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Digital Control of Continuous Time Process 

A simple process control system may be represented as shown 

below. 

U(t)
Comparator

+

r(t)
_

m(t)

+
+

e(t)

b(t)

c(t)

output

Controller

(with final control

element)

Process

Transducer

(Measuring

element)

 

r(t) = Reference input or Demand or Set point 

c(t) = Output (Controlled variable) 

e(t) = Error signal or deviation 

m(t) = Manipulated variable 

U(t) = Load disturbance variable 

b(t) = Feedback variable. 

 In an automatic process control system, the demand is 

usually fixed, and the purpose of the control system is to minimize 

the effect of load disturbances on the value of the controlled 

variable. It is also known as regulator control. 

 The alternative control problem is the control of a system to 

follow a changing reference input. The load variables are constant, 

or changes are of little significance. Control of this kind (tracking 
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control) is generally a problem of servomechanism and is not as 

often encountered in process control. 

Example of an Automatic Process Control System:- 

A Simple heat-transfer system 

 The process element is a double pipe heat exchanger in 

which cold oil flowing through the inner pipe is heated by steam 

condensing in the jacket surrounding the inner pipe. 

r

Controller

bActuator

(motor)

Steam
Valve

m

c

Thermometer

Trap

Condensate

Cold oil

Heat

exchanger

Hot oil

 

(Temperature of cold oil may act as a variable.) 

Purpose of controller is to maintain a constant outlet oil 

temperature, as set by reference input. 

c = Outlet temperature of oil 

m = Steam pressure 

U = Inlet temperature of oil (Load disturbance). 

The motor (actuator) driven valve is the final control element 
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If the time constant of the measuring element is small compared to 

the time constant of the process, the block diagram representation 

of the automatic process control system shown at the beginning, 

can be represented by the unity feedback system shown below. 

+

_

+

+

U(t)

m(t)

c(t)

e(t)

r(t)

Controller

(with final control

element)

Process

 

(Response time of the measuring element is small w.r.t. smallest  

time constant of the process) 
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Conventional Analog Controllers 

A conventional analog controller can be a single term 

(proportional), or a two-term (Proportional-Integral or Proportional 

derivative) or a three-term (Proportional-Integral-Derivative) 

controller. 

Proportional Controller (P) 

Proportional

Controller

e m

 

Proportional control follows the law 

m  =  KP e+ mo 

mo = Manual-reset constant (bias). 

On most proportional controllers there is an adjusting 

knob or other mechanism for selecting the value of mo. 

KP = Proportional sensitivity i.e. change of manipulated 

variable caused by unit change of deviation. KP is also 

known as proportional gain. 

K
P

e m

m
o

Proportional Controller
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Proportional Integral (PI) Controller 

 PI control follows the law 

Proportional
actionIntegral

action

P
P o

i

K
m edt K e m

T
    

iT   Integral time or Integral time constant 

1

iT
  Reset rate. 

 

Proportional-Derivative (PD) Controller 

 The control law for the PD controller is given by 

P d P o

de
m K T K e m

dt
  

 

dT   Derivative time or derivative time constant. 

Proportional-Integral-Derivative (PID) Controller 

 PID control action is the additive combination of 

proportional action, integral action and derivative action. It is 

defined by the equation, 

 
P

P d P o

i

K de
m edt K T K e m

T dt
     
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Digital Control System 

 A digital controller receives the error signal in the form of a 

sequence of digital words.  

 The controller processes the data, and corresponding to each input 

word, it generates a control strategy in the form of a number (a 

digital word).  

 A   DAC  converts the numerical control strategy from a digital 

word to an analog actuating signal for the actuator of final control 

element.  

 There should however be a power amplifier stage in between, to 

drive the actuator of the final control element. 

 The digital controller can be a computer program or can also be 

in the form of a sequential digital circuit specially designed for 

this purpose. 

DACADC
Digital

Controller
Process

+

_
r(t)

e(t)
e

n
m

n
m(t) c(t)

 

 It is assumed that  DAC stage contains  necessary power 

amplifier and final control element. 

 Since the ADC can be represented by an impulse sampler and 

DAC by a zero-order-hold, the above block diagram 

representation can be simplified to the following. 
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Digital

Controller
Processz.o.h.

+

r(t)
_

e(t)
e

n m
n m(t) c(t)



 

 

 Alternatively,  ADC can also be placed in feedback path as 

shown below. 

