Design and Synthesis
of
Active Filter
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What is a Filter?

» An electric filter is a frequency selective
circuit that passes a specified band of
frequencies and blocks or attenuates
signals of frequencies outside this band.

» Filter modifies signals in frequency
domain — both in amplitude and phase.

1/7/2019



What is a Filter?

(Low Pass)

(High Pass)
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Filter Types

v
Analog

[

Active Passive

Digital

*Analog filters are designed to process analog signals.

*Digital filters process analog signals using digital

techniques.
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Filter Types

, l

Analog Digital

v A 4

Active Passive

*Elements used in the passive filters : resistors, inductors,

capacitors.

*Elements used in the active filters : Transistors or Op-Amps

in addition to resistors and capacitors

Most commonly used filters
|

I R

Low pass  High pass Band Pass Band Stop  All pass
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Most commonly used filters
|

I

Low pass  High pass Band Pass Band Stop

Low pass Filter

* Passes low frequency components and
attenuates high frequency components

Gain
A

Pass band| Stop band

>

P » Frequency (rad/sec)

@1, — cut-off frequency of low pass filter

Ideal Characteristics of Low pass filter
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Low pass Filter

* Passes low frequency components and
attenuates high frequency components

Gain
.\

o

>
Frequency (rad/sec)

Actual Characteristics of Low pass filter

High pass Filter

* Passes high frequency components and
attenuates low frequency components

Gain A\

Stop mdlﬁm Band

» Frequency (rad/s)

Oy

oy — cut-off frequency of high-pass filter

Ideal Characteristics of High pass filter
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High pass Filter

* Passes high frequency components and
attenuates low frequency components

Gain
S

1b-=-=

0.707

.

-~
Oy Frequency (rad/sec)

Actual Characteristics of High pass filter

Band pass Filter

* Passes certain band of frequencies and
attenuates frequencies outside this band.

* Has pass-band between two stop-bands
* Bandwidth= (w,-w,)




Band pass Filter

Gain
A

Stop | Pass band | Stop band

“pand [

L L

’ \
Wy Oc Oy Frequency (rad/sec)

®c——» Centre frequency

Ideal Characteristics of Band pass filter

Band pass Filter

Gain
AN
| N —
0.707
J 4 \ hY
® y ® <
L @O¢ H Frequency (rad/sec)

®c —» Centre frequency

Actual Characteristics of Band pass filter
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Band stop Filter

Gain

M
4
0 eoc O Frequency (rad/sec)

Ideal Characteristics of Band stop filter

Band stop Filter

0.707

I e
@, o~ PH  Frequency (rad/sec)

Actual Characteristics of Band stop filter




Narrow Band-pass filter: known as Tuned Filter
Narrow Band-stop filter: known as Notch Filter

Gain
N Gain

[ R—

0.707 p , 1
? \ 0707 == (

®, ©.0 W, O Oy
L7CTH  Frequency(rad/sec)

Tuned Filter Notch Filter

-
Frequency (rad/sec)

Filter Transfer Function

H(s) = 25+ @p15™ L ays + ag
S5) =
"+ b, ST b,s + b,
Z?;OHESE

s+ Y b; st

m = number of zeros and  n = number of poles
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First Order Filter
a, s+ a,
s | bﬂ

H(s) =

For Low-pass Filter:

H;p(s) =

ap

s+bg

Pass-band gain = (a, / b,)
Cut-off frequency = b, rad/sec

First Order Filter

For Low-pass Filter:

Gain
N

ay/ b0
707 ay/ b,

o

-
bO Frequency (rad/sec)

Pass-band gain = (a, / b,)
Cut-off frequency = b, rad/sec
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First Order Filter

as
For High-pass Filter: Hpp (s) =
+ by
Gain
A
“]1"

0.707 A, |

N

-
b 0 Frequency (rad/sec)

Pass-band gain = a,
Cut-off frequency = b, rad/sec

Second Order Filter

a,s*+ a;s+ ay

H(s) =
(5) s2 + bys+ by
For Low-pass Filter:
Ay
H §) =
ZLP( ) SE ‘I‘blS‘I_bn

Pass-band gain=a, /b,
Cut-off frequency of the filter = /b, rad/s
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Second Order Filter

a,s*+ a;s+ ay

H(s) =
(5) s+ bys+ by
For High-pass Filter:
2
a,s
H §) =
zip () s2 + b,s + b,

Pass-band gain = a,
Cut-off frequency of the filter = /b, rad/s

Second Order Filter

a,s*+ a;s+ ay

H(s) =
(5) s2 + bys+ by
For Band-pass Filter:
as
H §) = —
25r (5) s¢ +bys + b,

Pass-band gain=a, / b,
Centre frequency of the filter = /b, rad/s

1/7/2019
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Second Order Filter

a,s*+ a;s+ ay

H(s) =
(5) s2 + bys+ by
For Band-stop Filter:
a,(s* + by)
H s) = -
285 () 21 bst b, /b

