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Design of Digital Controllers 

Traditional Approach: 

 Design the Analog Controller to meet a particular design 

specification. 

 This can be carried out using Root Locus or Bode Plots or 

using Process Reaction Curve methods of Ziegler-Nichols or 

Cohen and Coon. 

 Transform this Analog Controller to its corresponding Digital 

Version by employing Z-transform or using difference 

equations. 



Design of Digital Controllers 

Alternate Approach: 

 Design the Digital Controller directly in the discrete domain, 

based on the time domain specification of a closed-loop system 

response. 

 The controlled plant is represented by a discretized model (a 

continuous system observed, analyzed and controlled at 

discrete intervals of time). 

 This method of designing controllers, on the basis of desired 

closed-loop response, is called Direct Synthesis Method. 



Direct Synthesis Method 

A conventional Sampled Data Control System  

 Assumption: The process can be represented by low-order 

models. 
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Direct Synthesis Method  

Laplace Transform of Z.O.H: 
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Pulse Transfer function of the 

process with the sample-and-hold 

operation of the DAC: 
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 The process can be represented by a first-order lag () with 

delay (L) or a second-order lag (1, 2 ) with delay (L). 
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Direct Synthesis Method  
The closed loop transfer function 

 Our Objective: the closed loop should respond in a desired 

manner, following a desired dynamics specified in H(z).  
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 The controller D(z) can be designed from the knowledge of the 

process model and the desired H(z) specified. Depending on 

designer specified H(z), different controllers may arise. 

conclusion 



Direct Synthesis Method  
A Process described by First-Order Lag () and Time Delay (L): 
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 Assumption: The delay is an integral multiple of sampling time 

i.e. L = NTs.  



Direct Synthesis Method  
A Process described by First-Order Lag () and Time Delay (L) (contd …): 
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Direct Synthesis Method  
A Process described by Second-Order Lag (1, 2) and Time Delay (L): 
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Direct Synthesis Method  
Constraint of Causality 

 For the digital controller to be physically realizable, causality 

should be ensured.  

What does it mean ?? 

 The controller output mn at any instant n should depend only 

on the present and the past values of the input error sequence 

i.e., en, en-1, en-2 etc. and not on future values of input i.e., en+1, 

en+2 etc.      



Direct Synthesis Method  
Constraint of Causality (contd…) 

 For a process which has a dead time, represented by z-N, the 

desired C.L.T.F., H(z), must also include the same dead time.       

Consider the z-T.F. of a 

controller of the form: 
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For causality, the necessary condition is  j  k. 

a logical extension 



Direct Synthesis Method  
Dead-Beat Controller 

 The dead-beat controller aims for the best response possible to 

a set point change.  

 Following a set-point change, and after a time period equal to 

the system time-delay, the output should be at set-point and 

remain there.       

What does it mean ?? 

   1      NzzH N
N: the system delay, where L = NTs. 

 Note:  In Digital Control Loops, there is always a minimum 

delay of one sampling interval.       



Direct Synthesis Method  
Dead-Beat Controller (contd…) 

Design of a Dead-Beat Controller: An Example 

The z-T.F. of the  dead-beat 

controller: 
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 Next:  Select the Sampling Interval (Ts), here chosen as 10% of 

the time constant, i.e. Ts = 2. Thus, process delay N = (4/2) = 2.  



Direct Synthesis Method  
Dead-Beat Controller (contd…) 

Design of a Dead-Beat Controller: Example contd… 
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Direct Synthesis Method  
Dead-Beat Controller (contd…) 

Design of a Dead-Beat Controller: Example contd… 
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Closed-loop Response using    

Dead-Beat Controller 
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Direct Synthesis Method  
Dead-Beat Controller (contd…) 

Closed-loop 

Response using    

Dead-Beat 

Controller 

Control signal for 

the system using    

Dead-Beat 

Controller 

Conclusion… 
 The dead-beat controller provided an 

excellent closed loop response.       

Strength of this method… 

 Large excursions of control signal may 

cause excessive wear and tear of the 

final control elements.       

Weakness of this method… May be it will be better to 

specify a less exacting closed 

loop performance.       

Any Solution ?? 

The Dahlin Controller 

can satisfy these 

requirements.       



Direct Synthesis Method  
Dahlin Controller 

 In Dahlin’s Method, the plant is assumed to be modeled by a first-

order or second-order transfer function, and the desired C.L.T.F., 

H(s), is considered to be a first order lag with dead time, with unity 

gain.       
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Direct Synthesis Method  
Dahlin Controller (contd…) 

The z-domain C.L.T.F. (with the  

Z.O.H. included for physical 

realizability of the system): 
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 Here  is called the Tuning Parameter, and it is the reciprocal of the 

closed loop time constant ().  