Digital

Controller
Processz.o.h.

+
r

n

_

r(t)
e

n m
n m(t) c(t)



Digital Summer

c
n

 

Let,   PG s   Transfer function of C.T.  process. 

  hoG s   Transfer function of zero-order hold (z.o.h) 

  
1 se

s


 , where  is the sampling period. 

Then the transfer function of the z.o.h along with the process is  

        
1 s

ho P P

e
G s G s G s G s

s

 
   

 
 

  The z-transfer function of z.o.h along with the process is  

 
     

1 s

P

e
G z Z G s Z G s

s

  
      

  
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Let  cG z be the z-transfer function of the digital controller. 

Then the block diagram representation of the control system 

becomes (in z-domain), 

+

_

 R z  E z  M z  C z
 cG z  G z

 

 

The open loop z-transfer function of the control system is Gc(z) 

G(z). 

The closed loop z-transfer function of the control system is  

 

  
   

   1

c

c

G z G z
H z

G z G z



 

 

Transfer function of z.o.h. 

 

2 2

1 1 .....
21

1 .....
2

s

ho

s
s

e s
G s

s s











 
    

       
 

 

If  is small  2
s

e





 

A z.o.h introduces a time delay of approximately half the 

sampling period in a system. 
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DESIGN OF DIGITAL CONTROLLERS BY TRANSLATION OF 

ANALOG DESIGN:  

 As tuning rules for analog controllers are simple and 

known, we go for this approach. 

 

 In accordance with some performance specification the 

analog controller is first designed. Transform the analog controller 

to its digital counterpart by z-transform or directly by using 

difference equations. 

Proportional (P) Digital Controller 

P om K e M    
 bias or zero-error value of controller 

output or steady state value of controller 

output. 

At nth instant,  n P n om K e M   

K
P

M
o

m'
n

m
ne

n

 

 

 

Proportional control algorithm 

M
o
(z)

M'(z)

M(z)
E(z)  c

P

G z

K

 

 
 

 c P

M z
G z K

E z


   
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Proportional-Derivative (PD) Controller 

P d o

de
m K e T M

dt

 
   

 
 

At the nth instant, 
1

n

n n
n P n P d o

m

e e
m K e K T M






 
   

 
 

1

1 1 1

1

1 ,

d P d
n P n n o

d P d
n o n n o o P

T K T
m K e e M

T K T
m a e a e M a K a

 

 





 
    

 

  
         

  

 

a
1

a
o



e
n

e
n-1

M
o

m
n

m'
n

PD Controller  

   
     

   

1

1

1

1

    

or, 

o

c o

M z a E z a z E z

G z M z a a z





  

  
 

G
c
(z) E(z)

M'(z)

M
o
(z)

M(z)
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Proportional-Integral (PI) Controller 

1

1
      

or,  

t

P o

i o

P
n P n n o n o

i

n
n p n n

i i

m K e edt M
T

K
m K e I M m M

T

I
m K e e

T T

 

 
   

 

    

 
    

 



 

 

 

1 ,  using rectangular integration

 controller output at the nth instant

n n n

n

I I e

m

 

  

 

1
1 1

1 1

1 1

1 1 1 1

1 1 1 1

1

or, 1

or, 

     

n
n p n

i

n n P n n

i

n n P n P n

i

n o n n n

n o n n n o

I
m K e

T

m m K e e
T

m m K e K e
T

m a e a e b m

m a e a e b m M






 

 

 

 

 

 
   

 

  
       

  

 
     

 

   

   

 

 

The pictorial representation of the algorithm will be : 

(Structure using rectangular integration) 
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a
o

a
1



b
1

e
n

M
o

m'
n

m
n

m'
n-1

 

 

       

 
 

 

1 1

1 1

1

1

1

1

 z-transfer function will be 

 Controller z-transfer function 
1

o

o
c

M z a E z a z E z b M z z

M z a a z
G z

E z b z

 





    

 
  



 

G
c
(z)E(z)

M'(z)

M
o
(z)

M(z)

 

 

Using Trapezoidal Integration 

 1 1
2

n n n nI I e e


     

 1 1

1 1

1
1 1

2

       1
2 2

P P P
n P n n p n n n n

i i i

P P
P n n n

i i i

n
n P n P

i

K K K
m K e I K e I e e

T T T

K K
K e e I

T T T

I
m K e K

T





 

 


 

      

 
    

 

  
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1 1

1 1

1 1 1 1

1 1 1 1

1 1
2 2

or, 1 1
2 2

         

                           ...(1)

n n P n P n

i i

n P n P n n

i i

o n n n

n o n n n o

m m K e K e
T T

m K e K e m
T T

a e a e b m

m a e a e b m M

 

 

 

 

 

 

   
        

   

   
        

   

  

    

 

 

(structure representation remains same, but the coefficients 

are different) 

This form of algorithm shown in eqn.(1) is called position form of 

PI control algorithm. 

