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Basics of Rough Set Theory and its Application in 
Decision Rule Generation  
  1 Introduction 
 
Rough set theory was developed by Zdzislaw Pawlak in the early 1980's. It deals with the analysis of data tables. 
The data can be acquired from measurements or from human experts. The main goal of the rough set analysis is to 
synthesize approximation of concepts from the acquired data. The term classification concerns any context in which 
some decision is taken or a forecast is made on the basis of currently available knowledge or information. A 
classification algorithm is an algorithm which permits us to repeatedly make a forecast or to take a decision on the 
basis of accumulated knowledge in new situations. In this tutorial basic concepts of Rough Set Theory (RST) and 
how it can be applied to classify data patterns through decision rule generation are explained. 
 
2 Rough Sets 
 
2.1 Information System 
A data set is represented as a table, where each row represents a case, an event or simply an object. Every column 
represents an attribute (a variable, an observation, a property, etc.) that can be measured for each object. The 
attribute may also be supplied by a human expert or user. This table is called an information system. Mathematically, 
an information system can be represented as,  
 

),,,( fVQUT                 (1) 
 
Here, U is the finite set of objects and Q is the set of attributes. 


Qq
qVV


 , where Vq is the domain of the values of q and f denotes decision function as, VQUf : . For 

example, a decision table is given in Table 1. It is evident from the table that there are seven cases or objects, two 
condition attributes (Degree and Experience) and one decision attribute (Accept or Reject). 
 
It can be easily observed that cases x3 and x4 as well as x5 and x7 are having exactly the same values of conditions, 
but the first pair (i.e. x3 and x4) has a different outcome (different value of the decision attribute) while the second 
pair (i.e. x5 and x6) has the same outcome. 
 
One can derive a rule from the information table given in the above form as, “IF Degree is MBA and Experience is > 
5 yrs THEN Accept”. But it should be noted that among all such constructed rules, minimality and consistency of the 
rule set are important issues. These are illustrated in the subsequent sections. 
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Table 1. Example of a typical Decision Table of Hiring people  
Objects Degree  Experience  Decision 

x1 MBA > 5 yrs Accept 
x2 MBA Nil Reject 
x3 BE 1 yr Reject 
x4 BE 1 yr Accept 
x5 ME 2-5 yrs Reject 
x6 MBA 2-5 yrs Accept 
x7 ME 2-5 yrs Reject 

 
2.2 Indiscernibility Relation 
In RST, for different attributes, objects are called indiscernible, i.e. similar, if they are characterized by the same 
information. If QP   and Uxx ji , , then xi and xj are indiscernible wrt the set of attributes P, if  

Pqqxfqxf ji  ),,(),(               (2) 
An elementary set is the set of all indiscernible objects. So, for QP  , an equivalence relation on U, called P-
indiscernibility relation is given by, 
IP = )},(),(|),{( 2 qxfqxfPqUxx jiji             (3) 
 
Using Table 1 it can be illustrated that how a decision table defines an indiscernibility relation. Let, P={Degree}. 
So, objects x1, x2 and x6 are indiscernible with respect to the attribute “Degree”, because all of these three objects 
are having a value, “MBA”, for attribute set P. Similarly, objects x3 and x4 are also indiscernible with P. In this 
case, both of these objects are having value “BE”. So, the relation IP defines three partitions of the universe, U (i.e. 
set of all cases),   
 

IP = { {x1, x2, x6} , {x3, x4} , {x5, x7} }. 
 

It can easily be understood that, if P= {Experience}, then,  
 

IP = { {x1},{x2}, { x3, x4 } , {x5, x6, x7} }. 
 

Similarly, for P= {Degree, Experience},  
 

IP = { { x1 },{ x2 }, { x3, x4 } , { x5, x7 }, { x6 } }. 
 
