DIGITAL SIGNAL PROCESSORS

Prof. Anjan Rakshit and Prof. Amitava Chatterjee Electrical Measurement and Instrumentation Laboratory, Electrical Engineering Department, Jadavpur University, Kolkata, India.

Categorized by memory organization

- Von Neumann architecture -> Microprocessors
- Harvard architecture ->

Modified Harvard architecture -> _

Digital Signal Processors

Categorized by memory organization

Von Neumann architecture

The Von Neumann architecture is a design model for a stored-program digital computer that uses a processing unit and a single separate storage structure to hold both instructions and data.

Categorized by memory organization

Harvard architecture

The Harvard architecture is a computer architecture with physically separate storage and signal pathways for instructions and data.

Von Neumann versus Harvard

Categorized by memory organization

Modified Harvard architecture

The Modified Harvard architecture is very much like the Harvard architecture but provides a pathway between the data memory and the CPU that allows some words from the data memory to be treated as instructions.

Processor Architecture of TMS320C25

A second generation Digital Signal Processor from Texas Instruments with **Modified Harvard architecture**

Single-cycle Multiply/Accumulate Instructions

Bit-reversed Indexed-Addressing Mode for Radix-2 FFT

Single-cycle Multiply/Accumulate Instructions are necessary for a Digital Signal Processor to implement FIR/IIR digital filters and FFT algorithms for real-time applications.

Computation of butterfly for radix-2 FFT

TMS320C25 Multiply/Accumulate Operation

TMS320C25 Multiply/Accumulate Operation

TMS320C25 Benchmarks (40 MHz Clock)

- FIR filter tap ~ 100 nano Sec per tap
- > 256 tap FIR filter sample rate ~ 37 KHz
- Second order IIR filter sample rate ~ 1 MHz
- ➢ 8-point FFT sample rate ~ 50 KHz
- ➤ Single PID control loop sample rate ~ 750 KHz