There  is another form of control algorithm, called velocity form of 

PI control or incremental form of PI control algorithm. This is 

given by:- 

 1 1 1 1n n n n n o n nm m m m m a e a e  
         

Since it gives the change in position w.r.t. the position in the 

previous sampling instant, it is called velocity form of algorithm. 

Velocity form can be used with actuators which have integral 

action behavior. One example can be stepper motor whose angular 

position changes in discrete steps since it acts on pulse. 

1 1 1

2 2 1 2

0,

1,  actual position 

2, actual position 

o o

o

o

n m

n m

n m



  

   

  

      

       
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Proportional-integral-derivative (PID) controller 

1

1
      

At the nth instant, ,  

t

P d o

i o

n n n
n P n d

i

de
m K e edt T M

T dt

I e e
m K e T

T  


 
    

 

  
      

  



 

1 1 2
1 1

n n n
n P n d

i

I e e
m K e T

T  
  

 

  
      

  
 

     1 1 1 1 2

1
2d

n n P n n n n n n n

i

T
m m K e e I I e e e

T 
    

 
         

 
 

Using rectangular integration 

 

   

1

1 1 1 2

1 2 1

1 1 2 2 1 1

1 1 2 2 1 1

     

     2

2
or, 1 1

or, 

n n n

d
n n P n n n n n n

i

d d P d
n P n P n n n

i

n o n n n n

n o n n n n o

I I e

T
m m K e e e e e e

T

T T K T
m K e K e e m

T

m a e a e a e b m

m a e a e a e b m M









  



   

  

  

  

 

 
        

 

   
          

  

    

     

 

Pictorial representation of the structure is  
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a
o

a
1





b
1

e
n

M
o

m'
n

m
n

m'
n-1

a
2



e
n-2

e
n-1

Controller

 

Controller Z.T.F. (ignoring bias)  

 
 

 

1 2

1 2

1

11

o
c

M z a a z a z
G z

E z b z

 



  
 


 

 

Using trapezoidal integration 

     

1 1

1 1 1 1 2

1 2 1

1 1 2 2 1 1

     
2 2

 2
2

2
or, 1 1

2 2

         

and    

n n n n

d
n n P n n n n n n n

i

d d P d
n P n P n n n

i i

o n n n n

n n o

I I e e

T
m m K e e e e e e e

T

T T K T
m K e K e e m

T T

a e a e a e b m

m m M

 





 

  

 

    

  

  

  

 
          

 

   
           

   

   

                                                                                ...(2)

 

(two integration methods give same structure, only coefficients 

are different). 
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This form of algorithm gives the position form of PID control 

algorithm. 

Velocity form of PID control algorithm will be  

 1 1 1 2 2n n n o n n nm m m a e a e a e         

 

Observation made during PI controller can also be used in PID 

controller. These velocity or position form of algorithms are called 

ideal PID algorithm or non-interactive PID algorithm  

 

Modified form of ideal PID algorithm 

The modified form can be employed for prevention of derivative 

kick. Here, set point r is considered as constant. In the ideal 

velocity form of algorithm en is replaced by r – cn . Then, the 

modified form is obtained as: 

     1 1 22 ,d
n P n n n n n n

i

T
m K c c r c c c c

T




  

 
        

 
 

employing rectangular integration.  

Employing trapezoidal integration, 

     1 1 1 22 2
2

d
n P n n n n n n n

i

T
m K c c r c c c c c

T




   

 
         

 
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Real PID algorithm 

 In continuous time form, the block diagram representation of 

a PID controller will be :- 

        

PK

P

i

K

sT

P dK T s

 E s  M s

 

Ideal continuous – time PID controller 

This is also known as non-interactive or separated-mode PID 

controller. 