 
2.3 Set Approximation 
As stated earlier that an equivalence relation induces a partitioning of the universe (the set of all cases in the 
example). These partitions can be used to build new subsets of the universe. The equivalence classes of the partition 
induced by the P-indiscernibility relation are called information granules. 
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It may happen, however, that a concept such as “Decision” cannot be determined or defined in a crisp manner. For 
instance, the set of objects with a “Decision”= “Accept” cannot be defined crisply using the attributes available in 
Table 1. The “problematic" objects are x3 and x4. In other words, it is not possible to induce a crisp (precise) 
description of these objects or cases from the table, because they are having same values for the condition attribute 
but different values for decision attribute. Here the notion of Rough Set emerges. Although these cases cannot be 
defined crisply, but it is possible to delineate the cases that certainly have a positive decision (i.e. Accept), or those 
certainly do not have a positive decision (i.e. Reject) and the objects that belong to a boundary between the certain 
cases. If this boundary is non-empty, the set is rough. These notions are formally expressed as follows.  
 
For any rough set Y, YP and YP  are called P-lower and P-upper approximation of Y and defined as,  
 

})(|{ YxIYxYP P                 (4) 
and 

 
})(|{  YxIYxYP P               (5) 

 
respectively. The objects in YP  can be with certainty classified as members of Y on the basis of knowledge in P, 
while the objects in YP  can only be classified as possible members of Y on the basis of knowledge in P. The 
set, YPYPYBNP )( , is called the P-boundary region of Y, and thus consists of those objects that cannot be 
decisively classified into Y on the basis of knowledge or information available in P. The set, YPU  , is called the 
P-outside region of Y and consists of those objects which can be classified with certainty as not belonging to Y (on 
the basis of knowledge in P). A set is said to be rough or crisp if the boundary region is non-empty or empty 
respectively.  
It is worth mentioning here that, the letter P refers to the subset P of the attributes Q (i.e. QP   ). If another 
subset were chosen, e.g. QA , the corresponding names of the relations would have been A-boundary region, A-
lower- and A-upper approximations.  
 
A pictorial representation of such concepts is given in Figure 1. More precisely, for the example considered in this 
tutorial, the approximations of the set of “Accepted” objects on the basis of the two conditional attributes (i.e. 
Degree and Experience) are shown in Figure 2.  
 
Here, P = {Degree, Experience} and Y is the set of “Accepted” objects or cases. It is evident from the Table 1 
that, YP , i.e. set of objects which can certainly be classified as the members of the set of  Y  (i.e. “Accepted” objects 
) is { x1, x6 }. Similarly, YP , i.e. set of objects which can only be classified as possible members of Y on the basis of 
knowledge in P is { {x1}, {x6}, {x3, x4} }. YPYPYBN P )( = {{x3, x4}}. The P-outside region of Y, 
i.e. YPU  = { { x2 } , {x5, x7} }. 
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Figure 1. Schematic of set approximation concepts. 

 

 
Figure 2. Set approximations of the decision table given in Table 1.  

2.4 Computation of Reduct and Core 
In the previous section it is observed that one way of reducing data table is to identify equivalence classes, i.e. 
objects that are indiscernible using the available attributes. The data table is reduced since only one element of the 
equivalence class is needed to represent the entire class. The other dimension in reduction is to keep only those 
attributes that preserve the indiscernibility relation and, consequently, set approximation. The rejected attributes are 
redundant since their removal does not worsen the classification. Thus minimal sufficient subsets of attributes which 
keep all the information intact and remove the superfluous attributes are called Reduct or )(PRED , where, QP  . 
The CORE is the set of relations occurring in every Reduct, i.e. )()( PREDPCORE  . One of the unique 
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aspects of the RST approach is the attribute reduction of knowledge with Reducts and Core. From the Core and 
Reducts one can generate the decision rules. Usually these rules are considered in “IF…THEN” formats.  
 
