Principal Components Analysis (PCA)

PCA is a method used to reduce number of variables (dimension) in a data. It reduces the dimension of
the data with the aim of retaining as much information as possible.

It is a mathematical procedure that transforms a number of (possibly) correlated variables of a data into
a (smaller) number of uncorrelated variables called principal components.

PCA has various names in various fields, so it is also known as the Karhunen-Lo eve transformation, the
Hoteling transformation, the method of empirical orthogonal functions, singular value decomposition or
factor analysis.

Mathematics behind PCA:

There are several equivalent ways of deriving the principal components mathematically. The simplest
one is by finding the directions of projections of data-vector which maximize the variance. The first
principal component is the direction in feature space along which projections have the largest variance.

The second principal component is the direction which maximizes variance among all directions
orthogonal to the first. The k™ component is the variance-maximizing direction orthogonal to the
previous (k — 1) components.
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As PCA tries to “retain as much information as possible”, we should to look for the projection with the
smallest average (mean-squared) distance between the original vectors and their projections on to

the principal components. It will be proved that this is equivalent to maximizing the variance.

Now, let us assume that the data have been “centered”, so that every feature dimension has mean 0.
The centered data is represented by matrix X, where rows are objects and columns are feature
dimensions or simply features.



For example:

% y X y
251 24 .69 49
051 0.7 -1.31 | -1.21
22129 39 99
1.9 | 2.2 .09 29
Data= 3.1 | 3.0 DataAdjust= 1.29 | 1.09
23| 2.7 49 79
2 1.6 19 -31
1 1.1 -.81 -.81
1.5] 1.6 -.31 -31
1.1 109 -71 | -1.01
a) Original data b) mean subtracted or “centered” data after adjustment

projection

— e —_—
Now, if we project the a data vector xl on Wl ) Where we assume that Wl is in the

direction a principal component, then the error in projection,

| — (@ &)dl|* = (%] — 20 - 5) (@ - 7) + |||
= ||F)* - 2(@ - £5)" + 1
summing,
T n
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The first term in the big parenthesis doesn’t depend on Wl' so it doesn’t matter for trying to minimize

the sum-of-square error. To make the error small, what we must do is to make the second sum big, i.e.,
we want to maximize,

n
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Equivalently, since n doesn’t depend on %, we want to maximize

Now, the mean of a square is equal to the square of the mean plus the variance:

1 1
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But, as the data is centered, the mean of the projections is zero. Hence, it is proved that

minimizing the residual sum of squares is equivalent to maximizing the variance of the
projections.

Method for Maximizing Variance

If our p dimensional data vectors are stacked into an n x p matrix, X, where n is the number of vectors
or number of data, then the projections are given by Xw, which is an n x 1 matrix. The variance is,

1
oy = =Y (@)
1

n



V is the covariance matrix of X.

e
So, the problem is to find a set of Wl to maximize the variance.

To do this, we need to make sure that we only look at unit vectors because we want to make the
Principal components uncorrelated to each other, then we can avoid the redundancy of the data. Hence,

it is a problem of constrained maximization (optimization). The constraint is that, w'w = 1.

Let a function f(w) that we want to maximize. Here, that function is WTVW. We also have an equality

constraint, g(w) = c. Here, g(w) = w'w and ¢ = 1. We re-arrange the constraint equation so its right hand
side is zero, g(w) - ¢ = 0. Now we can add an extra variable to the problem, called the Lagrange
multiplier A, and consider

U(W, A) =f(w)—A(g(w)—c) as our new objective function,

so we differentiate with respect to both arguments and set the derivatives equal to zero:
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ow  Ow ow

ou

o —0= —lg(w)—q)

For our problem,



u = wiVw - Awliw-1)
i = 2Vw—-2\w =0
ow

Vw = \w

Hence, WTVW=wTAw=A (WTw)= A

Thus, desired vector w is an eigenvector of the covariance matrix V, and the

maximizing vector will be the one associated with the largest eigenvalue A.

Remember: V is a symmetric matrix.

Some Proofs:

1. Prove that, a square matrix 4 is orthogonally diagonalizable if there exists an orthogonal
matrix Q such that 9" 40 = D is a diagonal matrix.

Also Prove that, in that case 4 is a symmetric matrix.

