
Principal Components Analysis (PCA) 

PCA is a method used to reduce number of variables (dimension) in a data. It reduces the dimension of 

the data with the aim of retaining as much information as possible. 

It is a mathematical procedure that transforms a number of (possibly) correlated variables of a data into 

a (smaller) number of uncorrelated variables called principal components. 

PCA has various names in various fields, so it is also known as the Karhunen-Lo`eve transformation, the 

Hoteling transformation, the method of empirical orthogonal functions, singular value decomposition or 

factor analysis. 

Mathematics behind PCA: 

There are several equivalent ways of deriving the principal components mathematically. The simplest 

one is by finding the directions of projections of data-vector which maximize the variance. The first 

principal component is the direction in feature space along which projections have the largest variance. 

The second principal component is the direction which maximizes variance among all directions 

orthogonal to the first. The kth component is the variance-maximizing direction orthogonal to the 

previous (k – 1) components. 

 

 

As PCA tries to “retain as much information as possible”, we should to look for the projection with the 

smallest average (mean-squared) distance between the original vectors and their projections on to 

the principal components.  It will be proved that this is equivalent to maximizing the variance. 

Now, let us assume that the data have been “centered”, so that every feature dimension has mean 0. 

The centered data is represented by matrix X, where rows are objects and columns are feature 

dimensions or simply features. 



For example: 

 

a) Original data   b) mean subtracted or “centered” data after adjustment 

 

Now, if we project the a data vector �����⃗  on ������⃗  , where we assume that  ������⃗  is in the 

direction a principal component, then the error in projection, 

summing, 

 



The first term in the big parenthesis doesn’t depend on ������⃗ , so it doesn’t matter for trying to minimize 

the sum-of-square error. To make the error small, what we must do is to make the second sum big, i.e., 

we want to maximize,  

 

Now, the mean of a square is equal to the square of the mean plus the variance: 

 

But, as the data is centered, the mean of the projections is zero. Hence, it is proved that 

minimizing the residual sum of squares is equivalent to maximizing the variance of the 

projections. 

Method for Maximizing Variance 

If our p dimensional data vectors are stacked into an n × p matrix, X,  where n is the number of vectors 

or number of data, then the projections are given by Xw, which is an n × 1 matrix. The variance is, 

 



 

V is the covariance matrix of X.                 

So, the problem is to find a set of ������⃗   to maximize the variance. 

To do this, we need to make sure that we only look at unit vectors because we want to make the 

Principal components uncorrelated to each other, then we can avoid the redundancy of the data. Hence, 

it is a problem of constrained maximization (optimization). The constraint is that, wTw = 1.   

Let a function f(w) that we want to maximize. Here, that function is wTVw. We also have an equality 

constraint, g(w) = c. Here, g(w) = wTw and c = 1. We re-arrange the constraint equation so its right hand 

side is zero, g(w) − c = 0. Now we can add an extra variable to the problem, called the Lagrange 

multiplier λ, and consider  

u(w, λ) = f(w)−λ(g(w)−c) as our new objective function,  

so we differentiate with respect to both arguments and set the derivatives equal to zero: 

 

For our problem, 



 

Hence, wTVw=wTλw=λ (wTw)= λ 

Thus, desired vector w is an eigenvector of the covariance matrix V, and the 

maximizing vector will be the one associated with the largest eigenvalue λ. 

Remember: V is a symmetric matrix. 

 

 

Some Proofs: 

1. Prove that, a square matrix A is orthogonally diagonalizable if there exists an orthogonal 

matrix Q such that QT AQ = D is a diagonal matrix.  

Also Prove that, in that case A is a symmetric matrix. 

Proof: If we have QTAQ = D then times Q on the left, and QT on the right gives  

A = QDQT       (since QT = Q-1).  

Then AT = (QDQT)T = (QT )T DT QT =QDQT = A, so A is symmetric. 

 



 

Note that, V������⃗ =λ������⃗  ⇒ Vw=wɅ⇒ V= wɅwT 

 

 

Summarizing the steps of PCA: 

Step 1: Get the data, say a nXp matrix. 

Step 2: Centre the data, i.e., subtract mean for each dimension p and 

get the centered data X of dimension nXp 



 

a) Original data             b) mean subtracted or “centered” data after adjustment 

           

Step 3: Calculate the covariance matrix (V) of centered data X 

The dimension of V will be pXp 

 

Step 4: Calculate the eigenvectors and eigenvalues of the 

covariance matrix 



The number of eigenvalues and eigenvector will be p 

(i.e., the dimension of the data) 

 

 

Step 5: Eigenvector with large eigenvalue indicates high 

variance ,i.e., more significant direction for projection  

Note that, the new axes are not the earlier ones, the data 

is presented wrt new axes (i.e, new bases). 



With all the eigenvectors the new data will be 

represented along new bases i.e, new transformed axes 

which are nothing but in the directions of the 

eigenvectors. 
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If we consider the only the larger eigenvector, 



 

Then that data dimension is reduced, 

 

Therefore, if we choose eigenvectors with the first k largest eigenvalues, 

then by  the following equation the new data matrix can be obtained with 

reduced dimension, i.e., (nXk) where, k≤ p  
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Limitations of PCA: 

1. If the separation of the classes is more pronounced 

in the direction of smaller variance 



 

 

 



 

 

2. If the data is not linearly correlated 

 

 

 

 

 

 



 

 

3. Orthogonal transformations doesn’t guarantee projections with the highest 

variance 
 

 
 

4. Mean and covariance doesn't describe some distributions 

There are many statistics distributions in which mean and covariance doesn't give relevant information 

of them. In fact, mean and covariance are used (or could be considered important) for Gaussians. 

5. Scale variant 
PCA, is a rotation transformation of your dataset, which means that doesn’t affect the scale of 

your data. That means that if you change the scale of just some of the variables in your data set 

(e.g., if you normalize the data of some dimensions), you will get different results by applying 

PCA. 


