Prof. Anjan Rakshit and Prof. Amitava Chatterjee Electrical Measurement and Instrumentation Laboratory, Electrical Engineering Department, Jadavpur University, Kolkata, India.

References

M. E. Van Valkenburg. Network Analysis. Prentice Hall.

J. G. Proakis and D. G. Manolakis. Digital Signal Processing: Principles, Algorithms and Applications. Prentice Hall. Fourth Edition.

Johnny R. Johnson. Introduction to Digital Signal Processing. Prentice Hall.

Li Tan. Digital Signal Processing: Fundamentals and Applications. Academic Press.

In time domain or sequence domain, representation of digital signals describes the signal amplitude versus the sampling time instant or the sample number.

However, in some applications, signal frequency content is more useful than the digital signal samples.

Hence representation of the digital signal in terms of its frequency components in frequency domain, i.e. the signal spectrum, needs to be developed.

<u>Conclusion</u>: The **spectral plot** better displays frequency information of a digital signal.

Let x(t) be a periodic function of time having a time period T_0 , then the fundamental frequency of x(t) is

Let x(t) be a periodic function of time having a time period T_0 , then the fundamental frequency of x(t) is

The signal x(t) may be expressed in terms of the Fourier series as

where

$$a_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} x(t) d(\omega_{0}t) = \frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) dt$$
, the average value

$$a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} x(t) \cos n\omega_{0} t d(\omega_{0}t) = \frac{2}{T_{0}} \int_{0}^{T_{0}} x(t) \cos n\omega_{0} t dt$$
for $n = 1, 2, 3, ...$

$$b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} x(t) \sin n\omega_{0} t d(\omega_{0}t) = \frac{2}{T_{0}} \int_{0}^{T_{0}} x(t) \sin n\omega_{0} t dt$$
for $n = 1, 2, 3$

a_n's are known as cosine coefficients and b_n's are known as sine coefficients.

Relation (2) may be rewritten as

$$x(t) = a_0 + \sum_{n=1}^{\infty} \sqrt{a_n^2 + b_n^2} \left(\frac{a_n}{\sqrt{a_n^2 + b_n^2}} \cos n\omega_0 t - \frac{(-b_n)}{\sqrt{a_n^2 + b_n^2}} \sin n\omega_0 t \right)$$

or
$$x(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n)$$
(3)

 $\left[\cos(A+B) = \cos A \cos B - \sin A \sin B\right]$

where
$$C_0 = a_0$$
 $C_n = \sqrt{a_n^2 + b_n^2}$ $\theta_n = -\tan^{-1} \frac{b_n}{a_n}$ $\theta_n^{-b_n}$

 C_n , n = 1, 2, 3, ... is the *amplitude* and θ_n , n = 1, 2, 3, ... is the *phase* of the *n*th harmonic. C_0 is the average value.

Expressing cosine and sine terms of relation (2) in terms of their complex exponential values as

$$x(t) = a_0 + \sum_{n=1}^{\infty} \left[a_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) + b_n \left(\frac{e^{jn\omega_0 t} - e^{-jn\omega_0 t}}{2j} \right) \right]$$

or
$$x(t) = a_0 + \sum_{n=1}^{\infty} \left[e^{jn\omega_0 t} \left(\frac{a_n - jb_n}{2} \right) + e^{-jn\omega_0 t} \left(\frac{a_n + jb_n}{2} \right) \right]$$

or
$$x(t) = F_0 + \sum_{n=1}^{\infty} [F_n e^{jn\omega_0 t} + F_{-n} e^{-jn\omega_0 t}]$$
(4)

where
$$F_0 = a_0$$
, $F_n = (\frac{a_n - jb_n}{2})$ and $F_{-n} = (\frac{a_n + jb_n}{2})$

Now
$$x(t) = F_0 + \sum_{n=1}^{\infty} [F_n e^{jn\omega_0 t} + F_{-n} e^{-jn\omega_0 t}]$$
(4)

where
$$F_0 = a_{0}$$
, $F_n = (\frac{a_n - jb_n}{2})$ and $F_{-n} = (\frac{a_n + jb_n}{2})$

Here
$$F_{-n} = \hat{F}_n$$
 , conjugate of F_n .

