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Digital Controller in a Process Control Loop 

In a processor based digital controller, rapid switching from one algorithm 
to another (e.g. a P controller to a PID controller) and automatic tuning of 
controller parameters are possible. 
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The error computation may be performed digitally if the set-point is available in 

digital form (say, from digital keyboard) and the measured variable is digitized with 

the ADC. 
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Proper selection of the sampling interval ‘’ is necessary for satisfactory operation of 

the process control loop. 

A large ‘’ may lead to unstable operation  of the loop (because of the extra lag 

introduced in the loop), whereas a very small ‘’ requires a high speed digital hardware 

(hence high cost) to implement the controller. 
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Problem: Develop a digital PI Controller using Trapezoidal rule for integration. 
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Velocity form of controller is useful when the actuator is some kind of 

adder (integral action), like a stepping motor. 
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# include < studio.h> 

void main (void) 

      { 

      float e = 0, e1, m, mp = 0;  

      float a0, a1, b; 

      float adc (void) ;        // digitized error 

      void dac (float m ) ;   // analog output 

      a0 = - - - - - - - -  ;   // Kp [1 + /Ti ] 

      a1 = - - - -  --  - - ;   // -Kp 

      b = - - - - - - - - - ;    // bias 
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       for (;;)   // continuous loop 

              {    // loop time is the sampling interval  

              e1 = e; 

              e = adc (); 

              mp = mp + a0*e + a1*e1; 

              m = mp + b; 

                   // provision for saturation 

              if (m < 0) m = 0; 

              if (m > 100) m = 100; 

              dac (m); 

              } 

       } 
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float adc (void)      // Analog-to-digital conversion 

      { 

      float  v; 

      scanf (%f, &v);  // for (keyboard) simulation 

      return  v;              // (to be replaced for actual 

      }                           // realization) 

 

void dac (float m)  // Digital-to-analog conversion 

      {   

      printf (%f\n, m);   // for (VDU) simulation 

      }    // (to be replaced for actual realization) 



Realization of Digital Controllers 
(through discrete approximation of analog controllers) 

Proportional-Derivative (PD) Controller 

The analog controller output is  

p d

de
m K e T b

dt

 
   

 
where Td is the derivative time. 



Realization of Digital Controllers 
(through discrete approximation of analog controllers) 

Proportional-Derivative (PD) Controller 

The analog controller output is  

p d

de
m K e T b

dt

 
   

 
where Td is the derivative time. 

Let the derivative of error ‘e’ at the nth instant be  
n

t n

de
D

dt 





Realization of Digital Controllers 
(through discrete approximation of analog controllers) 

Proportional-Derivative (PD) Controller 

The analog controller output is  

p d

de
m K e T b

dt

 
   

 
where Td is the derivative time. 

Let the derivative of error ‘e’ at the nth instant be  
n

t n

de
D

dt 



Dn may be approximated using the backward difference algorithm as 

1n n
n

e e
D








Realization of Digital Controllers 
(through discrete approximation of analog controllers) 

Proportional-Derivative (PD) Controller 

The analog controller output is  

p d

de
m K e T b

dt

 
   

 
where Td is the derivative time. 

Let the derivative of error ‘e’ at the nth instant be  
n

t n

de
D

dt 



Dn may be approximated using the backward difference algorithm as 

1n n
n

e e
D





e

n

e
n-1

e slope = D
n

approxim ate slope



tim e
(n-1)  n



PD Controller 

Thus the controller output at the nth instant is  
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Problem: Develop a ‘c’ program for software realization of the PD Controller.  
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Provision for anti-derivative kick 

To avoid derivative action from a sudden change in set-point, the derivative action 

is generally derived from the measured output.  

Now,   e = r – c 

then, ,
de dr dc

dt dt dt
 

,
dc

dt
  assuming set-point ‘r’ is constant. 