Large … Small  … 

Closed-loop system response 

will be faster. 

Closed-loop system response 

will be sluggish. 

Note:  is normally chosen as 2 to 3 times as fast as the process time constant.       
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Direct Synthesis Method  
Dahlin Controller (contd…) 

The z-T.F. of the  controller: 
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Direct Synthesis Method  
Dahlin Controller (contd…) 

Design of a Dahlin Controller: An Example 

Let the plant under control be:  
 
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 Next:  We choose Closed Loop Time Constant () = 10. For 

Sampling Interval Ts = 2,                                       .  
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Direct Synthesis Method  
Dahlin Controller (contd…) 

Design of a Dahlin Controller: Example contd… 

Closed-loop Response using    

Dahlin Controller 
Control signal for the system using    

Dahlin Controller 

Conclusion… 

 The controlled output approaches the set point in a slower manner. But 

the control signal is much more acceptable in practical situations.  



Ringing of Digital Controller  

 It is caused by negative real controller poles. For example, this can 

happen due to a poor choice of  in the Dahlin Controller.  

What is Ringing ?? 

 Sometimes, a digital controller produces a control signal that keeps 

oscillating with decreasing amplitude about the final equilibrium 

value. This phenomenon is called Ringing. 

a typical example 

What is the Cause of Ringing ?? 



Ringing of Digital Controller (contd…)  
Effect of Controller Poles on Ringing … 

 The closer the controller pole to the –1 point in the z-plane, the more 

severe the ringing. The –1 point is called the Ringing node. 



Ringing of Digital Controller (contd…)  
An Important Point … 

 Even if the control signals are oscillating, they may not have any 

reflections in the controlled output.  

an example 

Control Signal Closed-loop Response 



Ringing of Digital Controller (contd…)  
We consider a digital 

controller with T.F.: 
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Ringing of Digital Controller (contd…)  

If b is a negative real number:  
nn

n
bm 1

Then there will be successive changes in the sign of the controller output. 

Smaller the value of |b|, more the damping of oscillations of the 

controller output.  

b is negative 



Ringing of Digital Controller (contd…)  
We consider a digital 

controller with T.F.: 
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z-transform of the impulse response of the controller M(z) 

It has complex conjugate pole pair D(z) 
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If the pole pair is in the left 

half of the  s – plane, the 

frequency of oscillation is 

higher. 

Conclusion … 



Ringing of Digital Controller (contd…)  
If the complex conjugate pole pair lie within the unit circle: 

This gives rise to damped oscillation of the controller output. Hence, 

complex conjugate pole pairs of the z-T.F. of a digital controller also gives 

rise to controller ringing. 

Conclusion … 

High frequency

Low  frequency

Z-plane

Z-plane
m

m



Ringing of Digital Controller (contd…)  
Final Conclusions … 

 Negative real poles and complex conjugate pole pairs of the 

controller’s z-T.F. give rise to ringing. Ringing is more 

pronounced for complex conjugate pole pairs in left half of z-

plane than that in right half of z-plane.  

 The closer a ringing pole is to the unit circle, the higher will be 

the ringing of the controller.  

What are the Effects of Ringing ?? 

 Ringing increases the wear and tear of final control elements, 

and can cause system instability within a multi-loop 

environment. This is unacceptable in industrial practice.  



Ringing of Digital Controller (contd…)  

 By using more accurate process models. But developing 

accurate process models can be quite complicated.   

 Yes, Dahlin suggested an easier and quicker solution for this 

problem.  

How to Overcome Ringing ?? 

 Step 1: Locate the errant controller pole.  

 Step 2: Replace that factor by its steady-state equivalent. 

Is There any Easy Way-out ?? 



Ringing of Digital Controller (contd…)  

Removal of Ringing Poles in Dahlin Controller: An Example 

 Let N = 2 and we choose,                                 .  010.
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 There is a controller pole at z = -0.99 that can cause ringing 

problems. This should be removed, without causing any change 

in the gain of the controller. 



Ringing of Digital Controller (contd…)  
Removal of Ringing Poles in Dahlin Controller: 

Example contd… 

 This removal of ringing pole results in a better behaved 

response. 

How to Remove this Ringing Pole ?? 
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 evaluate                      at z = 1.   19901  z.
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Ringing of Digital Controller (contd…)  
Removal of Ringing Poles in Dahlin Controller: 

The Results obtained in the Example … 

Closed-loop Response Control Signal 

(After removal of the ringing pole) 



Design of Predictive Controllers 

The Key Essence: 

 The simplest predictive controller requires an estimate of the 

process output at the next sampling instant and based on this 

information generates an actuation signal that strives to make  

the output equal to the desired value.  

