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Chapter 1: INTRODUCTION 

 

 

1.1 Transformers 

A transformer is a static electromagnetic device that transfers energy between two or 

more circuits through the process of electromagnetic induction. Basically, a transformer 

consists of two windings or more that are wound around a common core to provide strong 

electromagnetic coupling between the windings. The law of electromagnetic induction 

states that “whenever there is a relative space or time variation between magnetic field 

and a conductor, an electromagnetic force will be induced in the respective conductors”. 

The ‘emf’ induced in the conductors of a transformer are due relative time variation 

between the magnetic field and the conductors wound around the core. Due to the strong 

electromagnetic coupling by the core, the time varying magnetic field that links on 

winding in the core also links every other winding in the same core with negligible loss. 

This process induces ‘emf’ in every winding in the core, thus facilitating transfer of 

energy. 

Since, their invention in 1855, transformers have become essential transmission, 

distribution and utilization of alternating current electrical energy. Continuous operation 

of power transformers is vital for maintaining the overall reliability of the network. 

Hence, transformers needs critical attention at all times and regular maintenance work 

need to be carried out for its proper functioning and to have critical knowledge about 

faults existing and developing within any part of the transformer. 

1.2 Transformer testing  

Different types of tests are performed on a transformer on a regular basis to assess its 

condition and performance. Some tests are performed by the manufacturers before 

delivering the transformer. Some are performed at the consumer site before 

commissioning and some periodically in regular or emergency basis throughout its 

service life. The various categories of tests that are performed on a transformer are given 

as follows: 

 



 

Page | 2  
 

1. Tests done by manufacturers: These tests are subcategorised as  

i. Type tests 

ii. Routine tests 

iii. Special tests 

2. Tests done at site: These tests are again subcategorised as 

i. Pre-commissioning tests 

ii. Periodic/condition monitoring tests 

iii. Emergency tests 

The type tests are performed to prove that the transformer meets customer’s specifications 

and design expectations. Some of the type tests performed includes: 

a) Transformer winding resistance measurement 

b) Transformer ratio test 

c) Transformer vector group test 

d) Short circuit tests 

e) Open circuit tests 

f) Measurement of insulation resistance 

g) Dielectric tests 

h) Temperature rise of transformers 

i) Tests on on-load tap changer 

j) Vacuum tests on tank and radiators 

In the context of this thesis a special type of dielectric test named as impulse test of 

transformer is dealt with. Impulse tests are different from general power frequency 

dielectric withstand tests which sometimes may not be sufficient to assess the overall 

integrity of the transformer. Impulse tests of transformers are subcategorised into: 

Lightning Impulse tests and Switching Impulse tests amongst which only lightning 

impulse tests is considered here. 

1.3 Impulse testing of transformers 

Impulse testing of transformer has been accepted as an important criteria for assessing 

the basic insulation level (BIL) of the transformer insulation prior to commissioning. 

Insulation integrity for a transformer is necessary for its proper functioning. Any 

weakness in the insulation may lead to catastrophic failure of the transformer at a later 

stage if it goes unnoticed at its inception. In such cases impulse testing of transformer 

http://www.electrical4u.com/what-is-transformer-definition-working-principle-of-transformer/
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proves to be an efficient tool for identifying such incipient faults which may not be 

detected easily with conventional power frequency dielectric withstand test.  

Transformer connection procedures, various standard specifications and safety measures 

to be adopted during the impulse testing of a transformer are presented in various national 

and international standards such as IS 2026 (Part 3):2009 [1.1] or its corresponding 

international standard the IEC 60076-3:2000 [1.2]. The specifications are given as 

follows: 

i. Test criteria: The absence of significant differences between voltage and current 

transients recorded at reduced voltage and those recorded at full test voltage 

constitutes evidence that the insulation has withstood the test. 

ii. Sequence of application of pulse:  

iii. Test connections: The impulse test sequence is applied to each of the line 

terminals of the tested winding in succession. In the case of a three-phase 

transformer, the other line terminals of the winding shall be earthed directly or 

through a low impedance, not exceeding the surge impedance of the connected 

line. If the winding has a neutral terminal, the neutral shall be earthed directly or 

through a low impedance such as a current measuring shunt. The tank shall be 

earthed.  

iv. Impulse waveform: The lightning impulse waveform applied to the terminals of 

the transformer should meet the standard waveshape of 1.2𝜇𝑠/50𝜇𝑠 with a 

tolerance of ±20% in the wavefront and ±50% in the wavetail repectively. 

 

1.4 Artificial Intelligence in power system 

For a long time, scientists have been keen on creating a substitute that can mimic and 

perform the same tasks as a human. The arrival of the computer helped scientists progress 

at great speeds toward a feasible alternative to the human mind. Some of the most 

important feature that is unique to human mind is process of collecting data, reasoning 

with the data to acquire significant results and decision making. Academic and 

Engineering researchers have tried to use these techniques in a wide range of areas such 

as manufacturing, automation, control, problem identification and diagnostics etc. 

Application to power system problems is one such area. 

Application of intelligent methods in the areas related to power system planning, 

operation, diagnosis and design has been an area of focus among researchers for quite 
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some time. Some of the well-established techniques has also been adopted by utilities for 

problem detection and mitigation. A typical power system network is huge and complex, 

which makes system analysis, diagnosis and regular maintenance task cumbersome and 

difficult, when conventional techniques are adopted. Such problems can be eliminated by 

the use of modern Artificial Intelligence (AI) techniques that can process a bulk amount 

of data easily, store important data for future references and research purposes if needed 

and can be suitably adapted according to designers need. 

The most widely used AI techniques in power system application is mainly focused on 

use of various machine learning techniques to detect and classify various power system 

events with highest possible accuracy. Various classification tools were reported in 

literature such as Artificial Neural Network (ANN) [1.3] and its other variants [1.4], 

Fuzzy logic and Fuzzy systems [1.5], Expert Systems [1.6] and Genetic Algorithm [1.7] 

to name a few. For efficient working of such AI techniques it is important to extract 

significant features from the available system data. The technique of feature extraction 

using various signal processing tools is another research area that power system 

researchers have dwelled for a long time. The key to the task is to extract useful and 

compact hidden information from heaps of available data acquired through data 

acquisition systems that could be used for efficient training of the classification tools. Use 

of appropriate feature extraction method is essential for proper working of the AI tools 

with sufficient accuracy. Various feature extraction tools cited in literature include signal 

processing tools like Fourier Transform [1.8], Short-time Fourier Transform [1.9], Hilbert 

Transform [1.10], Wavelet transforms [1.11], Correlation techniques [1.12] etc. amongst 

others. 

1.5 Scope of the Thesis 

The aim of this thesis is to develop an intelligent tools to identify and localise internal 

short circuit faults from the current waveform data obtained during impulse testing of the 

transformer. Two Rough set based classifiers, one based on Mathematical Morphological 

features and another based on Stockwell transform features is developed for the purpose. 

To train and test the developed algorithm artificial faults are simulated in a winding model 

of a 3MVA, 33kV, 3-phase delta connected transformer developed at the High Tension 

Laboratory, Jadavpur University. The winding model was tested using a recurrent surge 

generator, also developed at the High Tension Laboratory, Jadavpur University and the 

respective fault current data are acquired using a digital oscilloscope. At last a 
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comparative study is done as to assess which is a better tool for analysis of the fault 

current waveforms and thus a better feature extraction mechanism can be developed. 

1.6  Outline of the thesis 

Chapter 1: This chapter provides an introduction to the thesis by introducing the 

importance of testing and maintenance of a power transformers in a large power network. 

Various categories of transformer testing methods are named and one such testing 

procedure namely impulse testing of transformers is discussed in details. Different IS 

specifications, connection rules and testing criteria are described. Further importance of 

application of Artificial Intelligence techniques in areas related to power systems is 

illustrated. Use of intelligent forms the basis of this thesis as the thesis is focused on use 

of new signal processing techniques for classifying internal faults and thus localizing 

them from the obtained data. 

Chapter 2: This chapter provides in brief the details about the types of fault considered 

in the present work along with the specific notations adopted for easy identification of 

the faults and their locations. 

Chapter 3: This chapter discusses in details the two different signal processing tools used 

in the present work to analyse the different fault current waveforms obtained through 

experimentations. Along with it this chapter provides a brief introduction to the general 

signal processing literature with importance to various time domain and time frequency 

domain representation of signals. 

Chapter 4: This chapter gives introduction to the method of classification along with its 

theoretical and mathematical definitions. Literature review of various classification 

methodologies used in the domain of electrical systems is provided. Rough set theory is 

introduced next and a classifier developed based on Rough set theory is presented. 

Chapter 5: This chapter gives the details about the constructional details about the analog 

model used in the present work for experimentation, fault simulation and data acquisition. 

The distributed parameter model of a transformer winding is shown which forms the basis 

of model construction. Determination of various lumped electrical parameters and 

physical parameters are presented. Brief introduction to the recurrent surge generator is 

given that is used to supply a low voltage impulse to the analog model. At last some of 

the recorded waveforms obtained during experimentation are shown. 
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Chapter 6: This chapter provides the results obtained during experimentation and 

analysis phase. A number of feature used and their variations for different fault cases are 

presented for both mathematical morphology and Stockwell transform based features. 

Various classification tables are presented from which rule bases are to be generated for 

identification of different fault events and their locations. At last a comparison is done 

over the classification accuracies of Mathematical morphology and Stockwell transform 

features. 

Chapter 7: This chapter contains the conclusion of the thesis. 
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Chapter 2: Impulse Faults in Transformers 

 

 

2.1 Introduction 

Impulse testing of transformers, as introduced in chapter 1, is performed in accordance to 

IS 2026-part 3 to assess the basic insulation level of the transformer insulation prior to 

commissioning. Impulse testing confirms the insulation integrity of the transformer 

insulation system which is a vital part of the transformer. Any defect in the insulation is 

reflected as a relative change in the voltage and current waveforms at full and reduced 

voltages. The procedure of impulse testing is explained in chapter 1. Hence, the aim for 

impulse testing any transformer is detect anomalies with the insulation system which may 

have detrimental effects on the life and operation of the unit.  

But, this technique of impulse testing may not yield desired results in all cases, 

particularly when the faults are at their incipient stage and exists only over a negligible 

portion of the winding. Examples of such cases are short circuit faults existing two 

winding layers or discs. Such faults may not be significant enough to cause any relative 

change in voltage and current waveforms at full and reduced voltages. Such fault cases if 

goes unnoticed may cause serious damage to the transformer insulation at a later stage. 

Hence, precise identification of such low level fault is of paramount importance. Also 

with the knowledge of exact location of the fault, time required for troubleshooting 

reduces drastically which may benefit the electrical supply utility in the long run. 

Location knowledge of the fault types and their respective approximate locations may 

also be useful for manufacturing companies for easy and fast troubleshooting of faults. 

2.2 Impulse fault categories 

Keeping the above mentioned argument in mind short circuit faults that exists in a very 

small section of the winding is considered for the presented work. Two different types of 

faults [2.1], [2.2], [2.3] are considered for identification and localization purpose.  

a) Series Fault: These are short circuit faults that exists in between any two adjacent 

discs of the transformer winding. These faults occur when the insulation between 

the two adjacent discs gets damaged and creates a short circuit path. Such faults 
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if goes unnoticed may extend over a larger portion of the winding and cause 

serious damage to the transformer. 

b) Shunt Faults: These are short circuit faults that occur between any disc and its 

adjacent grounded structure. These types of faults are created due damage in the 

insulation structure that lies in between the disc and mentioned grounded 

structure. In the present approach the grounded structure in considered as the 

transformer tank. This choice of ground is evident from the connection diagram 

adopted for impulse testing of a 3 phase delta connected transformer in which 

apart from the winding to be tested every other structure is shorted and connected 

to ground or the tank via a shunt. 

2.3 Simulation of Faults: 

For simulation of various internal faults along the length of a winding in a transformer 

only short circuit between any two adjacent disc and short between a disc and tank is 

considered. The faults are emulated in the analog model, description of which are 

presented in chapter 5, by physically shorting two adjacent discs for series faults and 

shorting a disc to the simulated tank for shunt faults, using a small length of wire with 

negligible resistance. The position or location of the faults are then varied along the length 

of the winding that provides different fault conditions depending on the position and 

nature of the fault.  

2.3.1 Notations adopted for various fault cases 

 Suitable notation scheme has been adopted in the present work for identification different 

fault locations. Such as, Series1 represents series fault at location 1 i.e. fault between disc 

1 and disc 2 and Shunt1 represents a shunt fault at section 1 i.e. fault between disc 1 and 

ground, similarly Shunt27 implies shunt fault at location 27 and so on. Altogether there 

are 87 series fault cases and 88 shunt fault cases. The identification procedure has been 

shown in Table 2.1. 

Table 2.1: Fault notations 

Location of Series Fault Corresponding 

Notation 
Location of Shunt Fault Corresponding 

Notation 

Location 1: Between discs 1 

and 2 
Series1 Location 1: Between disc 1 and 

ground 
Shunt1 

Location 2: Between discs 2 

and 3 

Series2 Location 2: Between disc 2 and 

ground 

Shunt2 

. 

. 

. 

. 

. 

. 

. 

. 

Location 87: Between discs 87 

and 88 

Series87 Location 88: Between disc 88 

and ground 

Shunt88 
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Chapter 3: Signal Processing tools 

 

 

3.1 Introduction  

Data obtained from field and laboratory experimentations are in general analog 

(continuous) in nature. These data (signals) are converted to digital format through 

appropriate data acquisition systems for research and analysis purposes. Again physical 

data is always in time-domain i.e. the data, or the value of the physical entity, is recorded, 

varies or is defined with respect to time. This is specifically true for electrical signals 

where electrical quantities observed, generally voltage and current, are represented in 

time domain and popularly represented as 𝑣(𝑡) and 𝑖(𝑡) respectively.  

The advantages of a time-domain signal representation diminishes when the problem at 

hand is to draw inferences from heaps of such similar signals which differ very minutely 

such as change in the signal frequencies, presence of harmonics, variation of magnitude 

etc. Analysing a raw signal completely in time domain becomes impossible when dealing 

with non-stationary signals. Under such circumstances sometimes it is worthwhile to use 

transformation techniques that shift the domain of the signal from one domain to another 

where some hidden properties of the signal becomes evident. Such features can then be 

utilised together with the properties observed in the original domain to analyse the signal, 

and thus the physical quantity, which it represents.  