Thus, the controller output may be expressed as, 
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Provision for anti-derivative kick 
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Realization of PD Controller with anti-derivative kick 

Problem: Develop a ‘c’ program for software realization of the PD Controller 

with anti-derivative kick  
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Realization of Digital Controllers 
(through discrete approximation of analog controllers) 

Proportional-Integral-Derivative (PID) Controller 

The analog controller output is 
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The controller output (without bias) at the nth instant, using backward difference algorithm, is 

1n n n
n p n d

i

I e e
m K e T

T 


  
     

  



PID Controller 

1n n n
n p n d

i

I e e
m K e T

T 


  
     

  

The controller output (without bias) at the nth instant is 

The controller output at the (n-1)th instant is 

1 1 2
1 1

n n n
n p n d

i

I e e
m K e T

T 
  

 

  
     

  



1n n n
n p n d

i

I e e
m K e T

T 


  
     

  

The controller output (without bias) at the nth instant is 

The controller output at the (n-1)th instant is 

1 1 2
1 1

n n n
n p n d

i

I e e
m K e T

T 
  

 

  
     

  

Subtracting, 

 1
1 1 2 12n n d

n n p n n n n n

i

I I T
m m K e e e e e

T 


   

 
        

 

PID Controller 



 1
1 1 2 12n n d

n n p n n n n n

i

I I T
m m K e e e e e

T 


   

 
        

 

Using rectangular integration algorithm, 1n n nI I e 

PID Controller 



 1
1 1 2 12n n d

n n p n n n n n

i

I I T
m m K e e e e e

T 


   

 
        

 

Using rectangular integration algorithm, 1n n nI I e 

then,  1 1 1 22d
n n p n n n n n n

i

T
m m K e e e e e e

T




   

 
        

 

PID Controller 



 1
1 1 2 12n n d

n n p n n n n n

i

I I T
m m K e e e e e

T 


   

 
        

 

Using rectangular integration algorithm, 1n n nI I e 

then,  1 1 1 22d
n n p n n n n n n

i

T
m m K e e e e e e

T




   

 
        

 

or, 
1 2 1

2
1 1

p dd d
n n p n p n n

i

K TT T
m e K e K e m

T



  
  

    
           

    

PID Controller 



 1
1 1 2 12n n d

n n p n n n n n

i

I I T
m m K e e e e e

T 


   

 
        

 

Using rectangular integration algorithm, 1n n nI I e 

then,  1 1 1 22d
n n p n n n n n n

i

T
m m K e e e e e e

T




   

 
        

 

or, 
1 2 1

2
1 1

p dd d
n n p n p n n

i

K TT T
m e K e K e m

T



  
  

    
           

    

or, 1 1 2 2 1n o n n n nm a e a e a e m  
    

PID Controller 



1 1 2 2 1n o n n n nm a e a e a e m  
    

1

1

2
1

d
o p

i

d
p

T
a K

T

T
a K







 
   

 

 
   

 

where, 

and 
2

p dK T
a




PID Controller 



Realization of the PID Controller 
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1. Develop a digital PID controller using trapezoidal rule for integration 

 

2. Develop a program in ‘C’ for software realization of the PID controller 

 

3. Modify the above controller to provide anti-derivative kick feature 

PID Controller 

Problems: 
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Techniques used for anti-integral windup  

 By saturating or limiting the integral value 

 

 By resetting the integral value to zero 

 

 By omitting the integral term 

 

 By adaptive adjustment of controller parameters 



Some anti-integral windup schemes 

Stop integration when PI/PID controller internal output (prior to the 

saturation block) exceeds the saturation limits 
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Some anti-integral windup schemes 

Reduce integration gradually as PI/PID controller internal output 

exceeds the saturation limits 

+ Kp +
100

1000
Process

+
_

+

Saturation

r e

+
_

p

i

K

T

C

soft

switching Scheme

+

G

G : a constant

s

1



Some anti-integral windup schemes 

Clegg integrator – the integrator is set to zero (reset) when the error 

crosses zero 
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Automatic/Manual modes of Operations 

 Automatic mode – means automatic closed loop operation 

 

 Manual mode – means open loop manual control 
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If there is any difference between the controller output and the manual command, a 

bump occurs in the process output when the switch position is altered. 