Pass-band gain = a,
Centre frequency of the filter = /b, rad/s

Schematic of Band-stop Filter:

21d order High-
pass Filter

Input Output
21 order low-pass

Filter

1/7/2019
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Schematic of Band-stop Filter:

Uni i -
nity gauf Band
pass Filter
Input < -

H —1— aqs
s + b,
H —
ps(5) s+ by;s+ b,

Pass-band gain =1
Centre frequency of the filter = /b, rad/s

Filter Circuit Components
Basic Building Blocks:

Resistors, Capacitors & Op-Amps

1/7/2019
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Filter Circuit Components

Secondary Building Block:

Voltage Controlled Voltage Source (VCVS)
vV

i +

Vo
Ry
Rj
"R+ R, _
V,-KV;, K = R = VCVS gain
2

First Order Low-pass Filter

Hyp (s) %o
s+ b,
Ry .
Vi AN
V,
C’Z :— R3=(I<-1)R
B B
/mey Pass-band gai /b, =K
_ ass-pan am-=a =
I 1LP(3) = 1 g 00

St R1C3 Cut-off frequency b, = 1/R,C,

1/7/2019
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First Order High-pass Filter

a;s
Hypp(s) = s+ b,

Vo

=(K-1)R
R Ry=(K-1)
B
%R4=R

Ks
Pass-band gain = a,=K

Higp(s) = ————
s+ 1/ C,R, Cut-offfrequencyb,=1/R,C,

Second Order Filter Circuit

1
| I |
1
i Vi — v
\O
(K-1R

1/7/2019
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Second Order Filter Circuit

1
) ] | I |
o B ey B o
i Vi —
Vo
. (K-DR
s R

(Vi-v) v+ (Ve-Vi) vy = Yy
V,=Vo/K & (V-V,)Y,=V,Y,
Yo KY, ¥,

V, VsV, +YoVs(1—K)+Yy(Yy +¥s) +V Vs

Second Order Low-pass Filter

| |—
R I R :
_ 1 2 C3
\'vi —\.’O
H1p(5) a Ca= e
§) = , :
2Lp s2 | bys | by E
el R
K/ _
R{R,C3C,
qu»(S)—Ser 1—K+R1+R2]+ 1
S|R2Cy " RiR,Csl T RyR,C5C,

Pass-band gain = a /b, = K=VCVS gain

1
Cut-off frequency = /bo = JR1R;C3Cy

1/7/2019
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Second Order High-pass Filter

W

=— | +

\'i-l | | 1 Ly,

R, (K-1R
2 [ .
a,s
H §)= 55— R
ZHP( ) Sz_l_bls_l_bo —

21l K, CGIG

R,c, t L‘ICZRJ T C,GRR,

Pass-band gain = a, =K = VCVS gain
Cut-off frequency = \/bo = 1/,/C,C,R,R,

Band-pass Filter Circuit

Ry :
b 5
. —v,
1 (K-1)R

RzC; " R4Cy  R4Cy;  RCy  R3Cyl " R4lRy  R3l G0,
Ky
R1Cy
- in = = 1.1 . 1 . 1 1K
Pass-band gain = a,/b, T e

1/7/2019
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Band-pass Filter Circuit

Rl 5
FM ’_D_g |
i : i — V,
| (K-DR
as
H 5) = , '
5p(s) s2+b;s+ b,

1 1

. ”[3362 *"RE RC EC. T Rga,] R, [R1 R3] 557 X
Center/ cut-off f Jb =
enter/ cut-off frequency = 0 2, La; R3 C3Cs

Filter Approximation Techniques

1/7/2019
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Why?

Ideal characteristic is impossible to achieve

Why?

Commonly used filter approximation
techniques:

1) Butterworth Filter

1/7/2019
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Why?

Commonly used filter approximation
techniques:

2) Chebyshev Filter

Why?

Commonly used filter approximation
techniques:

3) Inverse-Chebyshev Filter
A ‘H(J(&)}

JAVAVAR
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Why?