3.1.1 Literature Review 

The first approach into this area was done by Fourier [2.1] by the introduction of Fourier 

Transform which converted any time domain signal to frequency domain in terms of 

magnitude and phase of the inherent harmonic components in the signal. Many similar 

transforms were then introduced later can be found in literature that have such properties 

and come under the categorical group of integral transforms. As the advances in the basic 

integral transforms came into the forefront researchers realised that these basic transforms 

were not as helpful in analysis of a non-stationary signal as they are with stationary 

signals. It is to be noted that a signal is said to be stationary if its frequency or spectral 

contents are not changing with respect to time, whereas a non-stationary signal is 

characterised by varying spectral contents with change in time. In general it is found that 
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apart from synthetically produced signal or some small number of situations most of the 

naturally occurring signal is non-stationary in nature.  

In order to analyse such signals experts have come up with different approaches, one of 

which is the windowing technique. In this technique only a small section of the whole 

signal is analysed by using a short time window to enhance the local properties of the 

signal at a particular time instant. This special property was utilised in different time-

frequency distributions (transforms) such as Short Time Fourier Transform (STFT) [2.2], 

Gabor Transform [2.3], Wavelet Transform [2.4], Wigner distribution function [2.5], 

Gabor-Winger Transform [2.6]. These new category of transforms introduced the time-

frequency representation of a signal which is basically, a view of the signal in both time 

and frequency domain simultaneously. As opposed to Fourier Transform which gave 

information only about the spectral representation of the signal with no time information, 

these transforms gives the magnitude and phase of the frequency components of a signal 

along with their occurrence in time. 

Apart from the various time-frequency domain representation of signals presented above 

there are various other mathematical techniques that has been developed for analysis of 

complex and large data. Some of such well-established techniques are Auto-correlation 

and Cross-correlation techniques [2.7]. The Hilbert Huang transform [2.8], which also 

involves integral operations but works on time domain only by modifying the original 

signal into its corresponding analytical signal.  

3.2 Mathematical Morphology 

3.2.1 Introduction 

Morphology literally means study of shapes. Mathematical Morphology (MM) deals with 

the mathematical theory of describing shapes and structures using mathematical 

techniques such as set theory, lattice theory, topology and random functions. Developed 

by Serra and Matheron [2.9] [2.10], to quantify the mineral characteristics from a thin 

cross section using binary images, it has since been used in a wide range of applications 

starting from image processing (extending to grayscale) to being used by power system 

researches as a non-linear signal processing tool to identify and detect various power 

system events.  

MM deals with the analysis of shape or structure and form of the data presented to it which 

may be either in the form of image, some signal or a random set of data. MM is different 

from other integral transform based methods, which are popular in the field of signal 
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processing, in the sense that all its operations are time domain based. Any operation using 

MM operators does not transform the domain of the signal, rather it modifies the shape of 

the data to extract some valuable information or to preserve some valuable information of 

the signal. MM has been proven to be very useful in de-noising images and signals. 

Another application of MM includes its applicability to non-periodic transient signals and 

being able to accurately and reliably extract the signal component without causing any 

distortion. Moreover the operators used are small in size and fast operating, which could 

be an advantage in many cases. The operations in MM does not concern with the total 

length of the data. Rather it deals with small chunks of data, the size of which depends on 

the type of operation done and the shape and size of the operator used.  

The various applications reported in literature on the use of mathematical morphology in 

the field of power system and signal analysis are presented shortly as follows:  

(a) Areas related to power quality event detection and monitoring 

Lu et al. [2.11] used dyadic multiresolution morphological filters to detect various 

power disturbances. Li et al. [2.12] predicted the starting and ending time of 

various disturbances. Tingfang et al. [2.13] made comparison of different 

morphological filters for use in online monitoring of power quality signatures, etc.. 

(b) Transmission Line Protection 

Jing et al. [2.14] used different units of MMFs and MMGs to filter noise and 

extract transient component of a signal caused by fault. Zhen Ji, Qiming Zeng, 

Jianghai Liao and Q. H. Wu [2.15] used morphology for locating fault in a 

transmission line. Khodadadi and Shahrtash [2.16] used morphological based 

filters for protection of three-phase transmission lines. 

(c) Partial discharge de-noising 

M. B. Ashtiani and S. M. Shahrtash [2.17] used morphology as a feature oriented 

de-noising tool of Partial Discharge signals. 

(d) Transformer Inrush detection 

T.V. Reddy and J. Jacob [2.18] used morphology to discriminate between 

transformer inrush current and internal fault currents.  

(e) Current Transformer (C.T.) saturation detection 

Lin et al. [2.19] use repeated MMG filters to identify CT saturation. Lu et al. [2.20] 

use morphological wavelets to detect and compensate CT saturation. 
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3.2.2. Structuring Element 

In basic mathematical morphology, a structuring element (SE) is a shape, used to probe or 

interact with a given image, with the purpose of drawing conclusions on how this shape 

fits or misses the shapes in the image. It forms the basis of any morphological filter in 

processing an image or a signal. In the domain of signal processing a SE can be thought 

of as a set of data of any arbitrary length and height chosen by the user depending upon 

the type of signal to be analysed. In general a SE can be thought of as a set which translates 

over another larger set as a probe very similar to the method of convolution when one 

signal slides over another while operating on it. The choice of SE used to probe a given 

set of data is a completely random choice selected by hit and trial method. Various 

combinations of different SE are to be used and the one which provides the best result 

among others is to be chosen. One of the most basic characteristics of a SE as seen by 

various researchers is that with the increase in size of the data to be analysed the length of 

the SE also increases though not proportionately. Various popular structuring elements 

found in literature includes flat, linear, square, disk or ball-shaped. It may also include 

beeline, inclined line, curve, triangle, rotundity or polygon. 

3.2.3 Basic Morphological Operators 

There could be a number of operations that could be performed on a set of data in MM. 

The two most primitive operations to be performed are Dilation and Erosion. Every other 

operator in MM can be derived using these two operations. The Dilation [𝑑(𝑛)] and 

Erosion [𝑒(𝑛)] of the signal 𝑥(𝑛) by a Structuring Element 𝑠(𝑚) are denoted as 𝑥 ⊕ 𝑠 

and 𝑥 ⊝ 𝑠 respectively and are given in Equations (1) and (2). 

𝑑(𝑛) = {𝑥(𝑛) ⨁  𝑠(𝑚)}(𝑛)

= max{𝑥(𝑛 − 𝑚) + 𝑠(𝑚);   0 ≤ 𝑛 −𝑚 ≤ 𝑛,𝑚 ≥ 0}……(3.1) 

𝑒(𝑛) = {𝑥(𝑛)⊝ 𝑠(𝑚)}(𝑛)

= min{𝑥(𝑛 + 𝑚) − 𝑠(𝑚);  0 ≤ 𝑛 −𝑚 ≤ 𝑛,𝑚 ≥ 0}…… (3.2) 

Other operations that could be performed are Opening and Closing denoted as 𝑥 ∘ 𝑠 and 

𝑥 ⋅ 𝑠 respectively, which could be derived from dilation and erosion. Opening is defined 

as dilation of an eroded signal i.e. (𝑓 ∘ 𝑔)(𝑛) = ((𝑓 ⊖ 𝑔)⊕ 𝑔)(𝑛) and Closing 

operation is defined as erosion of a dilated signal i.e. (𝑓 ⋅ 𝑔)(𝑛) = ((𝑓 ⊕ 𝑔)⊖ 𝑔)(𝑛).  
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3.2.4 Hybrid Morphological Operations 

Other similar operations are the white and black top hat transform which are defined as 

𝑓(𝑛) − (𝑓 ∘ 𝑔)(𝑛) and (𝑓 ⋅ 𝑔)(𝑛) − 𝑓(𝑛) respectively and the hit or miss transform. 

Others include Hit or Miss Transform, Pruning transform, Morphological Skeleton, 

Filtering by reconstruction, Ultimate erosion and conditional bisectors, Granulometry and 

Geodesic distance function. Out of all the Hybrid operators mentioned are well established 

techniques used in the field of image processing and has no direct known application in 

the domain of signal processing. In the present work the author has used one of the 

mentioned hybrid operators namely the white and black top hat transform or in general the 

Top-Hat and their combination thereof. The basic top hat transform is also modified 

slightly in a sense that the definition of white and black top hat transform used is  

𝑊ℎ𝑖𝑡𝑒 𝑇𝑜𝑝 𝐻𝑎𝑡 (𝑊𝑇𝐻) = 𝑓0(𝑛) − (𝑓 ∘ 𝑔)…… (3.3) 

𝐵𝑙𝑎𝑐𝑘 𝑇𝑜𝑝 𝐻𝑎𝑡 (𝐵𝑇𝐻) = (𝑓 ⋅ 𝑔)(𝑛) − 𝑓0(𝑛)…… (3.4) 

& 𝑇𝑜𝑝 𝐻𝑎𝑡 (𝑇𝐻) = 𝑊𝑇𝐻 − 𝐵𝑇𝐻……(3.5) 

where, 𝑓0(𝑛) is any reference signal as selected by the user. The signal 𝑓0(𝑛) may be the 

base signal that represents the healthy condition of the equipment that is analysed or in 

general the ideal case. This signal should be stored at the data base from which new 

observed data can be compared with. It should be noted that in the actual top hat transforms 

used in image processing applications, the function 𝑓0(𝑛) is the signal over which the basic 

morphological transforms are performed. 

The terminologies used for the various transforms as mentioned are derived from the 

corresponding image processing counterpart and has no relation to manipulation of the 

signals dealt with in electrical systems. 

3.2.5 Some Composite Filters in Mathematical Morphology 

There are some composite filters, known as Morphological Filters, which can be 

constructed using the aforementioned basic operations. In order to develop these 

composite filters one needs to use the basic and hybrid operators as mentioned in various 

possible combinations to arrive at the desired result. Some of these composite filters as 

listed in literature and different research papers are: Morphological Median Filters (MMF), 

which is defined as the mean of Dilation and Erosion operator. The Generalized Multi-

resolution Morphological Gradient (GMMG), which is a gradient (difference) operator 

with Structuring Elements of different sizes and shapes operating over a same signal where 
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the Structuring Elements modify themselves according at hand. Open-closing Maximal 

and Close-opening Minimal (OCCO), the mean of opening of a closed signal and the 

closing of an opened signal. Multi-resolution Morphological Opening Closing (MMOC) 

is the simple opening and closing with different types of Structuring Elements to enhance 

different properties of the signal. Multiresolution Morphological Gradient (MMG), which 

is the same as GMMG but with a fixed number of Structuring Elements as defined by the 

user, etc. [2.22]. 

In the present work apart from the top hat transforms mentioned above, OCM2 defined as 

𝑂𝐶𝑀2 =
𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛(𝑂𝐶𝑀1) + 𝑒𝑟𝑜𝑠𝑖𝑜𝑛(𝑂𝐶𝑀1)

2
…… (3.6) 

is used for some feature extraction. 

3.3 Stockwell Transform 

3.3.1 Introduction 

Out of all the mentioned time-frequency transforms in section 3.1.1, the Wavelet 

Transform has time and again proven to be the most efficient and accurate tool for non-

stationary signal analysis. Application of wavelet transform for transformer impulse fault 

diagnostics were reported by various researches in [2.22] [2.23]. But, the wavelet 

transform has certain limitations. The wavelet transform (WT) analyses the signal in 

terms of the translations and dilations of a basis mother wavelet function, thereby giving 

both time and scale information. Thus WT is effective in providing time-localized 

information but the spectral information is in terms of scales rather than the absolute 

frequency. Moreover WT in unable to retain any phase information of the original signal. 

To overcome the aforementioned shortcomings of the wavelet transform, a method based 

on S-Transform is proposed for analysing fault current data during impulse testing of 

transformers. 

The Stockwell Transform (S-Transform) was introduced by R.G. Stockwell [2.24] to 

study geophysical data for analysis of non-stationary earthquake signals.  Since its 

proposal it has been used for different areas of application ranging from biomedical 

applications [2.25] to mechanical gearbox vibration analysis [2.26] and has seen a wide 

application in areas related to electrical domain. Some of the reported applications in 

electrical engineering field are mentioned below: 
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a) Dash et. al. analysed power quality events using S-Transform and it modifications 

[2.27]. 

b) Dash et. al. used S-Transform for protection of parallel transmission lines by 

identifying the faulty phase out of the three phases which was in turn one of the 

parallel lines considered [2.28]. 

c) Srikanth et. al. used S-Transform to identify faults in a HVDC system [2.29]. 

d) Media et. al. used S-transform to detect broken bars in an Induction Motor [2.30]. 

e) Perveen et. al. used S-Transform for Fault detection in an offshore windfarm 

[2.31]. 

f) Jimenez et. al. used S-transform for load monitoring applications [2.32]. 

g) Bhende et. al. applied S-Transform to identify and locate switched capacitors in 

a power network [2.33]. 

3.3.2 Theoretical Development 

The S-Transform can be thought of as a “phase correction” of continuous wavelet 

transform (CWT). The basic definition of S-Transform in terms of CWT can be defined 

in the following manner:  

The CWT of a time series ℎ(𝑡) is defined as 

𝑊(𝜏, 𝑑) = ∫ ℎ(𝑡)𝑤(𝑡 − 𝜏, 𝑑)𝑑𝑡
∞

−∞

……(3.7) 

where 𝑤(𝑡, 𝑑) is the scaled version of a chosen mother wavelet. The S-Transform of the 

same time series ℎ(𝑡) can be found by finding CWT with a specific mother wavelet and 

multiplied by a phase factor of 𝑒𝑖2𝜋𝑓𝜏. Thus,  

𝑆(𝜏, 𝑓) = 𝑒𝑖2𝜋𝑓𝜏𝑊(𝜏, 𝑑)|𝑤𝑖𝑡ℎ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑚𝑜𝑡ℎ𝑒𝑟 𝑤𝑎𝑣𝑒𝑙𝑒𝑡……(3.8) 

The specific mother wavelet is defined as  

𝑤(𝑡, 𝑓) =
|𝑓|

√2𝜋
𝑒−
𝑡2𝑓2

2 𝑒−𝑖2𝜋𝑓𝑡……(3.9) 

S-transform also has close resemblance to the Short Time Fourier Transform (STFT). The 

approach to arrive at the definition of S-Transform from STFT point of view is presented 

as follows: 

Given a time series ℎ(𝑡), the S-Transform can be found by multiplying ℎ(𝑡) with a 

Gaussian window 𝑔(𝑡) at any time interval 𝑡 = 𝜏 as 
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𝑆(𝜏, 𝑓) = ∫ ℎ(𝑡)𝑔(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

……(3.10) 

where 𝜏 and 𝑓 denote the time instant of spectral localisation and Fourier frequency, 

respectively and 𝑔(𝑡) is the Gaussian window function. The Gaussian window as a 

function of frequency (𝑓) and time (𝑡) is defined as  

𝑔(𝑡) =
|𝑓|

√2𝜋
𝑒−
𝑡2𝑓2

2 ……(3.11) 

The S-Transform can thus be defined as 

𝑆(𝜏, 𝑓) = ∫ ℎ(𝑡)
|𝑓|

√2𝜋
𝑒−
(𝜏−𝑡)2𝑓2

2 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

……(3.12) 

With the given definition of S-Transform it looks as a special case of Short Time Fourier 

Transform with a Gaussian window. 

