}) (T_b - T_\infty)
$$

We can also define an overall effectiveness for a finned surface as the ratio of the total heat transfer from the finned surface to the heat transfer from the same surface if there were no fins

$$
I_{\text{call}} = \frac{\mathcal{Q}_{\text{total},\text{fin}}}{\mathcal{Q}_{\text{total},\text{nofin}}} = \frac{h(A_{\text{unfin}} + \eta_{\text{fin}} A_{\text{fin}})(T_b - T_{\infty})}{hA_{\text{nofin}}(T_b - T_{\infty})}
$$

Fin Effectiveness vs Efficiency

$$
\varepsilon_{fin} = \frac{\dot{Q}_{fin}}{\dot{Q}_{no fin}} = \frac{\dot{Q}_{fin}}{h A_b (T_b - T_{\infty})} = \frac{\eta_{fin} h A_{fin} (T_b - T_{\infty})}{h A_b (T_b - T_{\infty})} = \frac{A_{fin}}{A_b} \eta_{fin}
$$