To explain these aspects another decision table is considered, shown as Table 2. Here, the decision table shows fault 
diagnosis of distribution feeder. For a given subset QP  , an attribute Pq  is dispensable in P if and only if, 

}){( qPP II  ; otherwise q is indispensable. If every element in P is indispensable then P is called independent 
otherwise dependent. Let QP   and QD   have equivalence relations in U. The P-positive region of D is 
indicated as,  
 

YPDPOS
DIY

P 


)(               (6) 
In other words, it denotes the set of elements that can correctly be classified into D-elementary sets obtained from ID 
using the knowledge described by IP. If Pq  and  
 

)()( }){( DPOSDPOS qPP                (7) 
 

then, q is D-dispensable in P, otherwise q is D-indispensable in P. If the set of attributes G ( PG  ) is a D-
independent in P and 
 

)()( DPOSDPOS PG  ,               (8) 
 
then, G is called D-reduct of P or in general Reduct of P. 
 
For example, as shown in Table 2, let, P= {“weather”, “cause of fault”, “type of fault”}, D={“faulty equipment”}, 
and thus IP={1, 4}, {2}, {3}, and {5}. Similarly, ID ={1, 2} and {3, 4, 5}, the POSP(D) = {2, 3, 5}. Removing the 
attribute “weather”, POS(P-{weather})(D)={2,5} ≠ POSP(D). So, the attribute “weather” is D-indispensable in P. 
Removing the attribute “cause of fault”, POS(P-{cause of fault})(D)={2,3,5}=POSP(D). So, the attribute “cause of fault” is 
D-dispensable in P. Similarly, the attribute “type of fault” is D-indispensable in P. Thus, the set {“weather”, “type 
of fault”} is the D-reduct of P. So, the simplified form of Table 2 is shown in Table 3. ‘-’ indicates “don’t care” (i.e. 
dispensable) condition. 
 

Table 2. Decision table for fault diagnosis of distribution feeder 
Objects Condition Attributes Decision 

Attribute 
 Weather Cause of Fault Type of Fault Faulty 

Equipment 
1 0 1 1 0 
2 1 0 0 0 
3 1 1 1 1 
4 0 1 1 1 
5 1 0 1 1 

 “0” = Rain 
“1” = 

Cloudy 
“0” =Collided 

by outside 
object 

“1” = Natural 
degradation 

“0”= Breakdown 
 type of outage  

“1”= Burn-out type 
of outage caused by 

faulty current 

“0”=Cable 
outage 

“1”= Outage of 
feeder fuse 

switch 
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Table 3. Reduced form of Table 2  

Objects Condition Attributes Decision 
Attribute 

 Weather Cause of 
Fault 

Type of 
Fault 

Faulty 
Equipment 

1 0 - 1 0 
2 1 - 0 0 
3 1 - 1 1 
4 0 - 1 1 
5 1 - 1 1 

 
Furthermore, a reduct can be transformed into a decision rule in which partial information of the indispensable 
condition attributes is used to derive specific knowledge of the output. In particular, objects 3 and 5 belong to the 
same elementary set with respect to the attributes “weather” and “type of fault” and their decision attribute values 
are the same (i.e. the value is 1). Thus, objects 3 and 5 can be precisely classified as an “outage of the feeder fuse 
switch” using the attributes “weather” and “type of fault”. In other words, it can be said that, attribute values, 
(Weather=1  Type of Fault=1) are the characteristic for decision class value =1 (i.e. “outage of the feeder fuse 
switch”). ‘’ and ‘’ are logical “AND” and “OR” operators respectively. This is called a reduct. The value of the 
attribute “cause of fault”, is not included in the reduct (i.e. it is dispensable). Intersections of these reduct values for 
each of the decision class (i.e. Cause of fault =1 or 0) will give the Core for the respective class. Here Core and 
Reduct values are same, because the condition attribute values for case 3 and 4 are same. Case 4 is not considered 
here, due to the reason explained later.   
 