Thus, it can be seen that the S-Transform has close resemblance to, and takes the 

advantages of, both CWT and Fourier Transform. It retains the absolute phase 

information of the original time series so that retrieval of the time series data is possible 

using inverse transform techniques and also uses a frequency dependent scalable window 

for enhancing the local spectral characteristics of the signal.  

Sometimes for ease of analysis and to take advantage of the FFT algorithm already 

available in programming languages, the S-Transform is presented as operations on the 

Fourier spectrum 𝐻(𝑓) of the time series ℎ(𝑡) as, 

𝑆(𝜏, 𝑓) = ∫ 𝐻(𝛼 + 𝑓)𝑒
−
2𝜋2𝛼2

𝑓2 𝑒𝑖2𝜋𝛼𝜏𝑑𝛼
∞

−∞

  ;  𝑓 ≠ 0…… (3.13) 

Proof: 

A simplified approach to arrive at the above result can be derived as follows: 

Considering the conventional S-Transform 

𝑆(𝜏, 𝑓) = ∫ ℎ(𝑡)
|𝑓|

√2𝜋
𝑒−
(𝜏−𝑡)2𝑓2

2 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

……(3.14) 

Now, consider ℎ(𝑡)𝑒−𝑖2𝜋𝑓𝑡 = 𝑥(𝑡)  𝑎𝑛𝑑 𝑔(𝑡) =
|𝑓|

√2𝜋
𝑒−

𝑡2𝑓2

2  

Thus we get, 𝑆(𝜏, 𝑓) = ∫ 𝑥(𝑡)𝑔(𝜏 − 𝑡)𝑑𝑡
∞

−∞
, which is convolution of 𝑥(𝑡) & 𝑔(𝑡). 
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i.e. 𝑆(𝜏, 𝑓) = 𝑥(𝑡) ∗ 𝑔(𝑡);{ where ∗ denotes convolution}……(3.15) 

Now considering the Fourier Transforms of the individual functions, 𝑥(𝑡) & 𝑔(𝑡), we 

obtain 

𝐹{𝑥(𝑡)} = 𝐹{ℎ(𝑡)𝑒−𝑖2𝜋𝑓𝑡} = 𝐻(𝛼 + 𝑓) 𝑖𝑓 𝐹{ℎ(𝑡)} = 𝐻(𝛼)…… (3.16). 

Fourier Transform of the Gaussian window is derived in the next section and is found to 

be 

 𝐹{𝑔(𝑡)} = 𝐹 {
|𝑓|

√2𝜋
𝑒−

𝑡2𝑓2

2 } = 𝑒−
𝜎2𝜔2

2 = 𝑒
−
2𝜋2𝛼2

𝑓2 ; where 𝜎 =
1

|𝑓|
……(3.17) 

Hence, we get 𝐵(𝛼, 𝑓) = 𝐹{𝑥(𝑡)}. 𝐹{𝑔(𝑡)} = 𝐻(𝛼 + 𝑓)𝑒
−
2𝜋2𝛼2

𝑓2 ……(3.18) 

Here 𝐵(𝛼, 𝑓) is the Fourier Transform of the 𝑆(𝜏, 𝑓). Hence, to obtain 𝑆(𝜏, 𝑓) it is 

required to find the inverse Fourier transform of 𝐵(𝛼, 𝑓). 

∴ 𝑆(𝜏, 𝑓) = ∫ 𝐵(𝛼, 𝑓)𝑒𝑖2𝜋𝛼𝜏
∞

−∞

𝑑𝛼……(3.19) 

𝑖. 𝑒.  𝑆(𝜏, 𝑓) = ∫ 𝐻(𝛼 + 𝑓)𝑒
−
2𝜋2𝛼2

𝑓2
∞

−∞

𝑒𝑖2𝜋𝛼𝜏𝑑𝛼……(3.20) 

3.3.3 Fourier Transform of the Gaussian Window 

The Gaussian window in time domain is defined as: 

𝑔(𝑡) =
1

𝜎√2𝜋
𝑒
−
𝑡2

2𝜎2 ……(3.21) 

Where ∫ 𝑔(𝑡)𝑑𝑡 = 1,
∞

−∞
 i.e. the window is normalised. This condition is necessary to 

relate the S-Transform with the Fourier Transform. 

The parameter σ defines the width of the Gaussian window. Stockwell defined σ as: 

𝜎 =
1

|𝑓|
…… (3.22) 

To obtain the Fourier Transform of the Gaussian window,  

Differentiating both sides, 

𝑑𝑔(𝑡)

𝑑𝑡
=

1

𝜎√2𝜋
𝑒
−
𝑡2

2𝜎2 ×
𝑑

𝑑𝑡
(−

𝑡2

2𝜎2
)……(3.23) 
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𝑖. 𝑒.
𝑑𝑔(𝑡)

𝑑𝑡
= −

𝑡

𝜎2
𝑔(𝑡)…… (3.24) 

Applying Fourier Transform to both sides yields, 

𝑖𝜔𝐺(𝜔) =
1

𝑖𝜎2
𝑑𝐺(𝜔)

𝑑𝜔
……(3.25) 

∴  

𝑑𝐺(𝜔)
𝑑𝜔
𝐺(𝜔)

= −𝜔𝜎2……(3.26) 

Now, integrating both sides 

∫

𝑑𝐺(𝜔′)
𝑑𝜔′

𝐺(𝜔′)

𝜔

0

𝑑𝜔′ = −∫ 𝜔′
𝜔

0

𝜎2𝑑𝜔′……(3.26) 

𝑖. 𝑒.  𝑙𝑛 𝐺(𝜔) − 𝑙𝑛 𝐺(0) = −
𝜎2𝜔2

2
…… (3.27) 

As the Gaussian window is normalised, hence 𝐺(0) = 0. thus, 

𝑙𝑛 𝐺(𝜔) = −
𝜎2𝜔2

2
…… (3.28) 

Taking exponentials on both sides 

𝑒ln𝐺(𝜔) = 𝑒−
𝜎2𝜔2

2 ……(3.29) 

Hence we get, 

𝐺(𝜔) = 𝑒−
𝜎2𝜔2

2 ……(3.30) 

This gives us the Fourier Transform expression of the Gaussian window that could be 

used in calculating the S-Transform using equation 3.12. 

3.3.4 Summary of Stockwell Transform 

The steps to obtain the S-Transform for a given time series ℎ(𝑡) would be, 

i. Find 𝐻(𝛼)
𝑓𝑓𝑡
→ ℎ(𝑡). 

ii. Find 𝐺(𝛼, 𝑓)
𝑓𝑓𝑡
→ 𝑔(𝑡, 𝜎). 

iii. Shift 𝐻(𝛼) to 𝐻(𝛼 + 𝑓). 

iv. Multiply 𝐺(𝛼, 𝑓) with the shifted 𝐻(𝛼). 

v. Take the inverse Fourier Transform. 
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3.3.5 Discrete Stockwell Transform 

S-Transform of a discrete time series ℎ[𝑘𝑇] can be defined with help of its continuous 

analogue equation _, by replacing 𝑓 →
𝑛

𝑁𝑇
 & 𝜏 → 𝑗𝑇. Thus we get, 

𝑆 [𝑗𝑇,
𝑛

𝑁𝑇
] = ∑ 𝐻 [

𝑚 + 𝑛

𝑁𝑇
]

𝑁−1

𝑚=0

𝐺(𝑚, 𝑛)𝑒
𝑖2𝜋𝑚𝑗
𝑁 ……(3.31) 

where, 

𝐺(𝑚, 𝑛) = 𝑒
−
2𝜋2𝑚2

𝑛2 ……(3.32) 

3.3.6 Generalised Stockwell Transform 

The basic definition of S-Transform as laid down by Stockwell placed some restrictions 

on the properties (shape and size) of the Gaussian window to be used. This was 

considered as a disadvantage of the S-Transform in comparison to CWT which had a 

scalable window function. McFadden [2.26] and later Mansinha [2.34] introduced the 

concept of Generalised S-Transform that had an adjustable Gaussian window. They also 

introduced a concept that used a window other than Gaussian which too was adjustable. 

The generalised S-Transform expression according to Mansinha is given as: 

𝑆(𝜏, 𝑓, 𝒑) = ∫ ℎ(𝑡)𝑤(𝜏 − 𝑡, 𝑓, 𝒑)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

……(3.33) 

In this approach the parameter 𝒑 controls the shape and size of the window function 𝑤 

apart from the frequency 𝑓 and its position τ. The only consideration that should be kept 

in mind while deciding for different values of the parameter 𝒑 is that it should follow the 

normalization condition as followed by the Gaussian window proposed by Stockwell i.e. 

∫ 𝑤(𝜏 − 𝑡, 𝑓, 𝒑)𝑑𝑡 = 1
∞

−∞

……(3.34) 

As already stated earlier this condition help in maintaining a concurrent relation between 

S-Transform and Fourier Transform. An example of such a modified Gaussian window 

that is used in the presented work is: 

𝐺(𝑚, 𝑛) = 𝑒
−
2𝜋2𝑚2𝐹
𝑎+(𝑏×𝑛𝑐)2 ……(3.35) 

where F, a, b and c are arbitrary constants that alter the shape of the Gaussian window 

when set to different values. 
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Chapter 4: Classification 

4.1 Introduction 

In the field of machine learning, classification refers to the approach of identifying the 

class to which a new observation belongs. Machine Learning by itself is one of the most 

widely researched area in the field of Artificial Intelligence (AI). The domain of Machine 

Learning can be thought of as an amalgamation of various approaches to perform some 

basic Artificial Intelligence tasks. Out of the various tasks that an AI system is deemed to 

perform the most essential ones can be narrowed down to pattern recognition and 

computational learning. These two features form the basis of Machine Learning. In 

1959, Arthur Samuel, a pioneer of Machine Learning defined machine learning as a "Field 

of study that gives computers the ability to learn without being explicitly programmed". 

Machine Learning study deals with computational algorithms that equips any machine the 

ability to learn from pre-existing data and make predictions on new data. 

The range of problems that different Machine Learning algorithms are designated to 

handle are in general broadly categorised into Supervised, Semi-supervised, Unsupervised 

and Reinforcement learning.  The problem of classification is one of the sub-categories of 

the supervised learning technique which also includes regression analysis.  

4.2 The method of classification 

As said in section 3.1 the working principle of classification tools is to identify the class 

to which a new observation belongs. To understand the general classification procedure 

one needs to understand the theoretical aspect behind any supervised learning technique. 

A brief theory is presented as follows: 

Supervised learning techniques needs two kinds of data. One type of data known as the 

training set or training data belongs to that category for which detailed information is 

available beforehand. Such data should be present with the algorithm developer before the 

beginning the tool is designed and based on which new data are to be analysed. The new 

set of observations or data that the classification tool is expected to identify based on the 

observation on the training set is called the test data.  



 

Page | 27  
 

In order to categorise the training set into different categories and keep track of the new 

testing set the data is divided into various subsections named class with each class 

pertaining to certain unique property. Any new testing data belongs to a predefined class 

if and only if it possess the unique characteristics that defines that class. To identify a 

particular class on machine language, each class is assigned a label. A model is prepared 

through a training process where it is required to make predictions and is corrected when 

those predictions are wrong. The training process continues until the model achieves a 

desired level of accuracy on the training data. The accuracy class of any developed 

classification algorithm can be defined as: 

% classification accuracy

=
number of correctly identified new observations(test sets)

total number of new observations(test set)
× 100……(4.1) 

From the viewpoint of pattern recognition of which classification is a subdivision a 

classification algorithm some sort of output value to a given input value. In this case it 

would be the labels assigned to a class.  

4.3 Mathematical definition of Classification 

The working methodology of supervised learning technique can be understood more 

clearly when mathematical concepts are introduced. The aim is simply to map 𝑥 𝑡𝑜 𝑦, 

where 𝑦𝑖 ∈ 𝒴 the labels of the examples are 𝑥𝑖. Notice that (𝑥𝑖 , 𝑦𝑖) forms the training set. 

If the labels are numbers, then 𝑦 = (𝑦𝑖)𝑖∈[𝑛]
𝑇  where, [𝑛] ⟹ (1,2, … , 𝑛), denotes the column 

vector of labels. Again, a standard requirement is that the pairs (𝑥𝑖, 𝑦𝑖) are sampled 

independently and identically distributed from some distribution which here ranges 

over 𝒳 × 𝒴. The task is well defined, since a mapping can be evaluated through its 

predictive performance on test examples. When 𝑦 ∈ ℝ or  𝑦 ∈ ℝ𝑑 (or more generally, 

when the labels are continuous), the task is called regression [3.1]. 

4.4 Classification Tools 

There are numerous types of classification tools that could be found in literature. The 

algorithms developed to implement the working principle of the theoretical mechanism is 

called a classifier. The list of classifier available in conventional literature are: 

1) Linear Classifiers: This can be considered as a family of different sub-algorithms which 

are a) Fisher’s linear discriminant b) Logistic Regression c) Naïve Bayes classifier and d) 

Perceptron. 2) Support vector machines. 3) Quadratic Classifiers. 4) Kernel estimation: k-
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nearest neighbour. 5) Boosting (meta-algorithm). 6) Decision trees. 7) Neural networks. 

8) Learning vector quantisation etc. 

4.5 Literature Review 

In this section are mentioned some of the popular classifier tools that has found wide use 

in the electrical system applications.  

i. Strangas et. al. analysed fault diagnostics procedure of a permanent magnet d.c. 

motor using linear discrimination classifier [3.2]. 

ii. Chen et. al. studied electrical pricing variation to fundamental and strategic 

factors using logistic regression technique [3.3]. 

iii. Elnady et. al. used perceptron based algorithm as tool for mitigation of voltage 

disturbances [3.4]. 

iv. Koley et al. used SVM based classifier for impulse fault identification [3.5]. 

v. Gerek et al. used quadratic classifiers and higher order cumulants to analyse 

power quality events [3.6]. 
vi. Jarrar et al. used k-NN along with neural network and linear classifier to assess 

the hydrophobicity class of a silicone rubber material [3.7]. 
vii. Rovnyak et al. used decision tree for real time transient stability prediction [3.8]. 

viii. Dey et al. studied impulse fault diagnostics in power transformers using learning 

vector quantisation [3.9]. 
In the context of this thesis, a classification approach based on Rough Set Theory is 

proposed to identify fault types and location of these faults along the length of a 

transformer winding, on which impulse voltage is applied. The basic theoretical aspects 

behind the Rough Set based classifier is described in this chapter. 