Commonly used filter
techniques:

4) Elliptic (Cauer) Filter

approximation

[ [H(jo)

2.

Why?

Commonly used filter
techniques:

5) Bessel-Thomson Filter
And many more...

A

approximation

H(jo)

B

v

1/7/2019
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Why?
Commonly used filter approximation
techniques:
1) Butterworth Filter
2) Chebyshev Filter

Why?
Commonly used filter approximation
techniques:
1) Butterworth Filter
2) Chebyshev Filter

These techniques are based on
normalized ideal low-pass filter.

The normalized ideal low —pass filter has
gain of one in the band of frequencies
0 to 1 rad/s and gain of zero for all
frequencies above 1 rad/s

1/7/2019
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Normalized ideal low-pass filter

Magnitude
A
1
1 (z)’ra(l/ S

Butterworth filter Approximation

* Characterized by a monotonically decreasing
magnitude function of w for w = 0.

Magnitude Function
A

1
0.5 \

[

= @ rad/sec

24
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Butterworth filter Approximation

The nth order normalized low-pass Butterworth filter
has a magnitude function given by

B,(w) is an nth order Butterworth polynomial

Butterworth Polynomial

*n'"  order Butterworth polynomial B (w)
satisfies the conditions:

* B (®) is an n'" order polynomial.
*B (0)=0

* B, (®) is maximally flat at ® =0

B (1)=1

25



Butterworth Polynomial
* B (®) is an n™ order polynomial.

From 15t condition
— 2 n
B, (w) = ¢y +C,w + C,w? + s +C, W

Butterworth Polynomial

- B_(0)=0

From 2" condition, c,=0

B, (W) = c,w + % + e +C, w"

1/7/2019
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Butterworth Polynomial

* B, (®) is maximally flat at ® =0

From 3" condition, as many derivatives as
possible of B () are zero at w =0
dB,,
dw

=1+ 200+ e AN =0

Hence, c, =0

Butterworth Polynomial

* B, () is maximally flat at ® =0

Similarly, d’B,, — 0 Soc,=0
dzm

-1
Am B,
dﬂ—lnj

=0 Soc,=0

Therefore, B, (w)=c w"

1/7/2019
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Butterworth Polynomial

‘B (1)=1
From 4th condition, ¢, = 1

Therefore, B (w) = w"

Properties of Butterworth filter
magnitude function

Foralln, |H(j0)|?=1,|H(j1)|*>= 0.5, |H(j>)|?> =0
This implies that the dc gainis 1

and
3dB cut-off frequency is at 1 rad/s

28
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Butterworth Pole location

1
”1"(17‘5")'2 |m=s,fj = H{jw)H{—jw) |m=s,'j = m |m=s,fj

1
1+ (—1)"s?

The poles of
H(s)H(—s) are the solution of the equation
1+ (—1)"s*" =0

1 jQk-)x
N =(-)"=e "

Butterworth Pole location

1 JQRk-H)rx
iQk+n-)rx
— 2n
S, =e

The pole in the right half-plane corresponds to an
unstable system, so pole on the left-half of the s-plane
have to be considered

29



Butterworth Pole location

(a) (b)
3{s} ${s}

k=10

k=1 k=8
k=9
k=2 k=7
L k=8 LA
- &\.k/! N
k=3
k=6
k=7
k=6 k=4 :

Butterworth Pole location
Considering poles on the left-hand side of s-plane

where

im0, 1jcoso

1/7/2019
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The transfer function of the
nth order Butterworth filter

Where Sy = Oy ‘I'jm‘k,

wj; = cos O,

Therefore, the poles of the
Butterworth filter are on unit circle
as,

2 -

0% + @y’ = sin*0, + cos’0, = 1

|Sk

1/7/2019
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For 1t order (i.e. n=1)
normalized low-pass filter

1

i 5) =
1LF() st1

For 2" order (i.e. n=2)
normalized low-pass filter

T St 1414s+1

Chebyshev Filter Approximation

Technique
» equiripplie magnitude function across the
pass-band
and

* monotonically decreasing magnitude
function in the stop-band.

Magnitude Function

0.5

o rad/sec

1/7/2019
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Chebyshev Filter Approximation
Technique
* The nth order Chebyshev polynomial is:

Tp(w) = cos(ncos 1 w) for 0<w< 1

— cosh (ncosh"l w) for @ > 1

If x =cos lw, thenT,(w)=cosnx

Remember, cosh (ju) = cos u & sinh (ju) =jsinu

Chebyshev Filter Approximation

Remember, cosh (ju) = cos u & sinh (ju) =jsinu

Tp(w) = cos(ncos ' w) for 0<ow< 1

— cosh (ncosh“l w) for @ > 1

If x =cos 'w, thenT,(w)=cosnx

To(w) =cos0 =1

T,(w) = cosx = cos(cos lw) = w
T:(w) = cos2x = 2w — 1

Ts;(w) =cos3x=-3w + 4w?