 

 
1

1P d

i

M s
K sT

E s sT

  
   

 
 

For a practical controller using analog components, this structure 

should be preceded by a low-pass filter (in form of a first-order 

lag). 

         

PK

P

i

K

sT

P dK T s

 E s  M s
1

1 FsT

 

Real continuous-time PID controller 
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TF = time lag of the filter. 

The filter is required to cut off high frequency noises. 

 

 

  

 
 1 1 2

2

1 2

1 11
1   here 

1 1

P
d F

F i

M s K T s T sK
sT T T

E s sT sT T s T s




   
      

  
 

 

 
2

1

2 1

1 1
1

1

M s sT
K

E s sT sT

    
     

   
 

1K

1

i

K

sT

 E s

 M s

2

2

1

1

sT

sT





 D s

Derivative

Integral
 

Real or interactive PID controller 

T1 = Real integral time constant 

T2 = Real derivative time constant 

 = Rate amplitude constant. 

Let us first consider the derivative block. For the derivative block, 

in Laplace domain,       2 21 1D s sT sT E s    

In time domain,  2 2

d de
d T d e T

dt dt
    

In discrete form, 
 2 11

2

n nn n
n n

T e ed d
d T e

 


 

   
 

 

or, 2 2 2
1 1

2 2 2

        ...(1)n n n n

T T T
d d e e

T T T

 

     
 


  

  
 

Now, considering the PI block, using trapezoidal integration, we 

can finally write:- 
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1 1 1 1

1 1

1 1         ...(2)
2 2

n n n nm K d K d m
T T

 
 

   
        

   
 

The two coupled equations (1) and (2) describe the real PID 

controller algorithm. 

 

Real PID algorithm 

a
o

a
1



e
n

M
o

m
n

m'
n-1

a
2



d
n-1

e
n-1



a
3

d
n

a
4

m'
n

 

To reduce high frequency noise, we use a low-pass filter. This can 

be implemented as a first-order lag or cascade combination of 

several such lags. 

digital

controller
Z.O.H.

Process

analog

filter

digital

filter

c
r r

n

                              
1

1 fT s
 

                   (L.P. filter) 

Without this aliasing takes place and high 

frequency noises are folded back into the 

low frequency region. 
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Tuning of Single term, two term and three term controllers: 

Zieglar – Nichols (Z – N) tuning rules 

 There are 2 methods for tuning the controllers (at site).  

1. Loop tuning method or ultimate-cycle method (or limit cycle 

method or ultimate sensitivity method). 

PK Process

r(t) e(t) m(t)

K
u

c(t)
+

_

recorder

(for finding variation in c(t))

c(t)

T
u

time

 

The controller is set on proportional action only. Integral and 

derivative actions (if any) are rendered inoperative (Ti as large 

as possible and Td as small as possible). Starting with a small 

value of proportional gain, the gain is progressively increased 

in stages while creating small set point changes until a 

continuous oscillation of the controlled variable with fixed 

amplitude is produced. The proportional gain at this condition 

is the ultimate proportional gain Ku and corresponds to the 

maximum value for limiting stability. The period of 

continuous oscillation is also observed as the ultimate period 

Tu. The controller settings suggested by Zieglar and Nichols, 

based on these experimentally determined ultimate values, are 

given as: 
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Control 

action 

KP Ti Td 

P 

PI 

PID 

0.5Ku 

0.45Ku 

0.6Ku 

-- 

0.83Tu 

0.5Tu 

-- 

-- 

0.125Tu 

If the output does not exhibit sustained oscillations, for a 

values of KP, this method can not be applied. This method 

suffers from several disadvantages including the possibility of 

damage to the plant and also the practical difficulty of 

determining when exactly sustained oscillation is obtained. 

2. The second method of Z-N tuning rules is known as Process 

Reaction curve method (also known as transient response 

method) 

Process

c(t)

m(t)

c(t)  

Process reaction curve is the 

response of the process to a step 

input. This is an S-shaped curve, 

also called sigmoidal curve. This 

method  

is only applicable in cases where process reaction curves are 

S-shaped curves. 

2

1

1 sT
1

1

1 sT

 

Normal industrial processes are 

cascade connections of 1st order 

lags. Then the process  
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reaction curve can be obtained as an S-curve.  

c(t) single capacity

double capacity

3 lags in cascade

 

If there is only one 1st order lag, the 

curve is an exponential curve.  This 

method uses the step response of the 

open-loop system (excluding the 

controller) to characterize the system 

dynamics. 