4.6 Rough Set Theory 

4.6.1 Introduction 

The foundation of Rough Set Theory (RST) were first laid down by Zdzislaw Pawlak 

[3.10] in the year 1982 as a new mathematical approach to tackle imperfect data. The 

approach is fundamentally based on set theory, i.e. use of sets to study vague data. The 

first approach in this aspect is dealt using the fuzzy sets that uses a fuzzy membership of 

its entries using membership function rather than crisp membership. By doing so, the 
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uncertainty about the data can be taken into account. Rough sets are a simple modification 

of this concept. It is one of the most important and powerful mathematical tools for feature 

classification where data table contains vague data, i.e. data regarding which no complete 

knowledge is available. Recently the use of Rough set theory has seen an increase in 

demand among AI researchers with applications ranging from text classification, medical 

applications, image classification etc. In applications to electrical systems RST has been 

used in identification of defective insulator from noisy Partial Discharge pulses, fraud 

detection in electrical power consumption, in condition monitoring of distribution feeder, 

data mining tool for semiconductor manufacturing and also for power generation 

applications [3.11].  

The increase in demand of use of Rough sets stems from its significance in areas related 

to machine learning, knowledge acquisition, pattern recognition, knowledge recovery and 

decision analysis. As reported by Pawlak in the main advantages Rough set technique 

provides over other popular intelligent tools are that it does not need any preliminary or 

additional information about data, basic probability assignment or grade of membership 

or value. The last mentioned advantage makes rough sets somewhat superior to 

corresponding fuzzy sets technique. In general rough set approach: 

• provides efficient algorithms for finding hidden patterns in data,  

• finds minimal sets of data (data reduction),  

• evaluates significance of data,  

• generates sets of decision rules from data,  

• is easy to understand,  

• offers straightforward interpretation of obtained results,  

• are particularly suited for parallel processing (most algorithms based on the rough 

set theory). 

4.6.2 Theoretical aspect 

RST as stated earlier can be considered as a modification of classical set theory to 

introduce the concept of vagueness to original set theory idea, which is very important to 

handle imprecise and superfluous data. Imprecision in RST is expressed by a boundary 

region of a set. The data to be classified using RST is presented in the form of tables. RST 

sorts the imprecise data in a boundary region through approximations i.e. lower 

approximation and upper approximations that makes the set rough, thereby granulating 
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the data. According to definition: The lower approximation of a set 𝑋 with respect to 𝑅 

is the set of all objects, which can be for certain classified as 𝑋 with respect to 𝑅 (are 

certainly 𝑋 with respect to 𝑅). The upper approximation of a set 𝑋 with respect to 𝑅 is 

the set of all objects which can be possibly classified as 𝑋 with respect to 𝑅 (are possibly 

𝑋 in view of 𝑅). And the boundary region of a set 𝑋 with respect to 𝑅 is the set of all 

objects, which can be classified neither as 𝑋 nor as 𝑛𝑜𝑡𝑋 with respect to 𝑅. Thus a set 𝑋 

is crisp or exact with respect to 𝑅 if the boundary region of 𝑋 is empty and is rough or 

inexact with respect to 𝑅 if the boundary region of 𝑋 is non-empty. Mathematically, the 

lower approximation of 𝑋 is defined as  

𝐵(𝑌) =⋃{𝐵(𝑦): 𝐵(𝑦) ⊆ 𝑌}

𝑦∈𝑈

……(4.2) 

The upper approximation is defined as 

𝐵(𝑌) = ⋃{𝐵(𝑦): 𝐵(𝑦)⋂𝑌 ≠ ∅}

𝑦∈𝑈

……(4.3) 

The R-boundary region of X is defined as 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝑌) = 𝐵(𝑌) − 𝐵(𝑌)…… (4.4) 

The graphical representation of the mentioned approximation details is given in Figure 

4.1. 

Hence, approximations are expressed as granule knowledge. Each granule (subset of data) 

is indiscernible i.e. they contain the same information. In the process of classification, the 

aim would be to give each of the granulated subset a proper class or identification that 

serves the purpose of use i.e. classification of vague data in this case. Each granule would 

be precise and the union of such granulated data would be crisp. The lower approximation 

of a set is union of all granules which are entirely included in the set; the upper approx.- 
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Figure 4.1: Sets representing upper and lower approximations along with boundary conditions 

-imation is union of all granules which have non-empty intersection with the set; the 

boundary region of set is the difference between the upper and the lower approximation. 

4.6.3 Rough Set based classifier 

The data to be classified is arranged in form of a data table. Each row of the data table 

presented to RST is considered as object and each column as attribute, whereas the 

individual entries of the table are named as attribute values. The attributes are of two types 

namely, condition attributes and decision attributes. The normalised data table is then 

constructed for simplification of the table. In the table the objects are related to different 

instances or cases to be classified and the columns or attributes are special properties 

related to a particular object. The condition attributes are generally different features that 

has been extracted from the different signal processing tools as discussed in the previous 

chapter. As shown next, feature generation can be considered as one of the most important 

tool that simplifies the classifier operation through dimension redundancy reduction. 

4.6.4 Importance of Pre-processing of data: Feature Extraction 

One of the important feature for which signal processing tools are valuable to electrical 

system researchers when working in the domain of Machine learning algorithms is the 

property of dimensionality reduction. It can be defined as the process of mapping a large 

set of input data into a lower dimensional space. Witout the use of any pre-processing 

tool the size of data that the classifier has to handle could be huge particularly when 

operating with practical field data. On top of that it has to handle a number of such 
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different types of data with their associated variables in order to understand, draw 

inference and classify the data. This may require larger memory for storage, more time 

for processing and unnecessary large computational facility. Moreover practical field data 

may be contaminated with noise along with other associated redundancies. Such data 

when given input to the classifier may force the algorithm to perform defectively due to 

overfitting hence may not work properly to classify new samples. 

Hence, the objective while pre-processing a large data before any application of Machine 

learning tools would be to probe the data for specific patterns that could summarize a 

large set of data with lesser number of variables. It should squeeze out information from 

the data such that the complete set of associated variables can be represented by a minimal 

set of variables. It is of paramount importance while using pre-processing tools is that the 

resultant outcome should be as informative as possible and should represent the parent 

data as accurately as possible. In the opposite scenario the total idea of dimensionality 

reduction could go in vain and the classifier could operate erratically. 

For achieving the desired goal, some measureable and quantifiable properties are 

analysed out from the data. These properties are called the explanatory variables or 

features. The process of analysing raw data and obtaining features form observations is 

called the feature extraction. Typically, several features are extracted from a set of data 

to form the feature vector. Feature extraction reduces the variables required to represent 

a large set of data which facilitates easier and faster classification of that data. Hence, 

feature extraction pre-processes the input data to make it more explanatory and easy to 

manipulate. 

4.6.5 Mathematical definition of Rough sets 

Mathematically the decision table in RST is formulated as 𝑇 =< 𝑈, 𝐴, 𝐷, 𝑓 > where, 𝑈 is 

the finite set of objects {𝑈1, 𝑈2, 𝑈3, … , 𝑈𝑛}, 𝐴 is the set of attributes {𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑚}, 

𝐷 = ⋃𝑞∈𝐴𝐷𝑞, where 𝐷𝑞 is the domain of q and 𝑓 symbolises decision function as, 𝑓: 𝑈 ×

𝐴 → 𝐷.  

The first step in the process is to discretise the normalised decision table. As stated earlier 

the aim of the classification process is to categorise each different fault condition into a 

separate granule which would contain the information about the fault. But the task would 

be too tiresome if the number of elements in the set, denoted as card(Vq), is too large. 

Here, the term card() refers to the cardinality operator. Hence discretization of the data 

table is necessary to bring down card(Vq) to a lower value thus simplifying the process. 
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Note that this is the second step of simplification process used, the first being through the 

normalisation process. Through discretization some partitions in the decision table are 

introduced to obtain higher classification efficiency. These partitions are inducted by 

generating cuts in the domain of 𝑞 and individual values for attributes are replaced with 

class-values i.e. the data within a range are given a particular class. Maximal Discernible 

(MD) heuristic has been employed in this present work to generate the optimum cuts and 

to discretize the table. The definition of heuristics according to literature is a technique 

developed to solve a given problem at a faster rate when conventional methods are too 

slow to use for any practical purposes or finding an approximate solution when classical 

methods fail to find any exact solution. Application of heuristics is of paramount 

importance to the field of Artificial Intelligence that aims in solving any conventional 

problem in a faster and intelligent manner. Details of MD heuristics can be found in [3.12].  

The next step would be the process granulation [3.13] of the decision table. This step also 

helps in eliminating the superfluous features which could not be used for proper 

classification purpose. This is done with the help of indiscernibility relation in RST. In 

RST, indiscernible or indistinguishable attributes are those which are characterised by the 

same information. Mathematically, for  𝐵 ⊆  𝐴 and (𝜎𝑖, 𝜎𝑗) ∈ 𝑈, where 𝜎𝑖 & 𝜎𝑗 are 

𝑖𝑡ℎ & 𝑗𝑡ℎ objects, then 𝜎𝑖 and 𝜎𝑗 are indiscernible with respect to the set of attributes 𝐵, 

if 𝑓(𝜎𝑖, 𝑞) = 𝑓(𝜎𝑗 , 𝑞), ∀𝑞 ∈ 𝐵.  

The working theory behind the rough set based classifier is presented with the help of an 

example. Table 4.1 represents a data table arranged in the specific format as explained 

above. The attribute values are chosen arbitrarily here but in general usage they may 

represent some feature values. 

Table 4.2: Example decision table 

Objects  Condition Attributes Decision Attribute 

A1 A2 A3 A4 

Object 1 6 8 4 5 D1 

Object 2 6 9 4 5 D1 

Object 3 4 7 4 8 D2 

Object 4 6 7 1 8 D2 

Object 5 5 7 3 5 D3 

Object 6 4 0 4 5 D3 
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Take 𝐵 =  {𝐴4} from Table 4.1, it can be seen that, at least four objects 1, object 2, object 

5 and object 6 are indiscernible with respect to attribute 𝐴4, as all these objects are 

characterised by the same information (i.e. value =  5). Similarly for 𝐵 =  {𝐴1} objects 

1, 2 & 4 and again 3 & 6 are indiscernible as they possess same values (i.e. 6 & 4 

respectively). These indiscernible objects form an elementary set. So, in case of 𝐵 ⊆  𝐴, 

an equivalence relation on 𝑈, named 𝐵 −indiscernibility relation is given by 𝐼𝐵. 

Mathematically, 

𝐼𝐵 = {(𝜎𝑖, 𝜎𝑗) ∈  ∪
2| ∀𝑞 ∈ 𝐵, 𝑓(𝜎𝑖, 𝑞) = 𝑓(𝜎𝑗 , 𝑞)}…… (4.5) 

Considering again, 𝐵 =  {𝐴4}, it is seen that B-elementary set includes {1, 2, 5, 6} and 

{3, 4}. The Information Granules are the corresponding classes of the partition introduced 

by the B-indiscernibility relation. In Table 4.1, along with the previously defined 

indiscernibility relation, the other relations which help in reducing the table to only 

indispensable data are the upper and lower approximation which are defined as 𝐵 =

{𝜎 ∈ 𝐵 | 𝐼𝐵(𝜎) ⊆ 𝑌} and 𝐵 = {𝜎 ∈ 𝐵 | 𝐼𝐵(𝜎) ∩ 𝑌 ≠ ∅}, where 𝑌 is the rough set, and 

𝐵,𝐵 are the upper and lower approximations respectively. The objects in lower 

approximation 𝐵 can be certainly classified as members of 𝑌, based on knowledge in 𝐼𝐵. 

The set 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐵(𝑌) = (𝐵 − 𝐵), is called the boundary region of 𝑌 and consists of 

those objects which cannot be decisively classified as members of 𝑌, based on knowledge 

available in 𝐼𝐵. Vividly, 𝐵 ̅is the set of the objects which ‘possibly’ belong to 𝑌 and hence 

the upper approximation. The set will be ‘Rough’ if and only if  𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐵(𝑌) ≠ 𝜙 i.e. 

the boundary is non-empty, otherwise it is ‘Crisp’. Other redundant attributes are 

removed from the decision table with the help of this indiscernibility relation. For the 

assumed subset 𝐵 ⊆ 𝐴, an attribute 𝑞 ∈ 𝐴 is dispensable in 𝐵 if, 𝐼𝐵 = 𝐼(𝐵−{𝑞}); or else it 

is indispensable. If none of the elements in the subset 𝐵 is dispensable then 𝐵 is said to 

be independent and vice-versa. Let 𝐵 ⊆ 𝐴 and 𝑃 ⊆ 𝐴 have equivalence relations in 𝑈. 

The 𝐵-positive region of 𝑃 is denoted as, 𝑃𝑂𝑆𝐵(𝑃) = ⋃ 𝐵𝑌∈𝐼𝑃 . In other words, it denotes 

the group of elements that can be suitably classified into 𝑃-elementary sets obtained from 

𝐼𝑃 using the knowledge described by 𝐼𝐵. If  𝑞 ∈ 𝐵 and 𝑃𝑂𝑆𝐵(𝑃) = 𝑃𝑂𝑆(𝐵−{𝑞})(𝑃) then 𝑞 

is 𝑃-dispensable in 𝐵, or else 𝑞 is 𝑃-indispensable in 𝐵. If the set 𝐺(𝐺 ⊆ 𝐵) is 𝑃-

independent in 𝐵 and 𝑃𝑂𝑆𝐺(𝑃) = 𝑃𝑂𝑆𝐵(𝑃), then 𝐺 is called as 𝑃-reduct of 𝐵 or 

generally Reduct of 𝐵. Again looking at Table 4.1, 𝐵 is taken as, 𝐵 =  {𝐴1, 𝐴2, 𝐴3, 𝐴4}, 

and Decision Attribute= 𝐷𝑖 for 𝑖={1, 2 𝑎𝑛𝑑 3 }, then 𝐼𝐵 = {1}, {2}, {3}, {4}, {5} 𝑎𝑛𝑑  {6} 
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and 𝐼𝐷 = {1, 2}, {3, 4} 𝑎𝑛𝑑 {5, 6}. Also 𝑃𝑂𝑆𝐵(𝐷) = {1, 2, 3, 4, 5, 6}. If 𝐴2 is removed 

from 𝐵 then, 𝑃𝑂𝑆(𝐵−{𝐴2})(𝐷) = {3, 4, 5, 6}. Clearly 𝑃𝑂𝑆𝐵(𝐷) ≠ 𝑃𝑂𝑆(𝐵−{𝐴2})(𝐷), which 

means that the attribute set 𝐴2 is 𝐷-indispensable in 𝐵. 