 Because it depends upon a process model to predict the future 

value of the controlled variable and uses this value as a 

controller input. 

Why is it called Predictive Control ?? 

 This method is simple and can be readily extended to handle 

measurable disturbances using feed forward. 

Source of its Richness… 



Design of Predictive Controllers 
Direct Single-Step Design 

where 

Assumption:  the constant K is absorbed in the b1 and b2  

                       coefficients. 
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plant without time delay:  
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Design of Predictive Controllers 
Direct Single-Step Design (contd…) 

cn+1: predicted system output at sampling instant (n+1) under the 

present control action mn. 

From eq. (1), we get:       1 2 1 1

1 2 1 21C z a z a z M z b b z z      

… (2) 

In time-domain difference 

equation form:  
1 1 2 1 1 2 1n n n n nc a c a c b m b m      

This prediction is one-sample-ahead prediction. 



Design of Predictive Controllers 
Direct Single-Step Design (contd…) 

In simplest predictive control strategy, we choose current 

actuation mn in such a way that the next system output cn+1 is 

equal to the desired set point rn.  

This gives the control action required at the current sampling 

instant, in our strive to make cn+1 equal rn. 

 1 2 1 2 1

1

1
n n n n nm r a c a c b m

b
    

From eq. (2), we get:  
1 2 1 1 2 1n n n n nb m b m r a c a c    

… (3) 



Design of Predictive Controllers 
Direct Single-Step Design (contd…) 

The controller designed based on this philosophy is called a 

Deadbeat Controller. 

z-transform of eq. (3) gives:         1 1

1 2 1 2M z b b z R z C z a a z    
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E(z)R(z) M(z) C(z)
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ˆ ˆa a z 

Direct Single Step Design (Deadbeat).  



Design of Predictive Controllers 
Direct Single-Step Design (contd…) 

The Salient Feature of Dead-Beat Controllers: 

 This design procedure requires that the closed-loop response 

has a finite settling time, minimum rise time, and zero steady-

state error.  

Any Problem with this Design Methodology ?? 

 Yes, this is an unrealistic design, because it is attempting to 

drive the plant to the desired value in a single sampling instant 

and this assumes that there is no limit on the actuation signal.  

 Also, this controller assumes that the plant model accurately 

represents the process, with plant parameters being exact, 

which again is an unrealistic assumption.   



Design of Predictive Controllers 

Then, do we have a Better Solution than Dead-Beat 

Controllers ?? 

 The answer is YES. We can design for the output to follow a set 

point with a pre-determined transient response profile. This is 

called the Model Following Design. 

What is its Design Specification ?? 

 Instead of reaching the set point rn in one sample time, the 

plant should only reach a fraction () of it. 0    1.  

 By choosing a lower and lower value for weighting factor , the 

response can be made a slower and slower one. But finally the 

response approaches infinitesimally close to rn.    



Design of Predictive Controllers 

Any Similarity with Dahlin’s Design ?? 

 Hence the design philosophy is similar to the Dahlin’s design 

method, although it results in a different structure with both 

feedback and feedforward components to the controller.    

Model Following Design 

Taking z-transform:   

   

  11

1 1

1

1 1 1

C z zz

R z z z



 



 


 

  
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 Yes, this transfer function is very similar to that in Dahlin’s 

design with                  .  sT
e
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Let:   1n n n nc c r c    … (4) 



Design of Predictive Controllers 
Model Following Design (contd…) 

     From eq. (4):    1 1n n n nc c r c    
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Design of Predictive Controllers 
Model Following Design (contd…) 

+
_
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Model Following Design.  

To accommodate a more general closed loop characteristic, it is 

usual to form an auxiliary output (z) from the system output C(z).  

     z P z C z  P(z): the inverse of the desired closed loop response  



Design of Predictive Controllers 
Model Following Design (contd…) 

If  a dead-beat controller is designed now to set              , the output: 1n nr  

 
 
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z R z
C z
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It has a response             as required. 

  
1

P z

Any Important Consideration for this 1/P(z) ?? 

 Yes, it should have a time constant that is reasonable for the 

plant characteristics under consideration and have a steady-

state gain of unity to ensure the steady-state system output is 

equal to the set point value.    



Design of Predictive Controllers 

Comparison Between Dahlin’s Design 

and Predictive Designs 

 As in  Dahlin’s Design, in Predictive Designs also, the plant 

zero gets cancelled by the controller, and consequently, the 

ringing pole problem still occurs.    

Any Solution ?? 

 This problem can be removed by the same procedure as that 

adopted with the Dahlin’s Algorithm.    



