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ADAPTIVE CONTROL 

What is Adaptive Control? 

An ‘Adaptive Control System’ is one in which the controller parameters are adjusted 

automatically in such a way as to compensate for variations in the characteristics of the 

process it controls. 

The various types of adaptive control systems differ only in the way the controller 

parameters are adjusted. 

 

Why Adaptive Control? 

Adaptive control of industrial processes are necessary for the following reasons. 

1. Most of the industrial processes are non-stationary (i.e. their characteristics 

change with time). Typical example is the decay of the catalyst activity in a 

chemical reactor. 

These changes lead to a deterioration in the performance of the linear controller, 

which was designed using some nominal values of the process parameters, thus 

requiring adaptations of the controller parameters. 

2. Most industrial processes are non linear. Therefore the linearized models that are 

used to design linear controllers depend on the particular steady state (around 

which the process is linearized). 

Example : Liquid flow system 

  

Basic Structures of Adaptive Control System 

Three main basic control system structures relevant to the design of adaptive control 

systems are: 

 

 Parameter Scheduling Control (PSC) or Gain Scheduling Control. 

 Model Reference Adaptive Control (MRAC). 

 Self-Tuning Regulators (STR) or Model Identification Adaptive Systems (MIAS). 
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Parameter Scheduling Control (PSC) or Gain Scheduling Control 
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In many control problems it is possible to find auxiliary process variables (other than the 

plant outputs used for feedback) that correlate well with the changes in process dynamics. 

From the measurements of these auxiliary variables, the controller parameters can then  

be adjusted in a predetermined manner as functions of the auxiliary variables, to 

compensate for the changes in process conditions. This strategy has been originally 

applied to the adaptation of controller gain factors, and thus has been referred to as “Gain 

Scheduling”. 

The advantage of parameter scheduling is that the controller parameters can be changed 

quickly (as quickly as the auxiliary measurement) in response to changes in process 

dynamics. It is convenient especially if the process dynamics depend in a well known 

fashion on a relatively few easily measurable variables. 

The disadvantage of gain scheduling is that it is an open-loop adaptation scheme with no 

real learning or intelligence. Moreover, for a large complex system, the extent of design 

required for its implementation can be enormous. 

 

Example:  Gain Scheduling 
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 [The technique is called gain scheduling because, usually, the steady state gain of the 

controller is scheduled]. 

In the control loop shown above, the control valve or another of its components may 

exhibit non-linear character. The gain of the non-linear component will then depend on 

the current steady state. Suppose that we want to keep the total gain of the overall system 

constant, i.e., 

 overall c v p mK = K K K K = Constant  

Then, as the gain Kv of the non-linear valve changes, the gain of the controller should 

change as follows: 

 
Constant

c

p m v

K
K K K

      (i) 

Assume that the gain Kp and Km are known exactly. Moreover the characteristics of the 

control valve are known well, then its gain Kv can be calculated from the stem position 

and by measuring the stem position (auxiliary measurement) Kv can be computed. Then 

equation (i) gives the adaptation mechanism of this simple gain scheduling adaptive 

controller. The resulting structure is given below. 
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[Here the control valve gain Kv is assumed to be a non-linear one. In the figure the stem 

position can be measured using a position transducer e.g. LVDT]. 
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Model Reference Adaptive System (MRAS) 

Model Reference Adaptive Systems (MRAS) are used to obtain a closed loop response 

close to that of a given reference model, for given input signal. 

A block diagram representation of the Model Reference Adaptive Control (MRAC) 

system is shown next. 
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The MRAS can be thought of as having two loops:- an inner loop which represents the 

basic control system consisting of the process and the controller, and an outer loop 

(adaptation loop) that adjusts the parameters of the controller in such a way as to drive 

the error (em) between the model output (cm) and the process output (c) to zero. 

The key problem in the scheme is to obtain an adjustment mechanism that tunes the 

adjustable controller parameters (represented by vector i ) to drive the error em = cm – c 

to zero. For this purpose, performance criteria are chosen which are suited for further 

analytical use. Minimizing the performance criteria and possible additional requirements 

then result in the adaptation law. 

 

MRAC System Employing “Local Parameter Optimization” Through Gradient 

Method 

This MRAC method assumes that the to be tuned parameters i  ( i = 1,2,…..,p) of the 

controller are already close to the correct values. If a simple gradient method is used for 
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optimization, then each parameter i  is changed proportionally to the performance 

criterion I. 

That is, 

 i i
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Ki are positive constants called adaptation gain,  which have to be appropriately chosen. 

From equation (1) it follows that  
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If the performance criterion ISE is considered for minimization, then, 
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 is known as the parameter sensitivity  of the process output signal. 

Hence the rate of change of controller parameter i  with time is proportional to the 

product of the model error signal and the parameter sensitivity of the output signal. 

Equation (3) is referred to as the “MIT-rule”. An MRAS based on this rule was originally 

proposed by H.P. Whitaker of MIT, for adaptive control of air-crafts. 

Integration of both sides of equation (3) leads to  
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Self Tuning Regulator (STR) or Model Identification Adaptive System (MIAS) 

The model identification adaptive systems (MIAS) determine a process model using 

measured input and output signals and identification algorithm. From the estimates of the 

process model parameters, controller parameters are calculated in the same way as if 

these estimated parameters were the two parameters, in accordance with a controller 

design method which has been preprogrammed. 

The block diagram representation of a control system employing self-tuning controller 

(STC) is shown below. 
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Fig.: Block diagram of a self-tuning regulator. 

 

The MIAS consists of two loops: an inner loop consisting of the process and a 

conventional controller, but with varying parameters, and an outer loop containing an 

identifier and a design box (representing an on-line solution to a design problem for a 

system with known parameters) which adjust the controller parameters. 

 

Identification of a Process Model 

Let us consider a process that is poorly known. This may mean that the physical or 

chemical phenomena in the process are poorly understood or that the process parameters 

are imprecisely known. In the first case the model order is not known; the second case is 

just a parameter estimation problem with known model order. 

Let the process be described by the following linear difference equation of order K. 

1 1 2 2 1 1 2 2...... ....n n n k n k n n k n kc a c a c a c b m b m b m              (1) 
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where ci and mi are the process output and input values at the ith sampling instant and 

 1....ja j K and  1....jb j K are constant but imprecisely known parameters. Order K 

of the model may or may not be known. 

A prespecified change in the input to the process is introduced. Let ˆ
nm  and ˆ

nc  be the 

measured values of the input and output variables at nth sampling instant with n = 

0,1,2,…,N. 

The error between the process output values computed from the postulated model 

[equation (1)] and the measured values, is  

 1 1 2 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ...... ....n n n n n n k n k n n k n kc c c a c a c a c bm b m b m                    (2) 

Best estimate of the process parameters is given by the solution of the following 

Least Squares Problem. 

Minimize the mean-square error 

2
2 2
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One of the numerical methods for solution of this minimization problem is based on the 

solution of the following set of algebraic equations (necessary conditions to be satisfied 

at the point where P is a minimum): 

 
1 2 1 2
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    (4) 

If, for the determined values of the process parameters, the value of P is considerably 

larger than the theoretically possible minimum value of zero, it can be concluded that the 

assumed model order is unacceptably low, and that a higher order model should be used. 

Hence the steps that constitute the experimental identification of a process model, can be 

summarized as: 

1. Postulate a model for the process. As a starting point, one can employ first or 

second order models with or without dead time. 

2. Introduce a Known input change to the process and record its output. 

However, normal operating data for the values of input and output variables can 

also be used. 

3. Estimate the best values of the unknown process parameters from the record 

of the input and output by the method of least squares. 
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