But if 𝐴3 is removed then, 𝑃𝑂𝑆(𝐵−{𝐴3})(𝐷) = {1, 2, 3, 4, 5, 6} = 𝑃𝑂𝑆𝐵(𝐷). Therefore A3 

is 𝐷-dispensable in 𝑃. Also we can see that the set attribute A1 is also indispensable 

as 𝑃𝑂𝑆(𝐵−{𝐴1})(𝐷) = {3, 4, 5, 6} ≠  𝑃𝑂𝑆𝐵(𝐷) .Also 𝑃𝑂𝑆(𝐵−{𝐴4})(𝐷) = {4, 5} ≠ 𝑃𝑂𝑆𝐵(𝐷). 

Thus, the set {𝐴1, 𝐴2, 𝐴4} is the 𝐷-reduct of 𝑃. Table 4.2 represents the reduced form of 

Table 4.1, which represents the decision Table without the dispensable attribute 𝐴3. In this 

table, ‘×’ represents “don’t care” or dispensable condition.  

Table 4.3: Reduced decision table 

Objects  Condition Attributes Decision Attribute 

A1 A2 A3 A4 

Object 1 6 8 × 5 D1 

Object 2 6 9 × 5 D1 

Object 3 4 7 × 8 D2 

Object 4 6 7 × 8 D2 

Object 5 5 7 × 5 D3 

Object 6 4 0 × 5 D3 

 

After reduction by elimination of all the dispensable attributes the remaining set is called 

a Reduct. Core is the group of relations in every Reduct i.e. CORE (B) =∩REDUCT (B).  

Therefore, Core will provide the most significant part of the decision. From the knowledge 

obtained from Core, decision rules are generated, which is the most important (and the 

final) step in the classification process. The decision rule is generally represented in an 

IF...THEN format.  

Referring to the Table 4.2, which is the reduced form of Table 4.1, it can be deduced that 

the attribute condition {(𝐴1 = 6 ∧ 𝐴2 = 8 ∧ 𝐴4 = 5) ∨ (𝐴1 = 6 ∧ 𝐴2 = 9 ∧ 𝐴4 = 5)} is 

representative of decision class 𝐷1. Similarly, {(𝐴1 = 4 ∧ 𝐴2 = 7 ∧ 𝐴4 = 8) ∨ (𝐴1 = 6 ∧

𝐴2 = 7 ∧ 𝐴4 = 8)} represents the decision 𝐷2. These are basically the Information 

Granules. Core for the corresponding classes are obtained as the intersected reduct of the 

individual decision classes (i.e. 𝐷1, 𝐷2 𝑎𝑛𝑑 𝐷3 etc.). Table 4.3 represents the individual 

decision rule generated without the deduction of core. As could be seen from the table, no  
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Table 4.4: Individual Decisions 

Decision 

Rule 

Generated Rule Base Decision 

attribute 

Rule 1 (𝐴1 = 6 ∧ 𝐴2 = 8 ∧ 𝐴4 = 5) ∨ (𝐴1 = 6 ∧ 𝐴2 = 9 ∧ 𝐴4 = 5) D1 

Rule 2  (𝐴1 = 4 ∧ 𝐴2 = 7 ∧ 𝐴4 = 8) ∨ (𝐴1 = 6 ∧ 𝐴2 = 7 ∧ 𝐴4 = 8) D2 

Rule 3 (𝐴1 = 5 ∧ 𝐴2 = 7 ∧ 𝐴4 = 5) ∨ (𝐴1 = 4 ∧ 𝐴2 = 0 ∧ 𝐴4 = 5) D3 

 

CORE could be deduced for decision class 𝐷3. This is because intersection 

of {(𝐴1 = 5 ∧ 𝐴2 = 7 ∧ 𝐴4 = 5) 𝑎𝑛𝑑 (𝐴1 = 4 ∧ 𝐴2 = 0 ∧ 𝐴4 = 5)} ⇒ ∅. Note here that 

it could be said for decision class 𝐷3 the rule should be 𝐴4 = 5, but that could conflict 

with decision rule for 𝐷1. The final decision with IF…THEN rule is presented in Table 

4.4 

Table 4.5: Decision Rule from Core and Reduct 

Decision Rule 

number 

Statements of Rule 

IF THEN 

1 (𝐴1 = 6 ∧ 𝐴4 = 5) Take decision 𝐷1 

2 (𝐴2 = 7 ∧ 𝐴4 = 8) Take decision 𝐷2 

 

Chapter 7 gives details about the actual decision table used for the present work where the 

decision variables are different fault types and locations, and the objects are various fault 

current waveforms obtained during experimentation. 
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Chapter 5: Analogue Model and Circuit Parameters 

5.1 Introduction 

In this chapter a brief introduction to the constructional details of the analog model that 

is used for fault simulation and data acquisition is presented. The importance of 

developing an analog model for experimentation purpose is presented in the next section. 

In the subsequent sections the approach to model construction followed by tabular 

representation of the physical and electrical model parameters are presented. At last the 

fault current acquired through the use of digital oscilloscope are shown along the length 

of the winding. It is to be noted that the model presented in this chapter was constructed 

in High Tension Laboratory, Jadavpur University by Dr. Saibal Chatterjee as a part of his 

M.E. thesis [5.1] and the detailed calculation of the model parameters was done by Prof. 

Sugata Munshi for his M.E. thesis [5.2].  

5.2 Need for an analog model 

Impulse testing of large power transformers before commissioning is performed 

according to the rules pre-specified in IS 2026 (part 3), clause 13, to assess the insulation 

integrity of the transformer. For testing sequence of impulse voltages are applied with 

generally two different magnitudes. The test sequence shall consist of one impulse of 

reduced voltage and three subsequent impulses at full voltage. The absence of significant 

differences between voltage and current transients recorded at reduced voltage and those 

recorded at full test voltage constitutes evidence that the insulation has withstood the test. 

The aim of this thesis is to use intelligent methods to not only predict the existence of 

fault within the insulation but also to localise the faults along the length of the winding 

i.e. to get an idea about the section of the winding where the fault occurs with the help of 

only one application of full wave reduced magnitude pulse. This approach will enable the 

onsite experts to rectify the fault or take any appropriate precautionary step in a small 

interval of time thereby increasing the system reliability.  For ease of accessibility, an 

analogue model of an actual transformer winding has been used in the present approach. 

Various types of faults have been emulated on the analogue model for testing the 

effectiveness of the proposed scheme. For this, a 33kV winding of a 3 MVA, 33/11 kV, 

3-phase 50 Hz, ON, Dy 11 transformer has been chosen. The aim of the present approach 
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Figure 5.2: Distributed parameter model of the transformer winding 

is the design of an intelligent system that would discriminate a healthy winding from a 

faulty one and also identify the respective locations of the faulted sections. Results from 

the analogue model would also help in verifying the accuracy of the proposed method. 

Keeping this in mind, this chapter presents the constructional details of the analogue 

model developed, various parameters of the analogue model, assumptions considered in 

the design of the model and various categories of faults that are emulated along the length 

the constructed model. This chapter also details the setup used for data acquisition to store 

the winding current details during healthy and faulted cases, which would be further used 

for analysis purpose. 

5.3 Distributed parameter model of a transformer winding 

The equivalent circuit model of a 3-phase delta (or star) connected winding of the 

transformer is represented as shown in Figure 5.1  

 

x

L

Specified Impulse voltage

 

  

It can be seen from Figure 5.1 that the approach used for the construction of the analogue 

model follows the rules as specified in the IS 2026 part 3 (Clause 13), hence, every other 

winding other than the one which is hit by the impulse wave are short circuited to ground 

through tank and a high voltage co-axial shunt. The distributed parameter model for the 

above shown model is represented in Figure 5.2: 

i i+(∂i/∂x)dxM

Ldx

Cdx Cdx Cdx Cdx

k/dxk/dx

I k I +(∂i/∂x)dxk

 

Figure 5.1: Winding representation of model 



 

Page | 40  
 

Figure 5.3: Connection Diagram for impulse testing a 3-phase delta and star transformers 

Figure 5.2 identifies the various types of distributed capacitance (series and parallel) 

along the length of the transformer winding. It also shows the distributed inductance 

values and the current distribution across the winding length. This circuit is developed by 

taking into consideration K.W. Wagner’s theory of transient in the coil. In the given 

distributed parameter circuit, ‘k’ represents the series capacitance (i.e. capacitance 

between two consecutive winding turns or capacitance between two adjacent discs) and 

‘C’ represents shunt capacitance (i.e. capacitance between the winding and the ground) 

of the winding, both in per unit length.  

5.4 Analog Model: 

Circuit for impulse testing of a delta and a star connected transformer windings is as 

follows: 

DSO

Shunt

Shunt

Specified Impulse Applied

 

 

As seen from Figure 5.3 in both the cases of 3-phase delta and star connected transformer, 

one of the terminal is subjected to lightning impulse voltage. The other two terminals are 

either shorted and connected to earth through a shunt (for delta connected winding) or 

individually grounded (for star connected winding) with shunt connected to the neutral. 

In both the connection methods the digital oscilloscope is connected across the shunt for 

data acquisition. 

5.4.1 Basic assumptions for model construction: 

i. The modelling is carried out by considering the winding as an isolated 

winding. This is because in the winding connections for impulse testing, a 
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three-phase delta connected winding with impulse applied at one terminal as 

specified by IS 2026 (Part 3) forms a circuit that results in a mutual 

cancellation of the main fluxes in the part of the core on which the winding 

to be impulse tested is wound. The cancellation of main core flux is because 

the flux generated in the short-circuited LV winding, which opposes the core 

flux. As a result the magnetic coupling by leakage flux between the impulse-

hit HV winding and short-circuited LV winding is disregarded. 

ii. In the model, the iron core may be replaced by an air core owing to the above 

mentioned cancellation of main flux. In the iron core, only the leakage flux 

contributes to the impulse response of the winding under test. Removal of the 

iron core may amount to omission of the slower electromagnetic component 

of transient stress distribution. This omission is insignificant in impulse 

studies. The magnetic dipoles in the magnetic core move at a very slower rate 

in comparison to the lightning phenomena. This was also reported by Miki, 

Hosaya and Okuyama [5.3] that the voltage response in an impulse-hit 

winding having an iron core is similar to the voltage response of the same 

winding without an iron core or simply air cored winding. Hence, the 

inductance of an iron core impulse hit winding is similar to an air core 

impulse hit winding. 

5.5 Physical dimensions of the constructed model: 

Physical dimensions of the analogue model are tabulated as in table 5.1: 

Table 5.1: Physical Parameters 

Physical Parameter Dimensions 

Outer Diameter 524 mm 

Inner Diameter 424 mm 

Winding Depth 50 mm 

Axial height of a disc 6.6 mm 

Number of discs 88 

Number of turns per disc 19  

Winding former diameter 15.5 cm 

Winding former height 150 cm 
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(a) 

The winding former is constructed using bakelite with air acting as core due to reasons 

described above in the assumptions. Super-enamelled copper conductor of SWG 23 is 

used as turns of a disc. Varnished cotton tape (0.34 mm thick) is used for disc insulation. 

5.6 Lumped Circuit Parameters (Electrical) 

The circuit parameters used are tabulated as given in table 5.2: 

Table 5.2: Circuit Parameters 

Circuit Parameters Values 

Disc Inductance (Lself) 0.324 mH 

Series Capacitance (Cs) 1.04 nF 

Shunt Capacitance (Cg) 22.13 pF 

Disc Resistance (R) 0.151 Ω 

 

5.6.1 Determination of Self-Inductance 

The self-inductance of a disc coil [5.2] is calculated from the following equation: 

𝐿𝑠𝑒𝑙𝑓 = 4 × 10
−7 × 𝑁1

2 (𝑙𝑛
8𝑅

𝑅1
− 2) [𝐻]…… (5.1) 

where, 

ln 𝑅1 =
1

2
ln(𝑎2 + 𝑏2) −

𝑏2

12𝑎2
ln (1 +

𝑎2

𝑏2
) −

𝑎2

12𝑏2
ln (1 +

𝑎2

𝑏2
) +

2𝑏

3𝑎
𝑡𝑎𝑛−1 (

𝑎

𝑏
) +

2𝑎

3𝑏
𝑡𝑎𝑛−1

𝑏

𝑎
−
25

12
 

and 𝑁1=number of turns and a, b and R are dimensions in meters of the coil as shown 

below 

b

a

R
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Figure 2.4 Coil dimensions from (a) side view & (b) top view 

(b) 

R

 

 

5.6.2 Calculation of Series (K) and Shunt (Cg) Capacitance: 

The capacitance of the winding is calculated assuming the windings to be cylindrical 

electrodes. The details of methods of calculation of series and shunt capacitances is given 

in [5.2]. It is to be noted here that the shunt or ground capacitance of a transformer is 

calculated differently when considering the middle limb for calculation from the case 

when considering the side limb. The capacitance between impulse-hit limb winding and 

tank (i.e. Cg) or the shunt capacitance is computed by the expression for capacitance 

between two coaxial cylinders with certain approximations. Method of images is used to 

calculate the capacitance between the impulsed middle limb winding and tank.  

5.7 Recurrent Surge Generator 

The recurrent surge generator is an impulse generator that produces impulse waves of 

nominal specifications i.e. with a wave-front time of 1.2 ± (30%) μsec. and wave-tail 

of 50(±20%) μsec, as specified in the IS-2026 (part-3, Clause 13). The output from the 

surge generator is directly applied to the analogue model due to its low magnitude output. 

It has a no load output of about 136 Vpeak. It has a repetition rate of 50 Hz i.e. at every 20 

milliseconds the generator produces an output impulse wave.  The waveshape of the 

output impulse wave may be controlled either by controlling externally the source 

capacitance or by the tail resistors.  
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Figure 2.6 Recurrent Surge Generator 

Generator 

 

 

5.8 Digital oscilloscope: 

TEKTRONIX TBS1152 Digital Storage Oscilloscope (2 channels, 1GS/s, 150 MHz,8 

bit) has been used for this data acquisition. The data from the oscilloscope can be 

transferred to the PC for analysis purpose through its USB port. The DSO has a recording 

length of 2.5k on all time bases. Input impedance of the oscilloscope is 1𝑀Ω in parallel 

with 20 pF. The input sensitivity range of the vertical system is 2mV/div to 5V/div and 

that of horizontal system is 5ns/div to 50s/div.  