Proof: If we have Q740 = D then times Q on the left, and Q7 on the right gives

A=0DQ" (since Q"= Q).
Then A" = (QDQO")! = (Q")! DT Q"=0DQ"= 4, so A is symmetric.



Prove that, Eigenvectors of a symmetric matrix corresponding to dif-

ferent eigenvalues are orthogonal.

Proof. Let AT = A have eigenvectors 7, and v, for eigenvalues A\; # \s.
We compute the dot product (A7) -7 = (A7) 5 = Ay (7} -U3). On the other

hand, the left-hand side can be written as a matrix product:

(A'l_.-"l:] - 'ﬁ-g — 1_?'1 (Aﬁg) — 1_."] ’ [:/\21_."2:] = /\g (t_?'l -172). Thus, )\1(?71 * 'fg) =

A2(¥ - 72). Since Ay # A2 we must have ) - v = 0.
Note that, VW, =AW, = VW=wA= V= wAw!

v w A

| | al 0 0
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Covariance matrix

eigenvector matrix  eigenValue matrix

Summarizing the steps of PCA:

Step 1: Get the data, say a nXp matrix.

vVl —

e V2

v3 =

m X m

Step 2: Centre the data, i.e., subtract mean for each dimension p and

get the centered data X of dimension nXp



% y X y
251 24 .69 49
051 0.7 -1.31 | -1.21
22129 39 99
1.9 | 2.2 .09 29
Data= 3.1 | 3.0 DataAdjust= 1.29 | 1.09
23| 2.7 49 79
2 1.6 19 -31
1 1.1 -.81 -.81
1.5] 1.6 -.31 -31
1.1 | 09 -71 | -1.01
a) Original data b) mean subtracted or “centered” data after adjustment

Mean adjusted data with eigenvectors overlayed
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Step 3: Calculate the covariance matrix (V) of centered data X

The dimension of V will be pXp

[ 616555556 .615444444
~\ 615444444  .T16555556

Step 4: Calculate the eigenvectors and eigenvalues of the
covariance matrix



The number of eigenvalues and eigenvector will be p
(i.e., the dimension of the data)

etgenvalues = (

.0490833989
1.28402771

. ( —.735178656 —.677873399 )
etgenvectors =

677873399  —.735178656

Mean adjusted data with eigenvectors overlayed
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Step 5: Eigenvector with large eigenvalue indicates high
variance ,i.e., more significant direction for projection

Note that, the new axes are not the earlier ones, the data
is presented wrt new axes (i.e, new bases).



With all

the eigenvectors the new data will

be

represented along new bases i.e, new transformed axes

which are nothing but

eigenvectors.

[Xnew]Tan=[A]po * [X]Tan

If we consider the only the larger eigenvector,

Transformed Data=

1.5 |

0.5

D5 |

x y

~827970186 | -.175115307
1.77758033 | .142857227
-.992197494 | 384374989
-274210416 | .130417207
-1.67580142 | -.209498461
-.912949103 | .175282444
0991094375 | -.349824698
1.14457216 | 0464172582
438046137 | 0177646297
1.22382056 | -.162675287

Data transformed with 2 eigenvectors

in the directions of the



—.677873399
—.735178656

Then that data dimension is reduced,

Transformed Data (Single eigenvector)
E
-.827970186
1.77758033
-.992197494
-.274210416
-1.67580142
-.912949103
0991094375
1.14457216
438046137
1.22382056

Therefore, if we choose eigenvectors with the first k largest eigenvalues,

then by the following equation the new data matrix can be obtained with
reduced dimension, i.e., (nXk) where, k< p

[Xnew]" ixn=[Alkxp® [X]Tan

Limitations of PCA:

1.If the separation of the classes is more pronounced
in the direction of smaller variance
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3. Orthogonal transformations doesn’t guarantee projections with the highest
variance

4. Mean and covariance doesn't describe some distributions

There are many statistics distributions in which mean and covariance doesn't give relevant information
of them. In fact, mean and covariance are used (or could be considered important) for Gaussians.

5. Scale variant

PCA, is a rotation transformation of your dataset, which means that doesn’t affect the scale of
your data. That means that if you change the scale of just some of the variables in your data set

(e.g., if you normalize the data of some dimensions), you will get different results by applying
PCA.