To provide ‘bump-less transfer’ from auto-to-manual change over, special 

arrangements may be made for ‘set-point initialization’. 

The manual command is driven to equal the controller output when the loop is in 

AUTO mode. 
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When the loop is in MANual mode, if there is a steady error existing due to any 

difference between the set-point of the controller and the process output (under 

manual control), integral term, in case of PI and PID controllers, may wind-up to a 

large value, and consequently anti-integral wind-up is necessary for such 

situations. 

To provide bump-less transfer for all the operating modes, incremental or velocity 

from of controller is used with an additional integrator. 
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The presence of integrator at the output ensures a smooth output variation even 

when the actual manual command is different from the actual controller output 

under closed-loop control. 



Realization of the incremental type PID Controller  
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Automatic tuning of PID Controllers – the Relay autotuner 

This is based on a special technique for determining the critical gain Kc and critical 

time period Tc of the process loop. 

Kc is the gain margin of the process loop. 

Controller parameters Kp, Ti and Td are calculated according to Ziegler – Nichols 

(Z-N) rule for a stable time response.  

Suitable for processes with non-zero dead-time. 

Z-N settings 

gain margin: 2  

Controller K p T i T d 

P – Controller 0.5 K c 

PI – Controller 0.45 K c T c /1.2 

PID – Controller 0.6 K c T c /2 T c /8 
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The relay control provides ON / OFF control of the process. 

 

The input ‘r’ is set to zero. 

 

The output ‘c’ oscillates around a mean value of zero (limit-cycle oscillations). 

 

The process is driven by a square wave of amplitude ‘D’.  
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Assuming the process to be a low-pass system, the process output ‘c’ contains 

mainly the fundamental component. 

Thus the error signal ‘e’ becomes sinusoidal, 

e = A sin t 
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The process practically attenuates all higher harmonics other than the fundamental. 

Then the process gain at frequency ‘’ becomes 
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Process gain at frequency ‘’: 
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Process gain at frequency ‘’: 

Now, to maintain steady oscillations at  = c, the loop gain is 1   (considering 

negative feedback). 
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Process gain at frequency ‘’: 

Now, to maintain steady oscillations at  = c, the loop gain is 1   (considering 

negative feedback). 

Thus the gain of the relay controller (i.e. the critical gain) at  = c is 
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Also G (c) = , as relay phase shift is zero.  
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.  

Thus by knowing the relay amplitude ‘D’ and by measuring the amplitude ‘A’ of the 

process output ‘c’, critical gain Kc may be determined   .  
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Thus by knowing the relay amplitude ‘D’ and by measuring the amplitude ‘A’ of the 

process output ‘c’, critical gain Kc may be determined   .  
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(The Satt Control Autotuner by Satt Control, Sweden) 

At first, the process is brought to equilibrium state ( zero error), by setting a 
constant control signal in manual mode. 

The tuning is then activated by pushing the mode switch to tune position. 
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The relay amplitude ‘D’ is initially set to 10% of the controller output-range. 

 

This amplitude is adjusted after one and a half period to give oscillation of 2% of the mean output. 

 

This ensures minimum disturbance at the process output due to tuning. 

 

This adjustment is done by measuring the change in output during the first one and a half period. 

 

The modified relay amplitude is stored for the next tuning operation. 
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The system is automatically switched to Auto mode after estimating the critical gain Kc 
and critical time period Tc during first 5½ period of oscillation. 
 
The parameters of PID controller (viz. Kp, Ti and Td ) are determined from Kc and Tc 
according to Z-N rule.  

Satt Control Autotuner 
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