 

 

5.9 Schematic Diagram of the model with series and shunt fault and 

Experimental setup 

The Figure 5.8 represents the schematic diagram of the analog model. The series and 

shunt faults are represented which are produced by short circuiting the equivalent 

capacitance between two adjacent discs for series faults and short circuiting the respective 

disc to tank for shunt fault respectively. One of such series and shunt fault are shown. 

Figure 2.7 Digital Oscilloscope 
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Figure 5.8 Schematic representation of analog model with emulated faults 

Figure 5.9 represents the actual image of the winding model used for experimentation 

and Figure 5.10 shows the image of the shunt used in the experiment for data acquisition. 
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Figure 5.10 Co-Axial shunt 

 

 

 

 

 

 

 

 

2.10 Recorded Waveforms 

The figures presented below shows different waveforms obtained due fault at a different 

location along the winding length. Figure (a) represents the current waveform due to no 

fault. Figure (b), (c), and (d) represents waveforms obtained due to Series faults at upper, 

Figure 5.9 Experimental Setup 
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(a) 

middle and lower end of the winding respectively. Similarly figure (e), (f) and (g) gives 

waveforms for shunt fault at upper, middle and lower end respectively. 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

(b) 

(c) 
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(g) 

Figure 2.11: Recorded current waveforms 

(a) No Fault 

(b), (c) & (d) Series Faults along winding length 

(e), (f) & (g) Shunt Faults along winding length 
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These obtained waveforms are further analysed using the signal processing tools 

presented in chapter 3 and at last classified using the tool presented in chapter 4 to identify 

fault location along the constructed analog model and also categorise the type of fault 

existing and depicted by the waveform. The detailed analysis is presented in the next 

chapter. 

5.11 References 

5.1) S. Chatterjee, "Analog studies on impulse performance of a H.V transformer 

winding with tapping coils", M.E.E thesis (Jadavpur University), 1994. 

5.2) S. Munshi, "Digital Computation of Potential Distribution in a Transformer 

Winding due to Lightning Impulse", M.E.E thesis, Jadavpur University, 1985. 

5.3) A. Miki, T. Hosoya and K. Okuyama, "A calculation method for impulse voltage 

distribution and transferred voltage in transformer", IEEE Transactions on Power 

Apparatus and Systems, Vol. PAS-97, 1978, pages: 930-938. 

  



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

Result and Discussion 



 

Page | 50  
 

Chapter 6: Results and Discussion 

 

 

6.1 Introduction 

The present chapter provides an insight into the methodology of identifying the two 

different types of fault considered i.e. Series and Shunt short circuits and their relative 

position of occurrence along the length of the winding. For classification of the different 

types of fault Mathematical Morphological and Stockwell transform based features and a 

Rough set based classifier is developed. Faults of two different types at different positions 

along the length of the analog model is simulated and the resultant fault currents are 

acquired using a Tektronix digital oscilloscope from a coaxial shunt connected across the 

tank and ground. 

The two signal processing tools namely Mathematical Morphology and Stockwell 

Transform are used to extract some important features, the theoretical details of which 

are presented in chapter 3. For extraction of features from morphologically transformed 

data, only statistical features are used. Whereas, features extracted using Stockwell 

transform contains a mixture of statistical features along with energy and entropy of the 

signal. 

6.2 Mathematical Morphology based feature extraction 

Hybrid mathematical morphological operators have been used in the present work to 

transform impulse fault current data. The white and black top hat transforms are used to 

operate on the acquired data and statistical features are extracted based on it. A 

combination of two different structuring elements, a linear, with height 0.01 and length of 

10, and a semi-circular, with height 0.05 and length 15 has been chosen for analysis. The 

choice of these structuring elements was based on a trial and error basis and these two 

structuring elements provided the best results. In the present scheme, three types of Hybrid 

Morphological operators have been used which were introduced in chapter 3 in equations 

3.3, 3.4 and 3.5 respectively and are again presented below: 

𝑊ℎ𝑖𝑡𝑒 𝑇𝑜𝑝 𝐻𝑎𝑡 (𝑊𝑇𝐻) = 𝑓0(𝑛) − (𝑓 ∘ 𝑔)…… (6.1) 

𝐵𝑙𝑎𝑐𝑘 𝑇𝑜𝑝 𝐻𝑎𝑡 (𝐵𝑇𝐻) = (𝑓 ⋅ 𝑔)(𝑛) − 𝑓0(𝑛)…… (6.2) 

& 𝑇𝑜𝑝 𝐻𝑎𝑡 (𝑇𝐻) = 𝑊𝑇𝐻 − 𝐵𝑇𝐻……(6.3) 
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𝑂𝐶𝑀2 =
𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛(𝑂𝐶𝑀1) + 𝑒𝑟𝑜𝑠𝑖𝑜𝑛(𝑂𝐶𝑀1)

2
…… (6.4) 

Figure 6.1 presented below shows the profile of White top hat transform one at line end, 

one at middle end and one on the lower end of the winding for both series and shunt 

faults. 

 

Figure 6.1: Top hat transform for Series fault at line end 

 

Figure 6.2: Top hat transform for Series fault at middle of the winding 

 

Figure 6.3: Top hat transform for Series fault at lower end of the winding 

 

Figure 4: Top hat transform for Shunt fault at line end 
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Figure 6.5: Top hat transform for Shunt fault at middle of the winding 

 

Figure 6.6: Top hat transform for shunt fault at lower end of the winding 

In the present work, 13 distinct features are extracted (F1 through F12) from a mixture of 

WTH, BTH, TH and OCM2 as described in equations 6.1 to 6.4 respectively. These 13 

statistical features are given in the Equations (6.5) to (6.17). For equations 6.5 to 6.9 the 

quantity 𝑓0(𝑛) in equations 6.1 to 6.3 is the original signal 𝑓(𝑛) over which basic 

operations are performed. For equations 6.10 to 6.12 𝑓0(𝑛) in the reference signal of the 

healthy transformer as presented above in section 6.2.For the remaining signals i.e. 

equations 6.13 to 6.17 OCM2 is used to calculate statistical features. Hence, in summary 

the features can be partitioned as: 

a) Features based on Top hat (white and black) transform with  𝑓0(𝑛) =original 

signal 𝑓(𝑛) and a beeline structuring element 

 𝐹1 = 𝑇𝐻𝑣𝑎𝑟 =
∑ [𝑇𝐻(𝑛) − 𝜇]2𝑁
𝑖=1

𝑁
……(6.5) 

𝐹2 = 𝑊𝑇𝐻𝑣𝑎𝑟 =
∑ [𝑊𝑇𝐻(𝑛) − 𝜇]2𝑁
𝑖=1

𝑁
……(6.6) 

𝐹3 = 𝑇𝐻𝑠 =
∑ [𝑇𝐻(𝑛) − 𝜇]3𝑁
𝑛=0

(𝑁 + 1)𝜎3
……(6.7) 

𝐹4 = 𝑊𝑇𝐻𝑆 =
∑ [𝑊𝑇𝐻(𝑛) − 𝜇]3𝑁
𝑛=0

(𝑁 + 1)𝜎3
……(6.8) 
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𝐹5 = 𝐵𝑇𝐻𝑆 =
∑ [𝐵𝑇𝐻(𝑛) − 𝜇]3𝑁
𝑛=0

(𝑁 + 1)𝜎3
……(6.9) 

b) Features based on Top hat (white and black) transform with  𝑓0(𝑛) =referance 

signal 𝑓𝑟(𝑛) and a beeline structuring element 

𝐹6 = 𝑇𝐻𝑣𝑎𝑟 =
∑ [𝑇𝐻(𝑛) − 𝜇]2𝑁
𝑖=1

𝑁
……(6.10) 

𝐹7 =  𝐸𝑊_𝑇𝐻 =
∑ 𝑛 ∗ 𝑇𝐻(𝑛)𝑁
𝑛=0

𝑇𝐻𝑚𝑎𝑥
……(6.11) 

𝐹8 = 𝐸𝑊_𝐵𝑇𝐻 =
∑ 𝑛 ∗ 𝐵𝑇𝐻(𝑛)𝑁
𝑛=0

𝐵𝑇𝐻𝑚𝑎𝑥
……(6.12) 

c) Features based on Opening-Closing mean (OCM2) operator with linear 

structuring element of height 0.01 and length of 15. 

𝐹9 = 𝑂𝐶𝑀2𝑚𝑎𝑥 ……(6.13) 

𝐹10 = 𝑂𝐶𝑀2𝑣𝑎𝑟 =
∑ [𝑂𝐶𝑀2(𝑛) − 𝜇]2𝑁
𝑖=1

𝑁
……(6.14) 

𝐹11 = 𝑂𝐶𝑀2𝑆 =
∑ [𝑂𝐶𝑀2(𝑛) − 𝜇]3𝑁
𝑛=0

(𝑁 + 1)𝜎3
……(6.15) 

𝐹12 = 𝑂𝐶𝑀2𝑘 =
∑ [𝑂𝐶𝑀2(𝑛) − 𝜇]4𝑁
𝑛=0

(𝑁 + 1)𝜎4
……(6.16) 

𝐹13 = 𝐴𝑉𝐺𝑂𝐶𝑀2 =
∑ 𝑂𝐶𝑀2(𝑛)𝑁
𝑛=0

(𝑁 + 1)
…… (6.17) 

In these 13 features, μ and σ represent the Average and Standard Deviation of the 

respective signals. The extracted features are described as: F1 = Variance of TH (THvar), 

F2 = Variance of BTH (BTHvar), F3 = Skewness of the TH (THs), F4 = Skewness of 

the WTH (WTHs),     F5 = Skewness of the BTH (BTHs), F6 = Variance of the 

TH(THvar), F7 = Equivalent width of the TH (EW_TH), F8 = Equivalent width of the 

BTH (EW_BTH), F9 = Maximum value of the OCM2 (OCM2max), F10 = Variance of 

the OCM2 (OCM2var), F11 = Skewness of OCM2 (OCM2s), F12 = Kurtosis of OCM2 

(OCM2k), F13 = Average of the OCM2 (AVGOCM2). These 13 features were found to 

be sufficient to classify various fault locations with an admissible accuracy. Some of the 

extracted features for different fault locations have been shown in Figure 6.7 to Figure 

6.10. 
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Figure 6.7: Variation of Feature F1 for Series faults only 

 

Figure 6.8: Variation of Feature F3 for series fault only 

 

Figure 6.9: Variation of Feature F7 for series faults only 

 

Figure 6.10: Variation of Feature F1 for Shunt faults only 
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Figure 6.11: Variations of Feature F3 for shunt fault only 

 

Figure 6.12: Variations of Feature F13 for shunt fault only 

It can be noticed from the above figures that features for series and shunt faults are plotted 

separately. This is for the purpose of better classification accuracy which would be 

achievable with less numbers of feature to be dealt at a time. Based on the magnitude of 

feature F9 two types of faults i.e. series and shunt faults are identified. F9 is in the range 

of 0.68 to 0.758 for series faults and for shunt faults the range becomes 0.76 to 35.8. As 

will be discussed in section 6.5 that the classification table for series and shunt fault 

localization is also different. 

6.3 Stockwell Transform based feature extraction 

Stockwell transform with a modified Gaussian window as mentioned in section 3.3.6 of 

chapter 3 has been used as a tool for extracting some features from the various fault 

current waveforms.  

As already mentioned in the chapter’s introduction a mixture of statistical features with 

energy and entropy of the signal are used as features. By varying the parameters of 

equation 3.33 of chapter 3 i.e. F, a, b and c different features are extracted. For statistical 

features only default parameter values are only used and the values are modified only for 

extracting features using Energy and Entropy of the fault current waveform. 

6.3.1 S-Transform contour plots for different fault cases 

Various contour diagrams obtained for different identified fault cases are shown  
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Figure 6.13: Series Fault at position 1 

 

Figure 6.14: Series Fault at position 20 

 

Figure 6.13: Series Fault at position 44 

 

Figure 6.14: Series Fault at disc 67 
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Figure 6.15: Series Fault at position 87 

 

Figure 6.16: Shunt Fault at position 1 

 

Figure 6.17: Shunt Fault at position 20 

 

Figure 6.20: Shunt Fault at position 44 
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Figure 6.18: Shunt Fault at position 67 

 

Figure 6.22: Shunt Fault at position 88 

6.3.2 S-Transform based features used for fault classification 

a) Energy: Energy of every signal is calculated from the Stockwell transform matrix 

obtained by varying the constant parameters (F, a, b and c). The formula used for 

calculation of energy is defined as  

𝐸 = 𝑅𝑒𝑎𝑙 [∑∑{𝑆𝑖,𝑗 × 𝑆𝑖,𝑗
∗ }

𝑀

𝑖=1

𝑁

𝑗=1

]…… (6.18) 

Where, N is the number of columns of the S-matrix and M is the number of rows in the 

S-matrix. 𝑆𝑖,𝑗
∗  is the conjugate of the quantity 𝑆𝑖,𝑗 in the S-matrix. Three different features 

are extracted based on energy of the signal based on different settings of the constant 

parameters. The features are defined as : 

𝐸𝐹1 = 𝐸|𝐹=1,𝑎=0,𝑏=1,𝑐=1……(6.19) 

𝐸𝐹2 = 𝐸|𝐹=1,𝑎=0,𝑏=1,𝑐=1.3……(6.20) 

𝐸𝐹3 = 𝐸|𝐹=0.33,𝑎=1.3,𝑏=0.33,𝑐=1.1……(6.21) 

Figure 6.22 to Figure 6.25 shows some of the features for series and shunt faults. 
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Figure 6.23: Variations of feature F1 for series fault only 

 

Figure 6.19: Variations of feature F3 for series faults only 

 

Figure 6.20: Variation of feature F1 for Shunt fault only 

 

Figure 6.21: Variations of feature F3 for shunt faults only 
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b) Entropy: Shannon’s entropy used as one of the features. Entropy of a signal is defined 

as the amount of information that the signal contains and is defined as follows: Suppose 

we have a set of possible events whose probabilities of occurrence are 𝑝𝑖(𝑖 = 1, 2, … , 𝑛), 

the entropy of the set of probabilities is defined as  

𝐻 = −∑𝑝𝑖 ln 𝑝𝑖……(6.22)

𝑛

𝑖=1

 

Where, 0 < 𝑝𝑖 < 1 and ∑ 𝑝𝑖
𝑛
𝑖=1 = 1. For using entropy as one of the features singular 

value decomposition of the (𝑀 × 𝑁) S-matrix is done. Only relatively large singular 

values are singled out for analysis for damping the effect of noise. For selecting the 

singular values 𝜎𝑖 for 𝑖 = 1, 2, … . ,𝑀, the selection criteria is chosen to be 

𝜎𝑗

𝜎1
> 𝑚……(6.23) 

Where, 𝑚 is chosen according to the noise levels. Assuming the number of singular 

values selected is ′𝑞′ then the associated probabilities are calculated as 

𝑝𝑗 =
𝜎𝑗

∑ 𝜎𝑗
𝑞
𝑗=1

……(6.24) 

At last the entropy is calculated using equation 6.22 as given above. 