Design of Predictive Controllers 

Control Weighting Design 

 The predictive control design philosophies described so far are 

all based on a simple minimization of a Performance Criterion.    

How ?? 

 For dead-beat controllers, the squared error between cn+1 and rn 

is minimized by setting cn+1 = rn.    

 For model following control, we minimize the squared error 

between prediction cn+1 and some function of the set point.    



Design of Predictive Controllers 

Control Weighting Design (contd…) 

 In addition with errors in model following, another important 

consideration is actuating signal.    

But, We are not Considering an Important Point … 

How to Take This into Account ?? 

 By defining a more general performance criterion that will take 

both factors into consideration.    

What will be the Effect ?? 

 The accuracy of model following can be traded for large 

excursions in plant actuations, and a suitable compromise can 

be reached.    



Design of Predictive Controllers 

Control Weighting Design (contd…) 

The generalized performance 

index (J) to be minimized for 

controller design:  
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Design of Predictive Controllers 

Control Weighting Design (contd…) 

Taking z-transform:  
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Design using Control Weighting.  



Design of Predictive Controllers 

Control Weighting Design (contd…) 

 The pole position of the controller is now dependent on the 

value of .    

Special Features of this Design … 

 As  varies, this pole moves from a position where it cancels the 

zero exactly (when  = 0) to a point closer to the origin, with a 

consequent reduction in the forward path gain.    



Design of Predictive Controllers 

Control Weighting Design (contd…) 

 In Dahlin’s Design, in the case of the plant having a zero near 

the unit circle no cancellation occurs, but the steady state gain 

of the controller is maintained.    

How does it Compare with the Dahlin’s Design ?? 

 In Control Weighting Design, a compromise can be obtained by 

moving the ringing pole closer to the origin.  

Any Penalty Paid ?? 

 Yes, the penalty paid for this is that the model following is less 

exact but it does give the advantage of significant reductions in 

the actuation signal.  



Design of Predictive Controllers 

Incremental Form of the Predictor 

 Unfortunately, zero steady state error is only guaranteed in the 

absence of disturbances, and if the model coefficients are exact.    

Constraints of the Predictive Control Approaches, discussed so far 

 In Deadbeat Design and Model Following Design, the steady 

state conditions of the loop for the steady state value of the 

output to be equal to the set point, results in an actuating signal:  
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ˆ ˆss ss
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
But, There is a Catch … 

This value of actuation is only produced if the estimated plant 

parameters are exact and if there is no load disturbance. 



Design of Predictive Controllers 

Incremental Form of the Predictor (contd…) 

 By writing the Predictor Equation in Incremental Form so that 

it may predict the absolute output cn+1 from previous outputs 

and changes in actuations.    

How to Overcome this Problem ?? 

   1 1 1 2 1 2 1 2 1n n n n n n n nc c a c c a c c b m b m            

1n n nm m m   

where 

   1 1 1 2 1 2 2 1 2 11n n n n n nc a c a a c a c b m b m           

       1 2 1 1 2 2 1 1 2 1 2

1

1
1 1n n n n n n n nm r a c a a c a c b m b m m

b
                  



Design of Predictive Controllers 

Incremental Form of the Predictor (contd…) 

z-transform 
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Plant G(z)

Model Following Design using Incremental Form of Controller.  



Design of Predictive Controllers 

Incremental Form of the Predictor (contd…) 

+
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Plant G(z)

Model Following Design using Incremental Form of Controller.  
Characteristic Features … 

 An integrator term                     has been introduced in the 

forward path.    
 

1
11 z




 In the Steady State, the feedback path gets reduced to: 

   1 1 2 2
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It is independent of the accuracy 

of the estimated plant parameters  

This controller can reduce steady-state 

errors caused either by load variations 

or by parameter inaccuracies, to zero  



Design of Predictive Controllers 

Feedforward Compensation 

 One important feature of predictive control is that measurable 

disturbances can be readily incorporated in the algorithms. 

 Let us consider a disturbance v(t) which affects the plant. 

Plant Output 

           C z A z B z M z L z V z    1 2 3

1 2 3 ........L z l z l z l z     where 

In Difference Equation Form 

1 1 2 1 1 2 1 1 2 1n n n n n n nc a c a c b m b m l v l v         



Design of Predictive Controllers 
Feedforward Compensation (contd…) 

           C z A z B z M z L z V z 

+
+

M(z)
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L(z)
V(z)

C(z)

 
1

A z

Disturbance Structure for Feedforward Compensation.  

For the plant output expressed in the upper form, the denominator 

dynamics are common to both the actuations and the disturbances.  

Effectively this means that both actuations and disturbances act on the 

plant at the same point, as shown in the above figure.  
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