Then, the derived rules can be transformed into “IF condition is satisfied THEN outcome is this” formats. For 
example, the above Reduct and Core can be transformed into a decision rule: 
 
IF  
the value of attribute “weather”= 1 (i.e. cloudy)  
AND 
the value of attribute “type of fault”= 1 (i.e. burn-out type of outage caused by fault current) 
THEN  the value of decision attribute “faulty equipment” =1 (i.e. outage of feeder fuse switch) 
 
However, objects 1 and 4 belong to the same elementary set with respect to the attributes “weather” and “type of 
fault”, yet their decision values (i.e. faulty equipment) are not the same. Thus, given the attributes “weather” and 
“type of fault”, objects 1 and 4 cannot be properly classified as cable outage or outage of the feeder fuse switch. 
Objects 1 and 4 cannot be further classified without additional information. 
 
To evaluate the relative goodness of the decision rules, two parameters are used – strength and coverage. Strength 
of a rule may be described as the fraction of total cases satisfying the rule considering all decision classes and 
coverage is the fraction of total cases satisfying the rule considering each decision class. Higher the value for 
strength and coverage higher will be the goodness or weightage of the rule. 
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 3 Discretization of Decision Table 
 
If a decision table is having a large number of attribute values i.e. card(Va) is very high for some Qa , then there 
is a very low chance that a new object will  be properly classified by matching its attribute value vector with the 
rows of the table. Here, card() means cardinality operator, which means “number of elements of a set”. Therefore, 
discretization of the decision table is required for large real-valued decision table to achieve higher quality of 
classification. Discretization of a data table indicates some partitioning of the attribute values.  
 
Let us assume a decision table in the form,  
 

}){,( dAUT                 (9) 
 

Here, U = { x1, x2, x3,…, xn }, i.e. set of all objects; A is the set of condition attributes and { d } the set of decision 
attribute. It is assumed that  ),[ aaa rlV  for any Aa .  is the set of all real numbers. Let aR a 
partition on aV for Aa  into subintervals as, 
 

)},[,...),,[),,{[ 12110
a
k

a
k

aaaa
a aa ccccccR                      (10) 

 
for some integer  κ, where, 
 

and 
 

),[...),[),[ 12110
a
k

a
k

aaaa
a aa ccccccV                     (12) 

 
Any  aR  is uniquely defined by the set },...,,,{ 321

a
k

aaa
a accccC   called set of cuts on aV . The set of cuts is 

empty if card(Ra)=1. Then any global family of cuts R can be defined as, 
 

            (13) 
Any pair ),( ca R is called a cut on aV . To illustrate this, Figure 3 shows discretization of a real line with a set 
of cuts. In essence, after discretization of a decision table with real valued attributes, a modified decision table is 
obtained whose attribute values are discrete numbers (integers) such as, 0, 1, 2, 3, … etc. depending on the set of 
cuts used for the discretization.  
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Figure 3 The partition on real line using the set of cuts },...,,,{ 321
a
k

aaa
a accccC  . 

 
Selecting the optimal set of cuts is a difficult task. In the present case of study Maximal Discernible (MD) heuristic 
is followed which is discussed in details in different papers. In the following paragraphs this MD heuristics is 
explained step by step with the help of an example shown in decision table given in Table 4. Here, a  and b are 
condition attributes and d  is decision attribute. 
 
 

  
 

Table 4. A typical real-valued decision table  

  
Step 1.  
 
The observed values of an attribute a  is sorted such that a

k
aaa

avvvv  ...321 , 
where, }:)({},...,,,{ 321 Uxxavvvv a

k
aaa

a  , i.e. values of the attribute a . Then the set of cuts for 
attribute a  is defined as, 
 

}2,...,2,2{ 13221
a
n

a
naaaa

a aa vvvvvvC                     (14) 
 
For example, in Table 4, the set of values of a  and b on objects from U are given by, 

 So, the set of cuts for attribute a  is, 
 

}2
6.14.1,2

4.13.1,2
3.11,2

18.0{ aC  
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or, }5.1,35.1,15.1,9.0{aC  
Now, if any value of attribute a is a

iv < 0.9 then in the discretized table it will be replaced by ‘0’. Similarly, if 0.9 
≤ a

iv < 1.15 then in the discretized table it will be replaced by ‘1’ and so on. In a similar way cuts for attribute b can 
also be chosen as, 
 

}5.2,5.1,75.0{bC  
 

A discretized form of Table 4 is shown in Table 5. Here, set of cuts is chosen as, )}.5.1,(),75.0,(),5.1,(),9.0,{( bbaaR . This cut is chosen for demonstration only and is not the 
optimal set of cuts. Pictorial representation of the cut is shown in Figure 4. 