The features based on entropy are defined as: 

𝐻𝐹4 = 𝐻|𝐹=1,𝑎=0,𝑏=1,𝑐=1……(6.25) 

𝐻𝐹5 = 𝐻|𝐹=1,𝑎=0,𝑏=1,𝑐=1.3……(6.26) 

𝐻𝐹6 = 𝐻|𝐹=1,𝑎=0,𝑏=0.7,𝑐=0.3……(6.27) 

Figure 6.26 to 6.29 gives variation of calculated entropy for different values of constants 

(F, a, b & c) for series and shunt faults at different locations along the winding model. 

 

Figure 6.22: Variations of feature F4 for series faults only 

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Series fault locations

M
a
g

n
it

u
d

e
 o

f 
fe

a
tu

re
 F

4



 

Page | 61  
 

 

Figure 6.23: Variations of feature F6 for series faults only 

 

Figure 6.24: Variations of feature F5 for shunt faults only 

 

Figure 6.25: Variations of feature F6 for shunt fault only 

c) Standard Deviation: One of the statistical features used for extracting features from 

the S-matrix is the standard deviation. The formulae used for calculating the standard 

deviation of the whole S-matrix is  

𝑆𝑇𝐷 = 𝑅𝑒𝑎𝑙 [∑{
1

𝑀 − 1
∑(𝑆𝑖,𝑗 − 𝑆�̅�)

2
𝑀

𝑖=1

}

1
2⁄𝑁

𝑗=1

]…… (6.28) 

And the feature is defined as: 𝑆𝐹7 = 𝑆𝑇𝐷|𝐹=1,𝑎=0,𝑏=1,𝑐=1……(6.29)  

Figure 6.30 and 6.31 shows the variation of feature F7 extracted based on standard 

deviation of the S-matrices for series and shunt faults respectively at different locations 

along the winding model. 
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Figure 6.26 : Variations of features F7 for series faults only 

 

Figure 6.27: Variations of feature F7 for shunt fault only 

d) Variance: The other statistical feature used for feature extraction from Stockwell 

transform data in the variance of each S-matrix for different fault types and locations. The 

formula used for calculation of variance from an S-matrix is  

𝑉𝐴𝑅 =∑
1

𝑀

𝑁

𝑖=1

∑(𝑆𝑖,𝑗 − 𝑆𝑖,𝑗̅̅ ̅̅ )

𝑀

𝑗=1

……(6.26) 

The feature based on variance is defined as  

𝑉𝐴𝑅𝐹8 = 𝑉𝐴𝑅|𝐹=1,𝑎=0,𝑏=1,𝑐=1……(6.27) 

The extracted features for series and shunt faults at different locations along the winding 

model are shown in figure 6.32 and6.33 respectively. 

 

Figure 6.28: Variations of feature F8 for series faults only 
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Figure 6.29: Variations of feature F8 for shunt fault only 

6.4 Classification with morphological features 

To classify the extracted features from morphologically transformed tank current 

waveforms, Rough Set Theory based classification tool has been employed. As already 

mentioned classification problem of series and shunt faults are dealt separately. In order 

to identify a fault as series and shunt, un-normalised value of the feature F9 i.e. OCM2max 

is used. OCM2max is in the range of 0.68 to 0.758 for series faults and for shunt faults the 

range becomes 0.76 to 35.8. Hence two separate tables one for series and one for shunt 

faults are given in table 6.1 and 6.2 respectively in normalised form.  

Table 6.6: Normalised decision table for Series faults 

Objects Condition Attributes Decision Attributes: 

Location of Series 

Faults F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 

1 0.94 0.91 0.97 0.23 0.96 0.50 0.45 0.38 0.93 0.92 0.76 0.95 0.96 Series1 

2 1.00 1.00 1.00 0.21 0.96 0.74 0.26 0.55 0.98 0.94 0.60 0.95 0.97 Series1 

3 0.87 0.88 0.73 0.09 0.98 0.86 0.20 0.69 0.96 0.95 0.54 0.96 0.98 Series2 

4 0.62 0.62 0.50 0.30 1.00 0.92 0.16 0.81 0.96 0.96 0.49 0.96 0.98 Series2 

5 0.54 0.60 0.51 0.31 0.77 0.93 0.09 0.83 0.95 0.95 0.48 0.97 0.99 Series3 
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84 0.31 0.32 0.26 0.82 0.21 0.78 0.90 0.13 0.90 0.85 0.73 0.95 0.92 Series28 

85 0.32 0.33 0.26 0.88 0.24 0.72 0.90 0.15 0.90 0.85 0.75 0.95 0.92 Series28 

86 0.31 0.32 0.26 0.86 0.15 0.58 1.00 0.04 0.90 0.84 0.89 0.94 0.91 Series29 

87 0.33 0.33 0.28 0.81 0.34 0.36 0.97 0.08 0.90 0.84 0.95 0.94 0.92 Series29 
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Table 6.7: Normalised table for Shunt faults 

Objects Condition Attributes Decision 

Attributes: 

Location of 

Shunt Faults 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 

1 1.0000 1.0000 1.0000 1.00 0 1.00 0.79 0.27 1.00 1.00 1.00 1.00 0.96 Shunt1 

2 0.2704 0.2648 0.2811 0.55 0.53 0.65 0.75 0.31 0.66 0.65 0.78 0.54 0.97 Shunt1 

3 0.1358 0.1353 0.1613 0.34 0.78 0.40 0.64 0.38 0.50 0.40 0.65 0.37 1.00 Shunt2 

4 0.0562 0.0566 0.0606 0.37 0.69 0.24 0.11 0.46 0.38 0.24 0.56 0.30 0.97 Shunt2 

5 0.0386 0.0388 0.0435 0.27 0.81 0.15 0.24 0.55 0.31 0.15 0.48 0.27 0.95 Shunt3 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

   . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

84 0.0010 0.0011 0.0009 0.73 0.43 0.00009 0.99 0.29 0.02 0.0006 0.05 0.48 0.09 Shunt28 

85 0.0010 0.0010 0.0009 0.72 0.47 0.00008 0.99 0.24 0.02 0.0005 0.05 0.49 0.09 Shunt29 

86 0.0009 0.0011 0.0009 0.76 0.43 0.00007 0.99 0.14 0.02 0.0005 0.05 0.49 0.09 Shunt29 

87 0.0009 0.0011 0.0009 0.74 0.40 0.00006 0.99 0.06 0.02 0.0005 0.04 0.50 0.09 Shunt29 

88 0.0009 0.0011 0.0009 0.72 0.40 0.00005 1 0 0.02 0.0005 0.04 0.50 0.09 Shunt29 

 

The normalised tables 6.1 and 6.2 are then discretized, to reduce 𝑐𝑎𝑟𝑑(𝑉𝑞) using the MD 

heuristics as explained in chapter 4 along with theoretical details. Table 6.3 and 6.4 

presents the discretized decision table for series and shunt fault respectively.  

Table 6.8: Discretized decision table for Series faults 

Objects Condition Attributes Decision Attributes: Location 

of Series Faults 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 

1 5 5 5 0 8 3 4 4 0 1 5 1 1 Series1 

2 5 5 5 0 8 5 3 5 0 1 3 1 1 Series1 

3 5 5 5 0 8 7 2 7 1 2 2 1 1 Series1 

4 4 4 3 1 8 7 2 8 1 2 2 1 1 Series2 

5 3 3 2 2 6 7 1 8 1 2 2 1 1 Series2 

. 

. 

. 

. 
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. 

. 

. 

. 

. 

. 

84 1 1 1 6 0 6 9 1 0 1 4 1 0 Series28 

85 1 1 1 7 0 5 9 1 0 1 5 1 0 Series29 

86 1 1 1 7 0 4 10 0 0 0 6 0 0 Series29 

87 1 1 1 6 1 2 10 1 0 0 7 0 0 Series29 
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Table 6.9: Discretized decision table for Shunt faults 

Objects Condition Attributes Decision Attributes: Location 

of Series Faults 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 

1 1 1 1 8 0 2 7 2 4 2 4 4 10 Shunt1 

2 1 1 1 5 4 2 6 2 4 2 4 3 10 Shunt1 

3 1 1 1 2 7 2 5 3 4 2 4 2 10 Shunt2 

4 1 1 1 3 6 1 0 4 3 1 4 1 10 Shunt2 

5 0 0 0 2 7 1 1 5 3 1 3 1 10 Shunt3 

. 

. 

. 

. 

. 

. 

. 
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. 

. 

. 

. 

. 

. 

. 

. 
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. 

. 

. 

. 

. 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

84 0 0 0 6 3 0 9 2 0 0 1 3 1 Shunt28 

85 0 0 0 6 3 0 9 2 0 0 1 3 1 Shunt29 

86 0 0 0 7 4 0 9 1 0 0 1 3 1 Shunt29 

87 0 0 0 6 3 0 9 0 0 0 0 3 1 Shunt28 

88 0 0 0 6 3 0 9 0 0 0 0 3 1 Shunt29 

 

The discretised data is subdivided into training and testing subsets. In the present 

approach the winding model with its 88 discs is divided into 29 sections with each section 

containing 3 discs except the last section which contains 4 discs. Hence, the aim would 

be to identify the fault within 4% of the winding as accurately as possible. Out of the 

three fault data obtained for any given section two are used for training the Rough set 

based classifier whereas the remaining one set of data is used for testing the classifier.  

Hence, for a series fault where there are 87 fault current waveforms available, 58 (i.e. 

29×2) waveform data are used for training and 29 for testing. Similarly, for shunt fault 

59 (i.e. 29×2+1) numbers of training sets are available and the number of testing sets are 

again 29. 

Granulation as discussed in chapter 4 then helps in forming the indiscernibility relation 𝐼𝐵 

and is defined as 

𝐼𝐵 = {(𝜎𝑖, 𝜎𝑗) ∈  ∪
2| ∀𝑞 ∈ 𝐵, 𝑓(𝜎𝑖, 𝑞) = 𝑓(𝜎𝑗, 𝑞)}……(6.28) 

This indiscernibility relation can reduce a decision table. This can be done by keeping 

only one element of an equivalence class and also keeping those attributes which preserve 

the indiscernibility relation. Thus obtained minimal sets of attributes are called Reduct. 

Table 6.5 and 6.6 below gives the Reduct tables for series and shunt faults respectively. 

The theoretical details of obtaining the Reduct is presented in chapter 4. 
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Table 6.10: Simplified form of decision table for Series faults 

Objects Condition Attributes Decision Attributes: Location 

of Series Faults 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 

1 5 5 5 0 8 × × × 0 1 × 1 1 Series1 

2 5 5 5 0 8 × × × 0 1 × 1 1 Series1 

4 × × × × × 7 × 8 1 2 2 1 1 Series2 

5 × × × × × 7 × 8 1 2 2 1 1 Series2 

7 3 3 2 × × 8 1 × 1 2 × 1 1 Series3 

8 3 3 2 × × 8 1 × 1 2 × 1 1 Series3 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

82 1 1 1 × 0 6 9 2 0 1 4 1 0 Series28 

83 1 1 1 × 0 6 9 2 0 1 4 1 0 Series28 

85 1 1 1 7 0 × × × 0 × × × 0 Series29 

86 1 1 1 7 0 × × × 0 × × × 0 Series29 

 

It can be seen from the presented discretised decision tables that none of the features were 

found to be dispensable for series fault case. For the case of shunt fault localization it was 

found that features F4 and F5 were dispensable and hence are removed in the subsequent 

table. 

Table 6.11: Simplified form of decision table for Shunt faults 

Objects Condition Attributes Decision Attributes: Location of Series 

Faults 
F1 F2 F3 F6 F7 F8 F9 F10 F11 F12 F13 

1 1 1 1 2 × 2 4 2 4 × 10 Shunt1 

2 1 1 1 2 × 2 4 2 4 × 10 Shunt1 

4 × × × 1 × × 3 1 × 1 10 Shunt2 

5 × × × 1 × × 3 1 × 1 10 Shunt2 

7 0 0 0 × 0 6 2 × 2 × × Shunt3 

8 0 0 0 × 0 6 2 × 2 × × Shunt3 

. 
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. 

. 
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. 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

82 0 0 0 0 9 2 0 0 1 3 1 Shunt28 

83 0 0 0 0 9 2 0 0 1 3 1 Shunt28 

85 0 0 0 0 9 × 0 0 × 3 1 Shunt29 

86 0 0 0 0 9 × 0 0 × 3 1 Shunt29 

87 0 0 0 0 9 × 0 0 × 3 1 Shunt29 
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In the next step decision rules are generated from the final table of core and Reducts in 

the form of IF…THEN rules. Tables 6.7 and 6.8 show these rules for series and shunt 

faults respectively. 

Table 6.12: Decision Rule for localisation of Series faults 

Decision Rule Statement of Rule 

IF THEN 

1 (F1=5∧ F2=5∧ F3=5∧ F4=0∧ F5=8∧ F9=0∧ F10=1∧ F12=1∧ F13=1) Fault type is Series1 

2 (F6=7∧ F8=8∧ F9=1∧ F10=2∧ F11=2∧ F12=1∧ F13=1) Fault type is Series2 

3 (F1=3∧ F2=3∧ F3=2∧ F6=8∧ F7=1∧ F9=1∧ F10=2∧ F12=1∧ F13=1) Fault type is Series3 

. 

. 

. 

. 

. 

. 

28 (F1=1∧ F2=1∧ F3=1∧ F5=0∧ F6=6∧ F7=9∧ F8=2∧ F9=0∧ F10=1∧ F11=4∧ F12=1∧ F13=0) Fault type is Series28 

29 (F1=1∧ F2=1∧ F3=1∧ F4=7∧ F5=0∧ F9=0∧ F13=0) Fault type is Series29 

 

Table 6.13: Decision Rule for localisation of Shunt faults 

Decision Rule Statement of Rule 

IF THEN 

1 (F1=1∧ F2=1∧ F3=1∧ F6=2∧ F8=2∧ F9=4∧ F10=2∧ F11=4∧ F13=10) Fault type is Shunt1 

2 (F6=1∧ F9=3∧ F10=1∧ F11=2∧ F12=1∧ F13=10) Fault type is Shunt2 

3 (F1=0∧ F2=0∧ F3=0∧ F7=0∧ F8=6∧ F9=2∧ F11=2) Fault type is Shunt3 

. 