Ti(w) = cos4x =1 — 8w? + 8o*

1/7/2019
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Properties of Chebyshev polynomial

> |[Tp(0)| =0 when # is odd
1>~ |T,,(0)| =1 when # is even
= [ Tp(1)] = +1

Recursive formula for Chebyshev Polynomials

T, (v)=20T(w)-T, ,(w)
T(w)=1&T/(0)=w

Chebyshev Magnitude Response

The nth order normalized low-pass Chebyshev
filter is given by:

€ is a free parameter that sets the amplitude
of the ripple called ripple factor

1/7/2019
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Chebyshev Magnitude Response

1

1. |H(jO)|2=1 when n is odd and |HUO)|2 =

2 il
2. Ato=1,IT,(1)| = +1s0 [HO)? =

3. For |w| = 1,|H(jw)|? oscillates between 1 and 5

and attains a maximum value 1 or minimum value

> 0.5 the 3dB cut-off frequency of the

1
4.1 T3

Chebyshev filter is larger than 1 radian/sec.

1+ &2 when n is even.

Chebyshev Magnitude Response

|H(jw)[2

11 + €

1/7/2019
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Chebyshev Pole Locations

The magnitude function of
nth order normalized low-pass Chebyshev filter is

1
1+€2 T2 (w)

|H(w)|* =

=H(jw)H(—jw)

Put ® =s/j, then

1

H(s)H(-s) = 1+ €2T%2(s/))

Chebyshev Pole Locations

1

HOH(=s) = 1~ e2T2(s/j)

The pole locations are determined by solving the
equation:

-2

1+ &2T3(s/)=0 or Ti(s/)=—5=1

£

r()-+l-os!

1/7/2019
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Chebyshev Pole Locations

If ), = 0} + jw, we have

T
O = isinE(Zk — 1)sinha

'y
=cos—(2k—-1 h
Wy, SZn( )cosha

|
where k= 1,2, ......... 2n and a=—sIinh~ —
n 5

Chebyshev Pole Locations

Considering left-hand-side s plane poles,

SK=— sinz—tl (2k — 1) sinha +jcosi (2k — 1) cosha
=51{ +j(7)k where k= 1, g 9 00ee Il
0 = —sinhasini(ﬂc —1)

T
w, = coshacos—(2k — 1
k 2n( )

1/7/2019
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Chebyshev Pole Locations

Ok

T
sinha —smE(ZR —1)

(y

T
—_— = —(2k—1
cosha msZn( )

o @y

= sinzi(Zk —1) + coszi(Zk -1)=1
sinh’a cosh®a 2n 2n ’

Hence, poles of Chebyshev filter are on
s-plane ellipse

Chebyshev Pole Locations

=2 —2
L @

s W
a2 2
= sin 2k —1) + 2k—1) =1
sinh*a cosh®a Zn( )+ cos 211( )

jo

e
Il

1 k=8

o

k
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Chebyshev Filter Transfer Function

x - m
o, = — smhasmﬁ(ﬂ( —1)

T
w; = coshacos—(2k — 1
K 2n( )

|
where k= 1,2, ......... ,n and d= —sinh ™ —
n &

Chebyshev Filter Transfer Function

Wl—[( S;) for neven

n

= l—[(—Ek) fornodd

2SS |

1/7/2019
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Important Observations

Max value in pass band for (D& H,

Comparison of
Butterworth & Chebyshev Responses

*Butterworth  filter is maximally flat filter while
Chebyshev fiter has ripple in the passband and
monotonically decreasing stopband.

*For Butterworth response, w=1 rad/s identifies the half-
power frequency, but for Chebyshev response w=1 rad/s
identifies the end of the ripple band.

*The normalized cut-off frequency of the Butterworth filter is
always at 1 rad/s & Chebyshev filter has normalized cut-off
frequency more than 1 rad/s.

*For Butterworth pole locations (on unit circle):

o, = —sin@, @ = c0s 0,

*For Chebyshev pole locations (on s-plane ellipse):

— . . @ e Tf
o, — —sinha sma(z.‘c —1) @y — cosha cosﬁ(Zk -1)
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