Step response is often referred to as the reaction curve of the 

process. 

With the controller disconnected, the input to the process is 

subjected to a unit step change and the monitoring system of 

the controller is used to record the reaction curve. If the 

process involves neither integrator nor complex conjugate 

poles, the reaction curve may look like an S-shaped curve. If 

the response does not exhibit an S-shaped feature, this method 

can not be applied. 

Process
m(t) c(t)

c(t) K

S-shaped

Max. slope line

time

T

L

point of inflection

K= steady value

max. slope = R'

Controller

actuator F.C.E. Process

c(t)

r(t)
m(t)

to recorder

+

_
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L = apparent dead time or apparent delay. 

We can approximate the process by the first order system T.F. 

1

LsKe

sT






 

         Then the controller settings suggested by Z-N rules are: 

 Control 

action 

KP Ti Td 

P 1

R L
 -- -- 

PI 0.9

R L
 3.32L -- 

PID 1.2

R L
 2L 

2

L
 

 

Application of Z-N tuning rules to digital controllers. 

Choice of sampling period 

 For data obtained from process reaction curve :- 

0.05 0.25L L    

 For data obtained from limit cycling :- 0.01 0.05u uT T    

Controller

algorithm
ProcessZOH

+

_
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Application of process reaction curve method to digital 

controller with ideal algorithm 

To take into account the time delay of approximately 
2

  

introduced by Z.O.H., the modified tuning rules for the digital 

controller are obtained by replacing L by 
2

L


  in the standard Z-N 

rules. 

 

 

Control 

action 

KP Ti Td 

P 1

2
R L

 
  
 

 -- -- 

PI 0.9

2
R L

 
  
 

 3.32
2

L
 

 
 

 -- 

PID 1.2

2
R L

 
  
 

 2
2

L
 

 
 

 
2

2

L




 

For modified ideal algorithm (used for preventing set-point kick), 

with rectangular integration:- 

     1 1 22d
n P n n n n n n

i

T
m K c c r c c c c

T




  

 
        

 
. 

Takahashi carried out a number of experiments with different 

sampling period and proposed the following rules (for preventing 

set-point kick): 
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Loop tuning method Process reaction curve method 

0.6 0.6

3
;

1.2 40

P u u

u

P u u u
i d

u P

K K K
T

K T K T
T T

K K


 

 

 
  2

2

1.2 0.3

2

1
1.67 ;

2 2

P

i P d

P

K
R L

R L

T K L R T
R K



 



 
   

  
 

 
   

 

 

For 0  , the settings converge to those prescribed by standard Z-N 

rules. 
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Designing digital controllers by direct synthesis method 

D(z)
Process

G
P
(s)

Z.O.H.

G
ZOH

(s)

+

_

R(s)

R(z)
E(z)

M(z) C(s)

Controller

G(s)
C(z)

 

 
1 ss

ZOH

e
G s

s




  

Designing a digital controller by direct synthesis method consists 

of determing the controller T.F., D(z), that is required to produce a 

specified closed loop response. The overall CLTF H(z) is so 

chosen that the system has a desirable transient response for a 

specific input with a time constant which is appropriate to the 

response time of the plant. 

 The direct synthesis approach assumes that the process can 

be represented by low order models. 

     

      

   

1
       T.F. are properties of

discrete time systems

                  

        

s

ZOH P
s

ZOH P

Z G s G z G z
e

G z Z G s Z G s z
s

G s G s



 
  

       
    

 

  

For the case shown below:- 

G
P
(s)G

ZOH
(s)

 

Then        ZOH p ZOH pZ G s G s G z G z     
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The overall C.L.T.F.  
 

 

   

   1

C s D z G z
H z z

R s D z G z

 
   

 
 

Hence D(z) can be found as :  
 

 

 

1
.

1

H z
D z

G z H z


  

 

The equation can be readily implemented but care must be taken in 

choosing H(z). The design calls for a D(z) which will cancel the 

process effects and add whatever is necessary to produce the 

desired H(z). 