 
 

Table 5. Discretized form of Table 4 using set of cuts )}.5.1,(),75.0,(),5.1,(),9.0,{( bbaaR  
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Figure 4. Graphical representation of the cuts on Table 4 using )}.5.1,(),75.0,(),5.1,(),9.0,{( bbaaR  
 
 
Step 2.  
To obtain the optimal set of cuts a new table ),( *** AUT   is derived from the Table 4 using aC and bC  
such that, 
 

    (15) 
 

and 
 

avvssAapA a
s

a
s

tha
s for),[intervalthetoingcorrespondand:{* 1     (16) 

 
The table is shown in Table 6. Here objects are all pairs of objects from A with different decision values, and all 
object pairs are now to be discerned using the values of the attributes modified after applying the cuts aC and 

bC . The set of condition attributes in the new decision system is equal to the set of all attributes defined by all 
cuts. These attributes are binary. The value of the new attribute corresponding to a cut ),( ca on the pair ),( ji uu  is 
equal to 1 if this cut is discerning objects ),( ji uu  and 0 otherwise.  
 
For example, 1u and 2u are discernible using 9.0)1( aC , because using this cut on attribute a  the values 

0)( 1 ua and 1)( 2 ua  as shown in Table 5. So, 11 ap for object pair ),( 21 uu . 
 
 

Table 6. New table *T obtained from decision table T given in Table 4 using MD heuristics 
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Step 3.  
Now a column with maximum number of occurrences of 1’s is to be chosen from table *T  . This column is to be 
deleted from the table and also the rows that contain 1’s in this column. This procedure is continued on the new 
modified table until table *T becomes empty. 
 
In this example bp2  column is chosen first because, it contains six 1’s. The table obtained after deleting the column 
and rows having value 1, is given in Figure 5. 
 
Then column ap2 and finally ap4  is chosen because the table becomes empty thereafter. So, the resultant set of cuts 
is )}5.1,(),5.1,(),15.1,{( baaR . The set of cuts is marked in Figure 6 with bold line. The final of the 
dicretized form of Table 4 is Table 7 using MD heuristics. 
 

 Figure 5. Reduction of column and rows of table *T according to MD heuristics and reduced form of *T .  
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 Figure 6. Graphical representation of optimal set of cuts obtained from MD heuristics.  
 

Table 7. Final Discretized form of Table 4 using MD heuristics  

  
4 Conclusions 
 
This tutorial gives an elaborate view of Rough Set theory (RST). The discussion emphasizes upon how RST can be 
applied for classification of data by simplifying a decision table. In this context RST based rule generation has been 
explained. It shows that RST is an effective methodology for classification of data patterns where the information 
system contains imprecise, superfluous and inconsistent data. It is known that prior to classification of data, some 
features are extracted from the data so that a classification algorithm can classify the data patterns efficiently. 
Selection of proper features for efficient classification is not an easy task. For example, in many problems 
significant features may be extracted from the cross-wavelet spectrum, but the difficulty of choosing appropriate 
features is also a problem there. Improper selection of feature vector may make the data table inconsistent or it may 
contain superfluous data requiring unnecessarily higher time of processing. In this context RST based classification 
is very effective. That is why Rough Set Theory (RST) has successfully been used for condition monitoring of 
distribution feeder, for fraud detection in electrical energy consumers, in data-mining for semiconductor 
manufacturing and also in case generation.  