. 

. 

. 

. 

. 

28 (F1=0∧ F2=0∧ F3=0∧ F6=0∧ F7=9∧ F8=2∧ F9=0∧ F10=0∧ F11=1∧ F12=3∧ F13=1) Fault type is Shunt28 

29 (F1=0∧ F2=0∧ F3=0∧ F6=0∧ F7=9∧ F9=0∧ F10=0∧ F12=3∧ F13=1) Fault type is Shunt29 

 

Using the rules generated above the remaining data i.e. the testing set is tested for series 

and shunt fault localization respectively. The classification accuracy for series faults 

localization was found to be 86.2% (i.e. 25 out of 29 cases) and the accuracy class for 

shunt fault localization was about 96.6% (i.e. 28 out of 29 cases). 

6.5 Classification with S-transform features 

Similar to the process adopted for classification of features based on morphology, the 

features based on Stockwell transform are also classified. Here also the classification 

problem of series and shunt faults are dealt separately. In case of feature extraction and 

classification based on Stockwell transform features to identify a fault as series and shunt, 

un-normalised value of the feature F5 i.e. magnitude of Entropy with arbitrary constants 

set at a value of F=1, a=0, b=1 and c=0.7 is used. Based on magnitude of feature F5 two 

types of fault i.e. series and shunt faults are identified. The value of the feature F5 is in 

the range of 5.9 to 6 for series faults and for shunt faults the range becomes 0.3 to 1.3. 
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Hence two separate tables one for series and one for shunt faults are given in table 6.9 

and 6.10 respectively in normalised form. 

Table 6.14: Normalised decision table for Series faults 

Objects Condition Attributes Decision Attributes: Location of Series 

Faults 
F1 F2 F3 F4 F5 F6 F7 F8 

1 0.9673 0.9282 0.9798 0 0.9963 0.9968 0.9638 0.8543 Series1 

2 0.9895 0.9594 1 1 0.9971 0.9974 0.9827 0.8530 Series1 

3 0.9749 0.9676 0.9108 0.9858 0.9971 0.9944 0.9858 0.8681 Series2 

4 0.9726 0.9746 0.8810 0.9865 0.9971 0.9974 0.9885 0.8862 Series2 

5 0.9816 0.9853 0.8812 0.9870 0.9971 0.9973 0.9934 0.9077 Series3 

. 

. 

. 
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. 

. 

. 

. 

. 

. 

. 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

84 0.8540 0.8610 0.7558 0.9917 0.9998 0.9999 0.9280 0.7099 Series28 

85 0.8585 0.8603 0.7723 0.9923 0.9999 0.9999 0.9274 0.7210 Series28 

86 0.8458 0.8468 0.7672 0.9930 0.9999 0.9999 0.9199 0.7136 Series29 

87 0.8518 0.8504 0.7797 0.9932 0.9999 0.9998 0.9217 0.7372 Series29 

 

Table 6.15: Normalised decision table for Shunt faults 

Objects Condition Attributes Decision Attributes: Location of 

Shunt Faults 
F1 F2 F3 F4 F5 F6 F7 F8 

1 1 1 1 0.3748 0.3021 0.376 1 1 Shunt1 

2 0.5958 0.6925 0.5736 0.3488 0.3396 0.3647 0.9236 0.2821 Shunt1 

3 0.3806 0.4821 0.3718 0.3422 0.3813 0.3616 0.8248 0.0968 Shunt2 

4 0.2172 0.3331 0.2074 0.3502 0.4264 0.3678 0.7160 0.0356 Shunt2 

5 0.14 0.2468 0.1371 0.3638 0.4646 0.3773 0.6390 0.0156 Shunt3 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

84 0.00096 0.0016 0.0012 0.9931 0.9854 0.9668 0.0559 2.45e-7 Shunt28 

85 0.00091 0.0016 0.0011 0.9961 0.9910 0.9967 0.0552 2.27e-7 Shunt29 

86 0.00091 0.0015 0.0011 1 1 1 0.0544 2.17e-7 Shunt29 

87 0.00089 0.0015 0.0011 0.9977 0.9969 0.9982 0.0541 2.07e-7 Shunt29 

88 0.00087 0.0015 0.0011 0.9974 0.9960 0.9981 0.0540 2.02e-7 Shunt29 

 

These tables are similar in all respect to the tables presented for morphologically obtained 

features with one exception that the features depicted here are extracted using modified 

S-Transform and that here only 8 features are considered. The series fault contains 87 
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cases out of which 58 (i.e. 29×2) waveform data are used for training and 29 for testing. 

Similarly, for shunt fault 59 (i.e. 29×2+1) numbers of training sets are available and the 

number of testing sets are again 29. 

Table 6.11 and 6.12 provides the discretised decision table for the Stockwell transform 

extracted features evaluated using MD heuristics with only the training sets shown. 

Table 6.16: Discretised decision table for series faults 

Objects Condition Attributes Decision Attributes: Location of Series Faults 

F2 F3 F5 F6 F7 F8 

1 6 8 0 0 5 6 Series1 

2 7 8 4 3 6 6 Series1 

4 8 5 3 3 8 6 Series2 

5 8 6 3 3 9 6 Series2 

7 9 6 3 3 8 7 Series3 

8 9 6 3 3 8 8 Series3 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

82 2 0 12 11 2 1 Series28 

83 2 0 12 11 2 0 Series28 

85 1 0 12 9 1 1 Series29 

86 0 0 12 9 1 1 Series29 

 

As evident from the discretised table that features F1 and F4 were found to be dispensable 

and hence is removed from the table. The reduced table is shown in table 6.13. 

Table 6.17: Discretised decision table for shunt fault 

Objects Condition Attributes Decision Attributes: Location of Shunt Faults 

F1 F6 F7 F8 

1 27 1 28 27 Shunt1 

2 27 1 28 27 Shunt1 

4 26 1 27 26 Shunt2 

5 26 1 27 26 Shunt2 

7 25 1 26 25 Shunt3 

8 25 1 26 25 Shunt3 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

82 2 7 1 2 Shunt28 

83 1 7 1 1 Shunt28 

85 1 7 1 1 Shunt29 

86 1 7 1 1 Shunt29 

87 1 7 1 1 Shunt29 
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Here, the features F2, F3, F4, F5 and F7 are dispensable and hence are removed. The 

reduced decision table is shown in table 6.14. 

Table 6.18: Reduced decision table for series faults 

Objects Condition Attributes Decision Attributes: Location of Series Faults 

F2 F3 F5 F6 F7 F8 

1 × 8 × × × 6 Series1 

2 × 8 × × × 6 Series1 

4 8 × 3 3 × 6 Series2 

5 8 × 3 3 × 6 Series2 

7 9 6 3 3 8 × Series3 

8 9 6 3 3 8 × Series3 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

82 2 0 12 11 2 × Series28 

83 2 0 12 11 2 × Series28 

85 × 0 12 9 1 1 Series29 

86 × 0 12 9 1 1 Series29 

 

Table 6.19: Reduced decision table for Shunt faults 

Objects Condition Attributes Decision Attributes: Location of Shunt Faults 

F1 F6 F7 F8 

1 27 1 28 27 Shunt1 

2 27 1 28 27 Shunt1 

4 26 1 27 26 Shunt2 

5 26 1 27 26 Shunt2 

7 25 1 26 25 Shunt3 

8 25 1 26 25 Shunt3 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

82 × 6 1 × Shunt28 

83 × 6 1 × Shunt28 

85 1 7 1 1 Shunt29 

86 1 7 1 1 Shunt29 

87 1 7 1 1 Shunt29 
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Tables 6.15 and 6.16 gives the rule base generated for identification of locations of series 

and shunt faults respectively. 

Table 6.20: Rule base generated for series fault localization 

Decision Rule Statement of Rule 

IF THEN 

1 (F3=8∧ F8=6) Fault type is Series1 

2 (F2=8∧ F5=3∧ F6=3∧ F8=6) Fault type is Series2 

3 (F2=9∧ F3=6∧ F5=3∧ F6=3∧ F7=8) Fault type is Series3 

. 

. 

. 

. 

. 

. 

28 (F2=2∧ F3=0∧ F5=12∧ F6=11∧ F7=2) Fault type is Series28 

29 (F3=0∧ F5=12∧ F6=9∧ F7=1∧ F8=1) Fault type is Series29 

 

Table 6.21: Rule base generated for shunt fault localization 

Decision Rule Statement of Rule 

IF THEN 

1 (F1=27∧ F6=1∧ F7=28∧ F8=27) Fault type is Shunt1 

2 (F1=26∧ F6=1∧ F7=27∧ F8=26) Fault type is Shunt2 

3 (F1=25∧ F6=1∧ F7=26∧ F8=25) Fault type is Shunt3 

. 

. 

. 

. 

. 

. 

28 (F6=6∧F7=1) Fault type is Shunt28 

29 (F1=1∧ F6=7∧ F7=1∧ F8=1) Fault type is Shunt29 

 

Using the rules generated above the remaining data i.e. the testing set is tested for series 

and shunt fault localization respectively. The classification accuracy for series faults 

localization was found to be 96.5% i.e. 28 out of 29 fault cases were identified correctly 

and the accuracy class for shunt fault localization was about 100% i.e. all the cases were 

identified accurately. 

6.6 Classification Accuracy 

The main aim of using classification techniques in this work is to predict the type of fault 

and their location along the winding model with highest possible accuracy. Table 6.17 

given below provides a brief summary of the % accuracies obtained for localization of 

series and shunt short circuit faults based on mathematical morphology and Stockwell 

transform with a Rough set based classifier. 
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Table 6.22: Comparison table 

Features based on Mathematical morphology Features based on Stockwell transform 

Series Faults Series Faults 

Number of individual 

fault events 

Number of correctly 

identified events 

% 

accuracy 

Number of individual 

fault events 

Number of correctly 

identified events 

% 

accuracy 

29 25 86.2% 29 28 96.6% 

Shunt Faults Shunt Faults 

Number of individual 

fault events 

Number of correctly 

identified events 

% 

accuracy 

Number of individual 

fault events 

Number of correctly 

identified events 

% 

accuracy 

29 28 96.6% 29 29 100% 

 

It is clearly evident from the table that features based on Stockwell transform provides 

better classification accuracy as compared to features based on mathematical 

morphology. It is also to be noted that the presented work aims at localising faults within 

3.5% of the transformer winding which is highest possible acquired so far. 

6.7 Conclusion 

From the above results it can be concluded that Stockwell transform based features were 

better capable of identifying and localizing series and shunt short circuit faults that would 

develop along the length of a transformer as compared to Mathematical Morphology 

based features. Hence, the time frequency representation based signal processing tool i.e. 

S-transform, was better suitable for analysing impulse fault data due to their superiority 

in analysing nonstationary signals as compared to time domain approach.  
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Chapter 7: Conclusion & Future Scope 

 

 

7.1 Conclusion 

Impulse testing of transformers is one of the widely accepted tests for evaluation of 

insulation integrity of large power transformers. International and national standards such 

as IEC 60076-4, 2002 and IS 2026 (part-3) of 2009 provides details of the experimental 

procedure to conduct impulse test of a transformer and to draw inference from the 

experimental results. But, the established techniques only helps to identify a faulty 

transformer from a batch of several manufactured units, by comparison of voltage and 

current waveforms at full and reduced voltages. These techniques gives no physical 

insight into the type of fault that causes the error in observations nor any idea about the 

location of the fault within the insulation system. Moreover, the accuracy of identification 

of faults depended heavily on human observations and experience which may not always 

be equally reliable. 

In order to take into consideration the above mentioned facts researchers have used 

various Machine Learning techniques developed to identify not only a faulty transformer 

but also the type of faults and the approximate location of the fault within the insulation. 

One of the most significant implication of using such automated techniques is the 

decrease in dependence over human intervention.  With little or no human intervention 

the fault identification procedure can be made as accurate as possible, depending upon 

the algorithm developed, and also a higher degree of consistency can be maintained. In 

this present work also one of the machine learning technique known as classification is 

used to identify a faulty transformer, identify the type of fault existing within the 

insulation system and find their approximate position in the whole insulation system with 

as much high accuracy as possible. A classifier is developed based on Rough Set theory 

for the implication of the fault identification and localization methodology. Details into 

the theoretical and mathematical definition of Rough Set technique is studied. 

In order to decrease the burden over the developed classifier and to make the analysis of 

fault events easy two different feature extraction methodology is studied and applied. 

Advantages of pre-processing of acquired fault current data for extraction of significant 

features is studied. Two signal processing techniques namely Mathematical Morphology 
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and Stockwell transform are studied in details and significant features are extracted from 

them.  

Before implementing the developed algorithm for fault identification and localization it 

needs to trained and tested. To achieve this artificial series and shunt faults are simulated 

over an analog model constructed at the High Tension laboratory at Jadavpur University. 

The fault current waveforms are then acquired using a digital oscilloscope connected 

across a coaxial shunt which in turn is connected to the model.  

For fault localization purpose the winding is divided into 29 sections such that each 

section consists of three discs. The algorithm aims at identifying the fault in these 29 

sections i.e. within 3.5% of the winding. Out of the three acquired fault current data from 

each section two are used for training the developed classifier and one from each section 

is used to test. At last a comparison is made between the classifier with morphological 

features as one instance of feature extraction technique and another with features 

extracted from Stockwell transform of the fault current waveforms.  

For identification of series or shunt faults in both the cases, the numerical range of one of 

the un-normalised feature is used. In the case of localization of faults along the analog 

winding model it was found that: 

i. Based on Mathematical Morphological features of fault current waveforms the 

series faults were localized with 86.2% accuracy and the shunt faults with 96.6% 

accuracy. 

ii. With features based on Stockwell transform of the fault current waveforms the 

series faults are localized with 96.6% accuracy and the shunt faults are localized 

with 100% accuracy. 

Hence, it can be concluded that features based on Stockwell transform gives better 

performance in localizing various fault events as compared to features based on 

Mathematical Morphology. 

7.2 Future Scope 

The presented work aims at identifying and localizing series and shunt short circuit faults 

occurring along the length of a transformer winding. The developed algorithm is trained 

with artificial faults present at any one location at a given time. It remains to verify 

whether the algorithm could be modified for, trained and tested for multiple faults 

occurring simultaneously along the transformer winding. In such a case a rugged and 
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generalised algorithm is needed to be developed that could identify any number of faults 

along with their approximate locations with sufficient accuracy. Again, it could be said 

that the proposed classifier algorithm works for a particular rated transformer whose 

model is developed for experiments. An algorithm needs to be developed that could work 

with sufficient accuracy with any type of transformer with different ratings, size and 

makes and needs to be tested along with any type of fault occurrence conditions. 