First order lag plus dead-time:- 

    L = apparent dead time,  = time constant, K= steady state gain
1

Ls

P

Ke
G s

s






 


 

Cascaded lag (or 2nd order lag) plus dead time:- 

 
  1 21 1

Ls

P

Ke
G s

s s 




 

 

 

 

 

T.F. G(z) for different process models: 

 For first order lag plus dead-time:- 

       

 
 

 

   

1
.       sampling period
1

1 1
        1

1 1

        
1 1

s

s

s

s s

sT Ls

ZOH P s

sT Ls

sT Ls

s L T s L TLs Ls

e Ke
G z Z G s G s Z T

s s

e e
KZ KZ e e

s s s s

e e e e
KZ

s s
s s





 

 

 

 

 

    

 
        

    
            

   
   

     
  

   

 
 
 
 
  
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Let dead time L be an integral multiple of sampling period Ts, i.e., 

say, L = NTs, where N is a positive integer. If L is not an integral 

multiple of Ts, then N is the nearest integer number of sampling 

periods in L. 

 
   

  

 

1 1

1 1
11

1

1
1

1

1

1 1 11

1 1
        

1 1

                                 

1

        

1

ss

s

s

s

N NN N

TT

NN

T

T
N

T

z z z z
G z K

z z e ze z

K z z
z e z

K e z

e z









    

 
 

 


 


 




 
   

     
         

 
   

   

 
 

 






 



 

Process described by second order lag plus dead time:- 

 
  

 
  

 

   

1 2

1 2 1 2

11

1 2

1 1

11
    Substituting 

1 1 1 1

                                                        

        

1 1

s
s s

s s

sTsT sNTLs

s

N

sT T

ee Ke e
G z Z KZ L NT

s s s s s s

K b b z z

e z e z 

   

 

 

 
 

  
    

       



 
  

 


 
 

 

where,  
1 2

1 2
1

2 1

1

s sT T

e e
b

  

 

 


 


 

and 
2 1

2 1

1 1

1 2
2

2 1

s s

s

T T

T e e
b e

 
   

 

 
 

  
  


 

 

Constraint of Causality 
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For the digital controller to be physically realizable, causality 

should be ensured. That is, the controller output mn at any instant n 

should depend only on the present and the past values of the input 

error sequence i.e., 1 2, ,n n ne e e   etc. and not on future values of input 

i.e., 1 2,n ne e   etc. 

 If we get the Z.T.F of a controller of the form 

 
 

 
 

2

1 2

2

1 2

....
       j and k are positive integers

....

k

o k

j

o j

M z b b z b z b z
D z

E z a a z a z a z

   
 

   
 

For causality, the necessary condition is j k . 

This means that, for a process which has a dead time, represented 

by z-N , the desired C.L.T.F., H(z), must also include the same deal 

time. 

 

Dahlin’s algorithm 

D(z) G
P
(s)

+

_

r

r
n

E(z) M(Z) C(s)

G(z)C(z)

G
ZOH

(s)

1 ssT
e

s




 

The desired C.L.T.F. is considered to be that of a first order lag 

with dead time.  

  
dead time =L

               1
time const=1

Ls Lse e
H s

ss




 

   
  
    
 

 



                                                                                          

Page 30 of 34 

 

In the z-domain, the C.L.T.F. (with Z.O.H. included to ensure 

physical realizability of the controller) is given by 

  
  1

1

1

1

s

s

T N

T

e z
H z

e z





  

 





 

Here  is used as a tuning parameter. By adjusting , we can tune 

the controller. 
1




 . For large , response of C.L. system to a 

particular set point change, will be faster. For small , we will 

have a sluggish response for the overall system. Hence, for large , 

we have tight control. 

The closed loop time constant  1


 is normally chosen as 2 to 3 

times as fast as the open loop value (i.e., the process time constant) 

 z-transfer function of the controller is : 

 

 
 

 

 
   

 
 

 
 

 

 

1

1 1

1

1

11

1 1

s

s s

T N

T T N

H z
D z G z Z G s

G z H z

e z M z
D z

G z E ze z e z



 

  

   

      


  

   
 

 

(putting L = NTs) 

[Note:  
 

 
. N

B z
G z z

A z

   representing dead time. To nullify it we 

have included dead time in H(z) in terms of z-N-1 Z.O.H also 

introduces a dead time. This will go up in the numerator and have 

positive powers of z. It must be compensated for physical 

realizability. Now, with the process dead time will be = the L in 
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 
Lse

H z
s









. This L≥ dead time of the process, otherwise physical 

realizability is lost.] 

