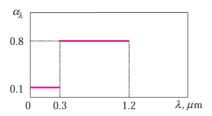

Radiation Assignment 1


- A furnace that has a 25-cm \times 25-cm glass window can be considered to be a blackbody at 1200 K. If the transmissivity of the glass is 0.7 for radiation at wavelengths less than 3 μ m and zero for radiation at wavelengths greater than 3 μ m, determine the fraction and the rate of radiation coming from the furnace and transmitted through the window.
- The emissivity of a surface coated with aluminum oxide can be approximated to be 0.2 for radiation at wavelengths less than 5 μ m and 0.9 for radiation at wavelengths greater than 5 μ m. Determine the average emissivity of this surface at (a) 5800 K and (b) 300 K. What can you say about the absorptivity of this surface for radiation coming from sources at 5800 K and 300 K?

 Answers: (a) 0.203, (b) 0.89
- **3.** The variation of the spectral transmissivity of a 0.6-cm-thick glass window is as given in Fig. P21–49. Determine the average transmissivity of this window for solar radiation ($T \approx 5800 \text{ K}$) and radiation coming from surfaces at room temperature ($T \approx 300 \text{ K}$). Also, determine the amount of solar radiation transmitted through the window for incident solar radiation of 650 W/m².

Answers: 0.848, 0.00015, 551.1 W/m²

C. The spectral absorptivity of an opaque surface is as shown on the graph. Determine the absorptivity of the surface for radiation emitted by a source at (*a*) 1000 K and (*b*) 3000 K.

- The surface in Prob, 21-67 receives solar radiation at a rate of 820 W/m². Determine the solar absorptivity of the surface and the rate of absorption of solar radiation.
- f 2 . The spectral transmissivity of a glass cover used in a solar collector is given as

$$au_1 = 0$$
 for $\lambda < 0.3 \,\mu\text{m}$
 $au_2 = 0.9$ for $0.3 < \lambda < 3 \,\mu\text{m}$
 $au_3 = 0$ for $\lambda > 3 \,\mu\text{m}$

Solar radiation is incident at a rate of 950 W/m^2 , and the absorber plate, which can be considered to be black, is maintained at 340 K by the cooling water. Determine (a) the solar flux incident on the absorber plate; (b) the transmissivity of the glass cover for radiation emitted by the absorber plate; and (c) the rate of heat transfer to the cooling water if the glass cover temperature is also 340 K.

Problems from Incropera & Dewitt

- A small, solid metallic sphere has an opaque, diffuse coating for which $\alpha_{\lambda} = 0.8$ for $\lambda \leq 5 \ \mu m$ and $\alpha_{\lambda} = 0.1$ for $\lambda > 5 \ \mu m$. The sphere, which is initially at a uniform temperature of 300 K, is inserted into a large furnace whose walls are at 1200 K. Determine the total, hemispherical absorptivity and emissivity of the coating for the initial condition and for the final, steady-state condition.
 - 5. The emission of radiation from a surface can be approximated as a blackbody radiation at T = 1000 K.
 - (a) What fraction of the total energy emitted is below $\lambda = 5 \mu m$?
 - (b) What is the wavelength below which the emission is 10.5 percent of the total emission at 1000 K?
 - (c) What is the wavelength at which the maximum spectral emission occurs at T = 1000 K?