 

Problem: 

A certain thermal process can be approximated by a first order lag 

+ dead time model. The steady state gain is 0.49. The time constant 

is 414 sec. and the dead time is 16 sec. Design a digital controller 

for this process following Dahlin’s algorithm. Assume the 

sampling period of 8 secs. 

  ; 0.49, 414sec. and 16sec.
1

Ls

P

Ke
G s K L

s






   


 

     
1

; 8sec.
1

sST Ls

ZOH P s

e Ke
G s G s G s T

s s

 
  


 

     

1

1

1

1

s

s

T
N

ZOH P T

K e z

G z Z G s G s

e z






 




 
 

    
 
 

 

 

16
  or  2

8
s

s

L
L NT N

T
     
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 
 

 

   
 
 

 

0.019 3 3

10.019 1

1

1

0.49 1 0.009

1 0.981

1
 C.L.T.F. with Z.O.H

1

1
2.5 assumed; should be between 2 and 3

2.5

414
   165.6sec.; 0.006 / sec.

2.5

s

s

T N

T

e z z
G z

ze z

e z
H z

e z











  

 

  

 


  




  





  

 

 
 
 

 
 

 

 

 

 

 

         

0.048 3 3

10.048 1

1 3

3 1 3

1

1 3

1 3 1

1 0.047

1 0.95321

1 1 0.98 0.047
.

0.009 1 .0953 0.0471

5.22 1 0.98
         ;

1 0.953 0.047

0.953 0.047 5.22 0.98

e z z
H z

ze z

H Z z z
D z

G Z z z zH Z

zM z

E z z z

M z z M z z M z E z z E z

  

 

 

  



 

  


  




 

   


 

 

      

 

Controller output at the nth instant 

:  1 3 10.953 0.047 5.22 0.98n n n n nm m m e e  
      

1 0.2
#1. 1.2,

60
u

u

K
T

   

PI controller:  1 11 1
2 2

s s
n P n P n n

i i

T T
m K e K e m

T T
 

   
        

   
 

or 1 1

6 6
0.54 1 0.54 1

2 249 2 249
n n n nm e e m 

   
        

    
 

60 60
0.02 0.02 6sec.; 0.83 0.83 249sec., 0.45 1.2 .054

0.2 0.2
s u i u PT T T T K

 
           

 
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       

 
 

 

1 1

1 1

1

1

0.546 0.5335

0.546 0.5335

0.546 0.5335

1

n n n nm e e m

M z E z z E z z M z

M z z
D z

E z z

 

 





    

   


  



 

PID controller 

1 2 1

1

2

0.6 0.72; 0.5 150; 0.125 0.125 300 37.5

2
1 1

2 2

6 37.5
0.72 1 5.2344

2 150 6

6 2 37.5
0.72 1 9.7056

2 150 6

0.72

u P i u d u

s d s d P d
n P n P n n n

i s i s s

o

K K T T T T

T T T T K T
m K e K e e m

T T T T T

a

a

a

  

       

   
           

   

 
    

 

 
      

 


37.5

4.5
6


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2 1

2 1
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2 1

1 1
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2

2 1
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0.3 0.3

0.132 0

1

1 1

1

0.3
0.132, 0.377, 1.24,   1
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s s
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K L NT N
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 
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 

 

 

 

 

 

 
 

 

  
  

 

 



  
   

  
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 





 



      

 


     

.377

.3 0.3
1 1

.377 .1320.3
.377 .132

2

1 1 2 31 2

1 2 1 2

3.4428;
0.377 0.132

.132 .377

.377 .132

   0.13107

0.9633 0.0366
N N

e e
P e

P P
H z z z z z

P P P P

  
  

 

     





 


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 

 

 

 
 

  

 
 

 

 

   
 

0.3

.377

1 2 2 3

0.3 1 1

1 1.132

1 1 2 3

2 3 2

1.24 3.4428 0.13107 4.269 0.1625

1 0.1032 1 0.4512
1 1

1 0.103 1 0.4512 0.9633 0.03661
.
1 4.269 0.1625 1 0.9633 0.03366

z z z z
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z z
e z e z

z z z zH z
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
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 
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 

   

  

 
 

    
   

  

  
  

    
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  

   
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2 1 1 2 3

1 2 3

2 1 1 2 3

1 2 31
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