Relation (4) may be expressed as

$$x(t) = F_0 + \sum_{n=1}^{\infty} F_n e^{jn\omega_0 t} + \sum_{n=1}^{\infty} F_{-n} e^{-jn\omega_0 t}$$

Now
$$x(t) = F_0 + \sum_{n=1}^{\infty} F_n e^{jn\omega_0 t} + \sum_{n=1}^{\infty} F_{-n} e^{-jn\omega_0 t}$$

 $x(t) = F_0 + \sum_{n=1}^{\infty} F_n e^{jn\omega_0 t} + \sum_{n=-1}^{-\infty} F_n e^{jn\omega_0 t}$
Hence, we can write, $x(t) = \sum_{n=1}^{\infty} F_n e^{jn\omega_0 t}$ (5)

Thus x(t) may be expressed in terms of Complex Fourier Series in relation (5). Here F_n is known as the *Complex Fourier coefficient*.

 $n = -\infty$

Now
$$x(t) = F_0 + \sum_{n=1}^{\infty} F_n e^{jn\omega_0 t} + \sum_{n=1}^{\infty} F_{-n} e^{-jn\omega_0 t}$$

 $x(t) = F_0 + \sum_{n=1}^{\infty} F_n e^{jn\omega_0 t} + \sum_{n=-1}^{-\infty} F_n e^{jn\omega_0 t}$

Hence, we can write,

$$x(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_0 t} \qquad \dots \dots (5)$$

Variation of F_n coefficients with n

Variation of F_n coefficients with n

The amplitudes C_n 's of relation (3) may be related to F_n 's as

 $C_{\scriptscriptstyle 0}=F_{\scriptscriptstyle 0}$, the average value

and $C_n = 2|F_n|$, for n = 1, 2, 3,(6)

the amplitude of the nth harmonic.

and
$$\theta_{n} = -\tan^{-1}\left(\frac{j(F_{n} - F_{-n})}{(F_{n} + F_{-n})}\right)$$

the phase of the nth harmonic.

From relation (4), F_n may be expressed as

$$F_n = \left(\frac{a_n - jb_n}{2}\right)$$

Substituting expressions of a_n and b_n from relation (2)

$$F_n = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-jn\omega_0 t} dt \qquad \dots \dots (7)$$

For *aperiodic signals*, the time period T_0 becomes infinite, and the *Fourier transform* of an aperiodic signal x(t) is defined as

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \qquad \dots (8)$$

Let x_k be a periodic discrete sequence obtained from a periodic signal x(t) with a time period T_0 .

Let *N* number of samples be available in the time period T_0 with a sampling interval τ . The corresponding sampling frequency = f_s Hz.

<u>Assumption</u>: The periodic discrete sequence is band limited to have all harmonic frequencies less than the folding frequency (f_s/2) so that aliasing does not occur.

 $T_0 = N\tau$ and $\tau = 1/f_s$ (9)

Using rectangular rule for integration, the Fourier coefficients may be obtained as

From relation (2)
$$a_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt$$

.....(10)

$$a_{0} = \frac{1}{T_{0}} \sum_{k=0}^{N-1} x_{k} \tau$$

or
$$a_{0} = \frac{1}{N\tau} \sum_{k=0}^{N-1} x_{k} \tau = \frac{1}{N} \sum_{k=0}^{N-1} x_{k}$$

Using rectangular rule for integration, the Fourier coefficients may be obtained as

Similarly,

From relation (2)
$$a_n = \frac{2}{T_0} \int_0^{T_0} x(t) \cos n \omega_0 t dt$$

$$a_{n} = \frac{2}{N\tau} \sum_{k=0}^{N-1} \left[x_{k} \cos n \left(\frac{2\pi}{N\tau} \right) (k\tau) \right] \tau$$

$$2 \sum_{k=0}^{N-1} \left(2\pi kn \right)$$

or
$$a_n = \frac{2}{N} \sum_{k=0}^{N-1} x_k \cos\left(\frac{2\pi kn}{N}\right)$$
(11)

(using the substitutions: $\omega_0 = \frac{2\pi}{T_0} = \frac{2\pi}{N\tau}$ and $T_0 = N\tau$ and $t = k\tau$ in relation (2))

Using rectangular rule for integration, the Fourier coefficients may be obtained as

and

From relation (2)
$$b_n = \frac{2}{T_0} \int_0^{T_0} x(t) \sin n \omega_0 t dt$$

$$b_n = \frac{2}{N\tau} \sum_{k=0}^{N-1} \left[x_k \sin n \left(\frac{2\pi}{N\tau} \right) (k\tau) \right] \tau$$

or
$$b_n = \frac{2}{N} \sum_{k=0}^{N-1} x_k \sin\left(\frac{2\pi kn}{N}\right)$$
(12)

(using the substitutions: $\omega_0 = \frac{2\pi}{T_0} = \frac{2\pi}{N\tau}$ and $T_0 = N\tau$ and $t = k\tau$ in relation (2))

Now from relations (11) and (12),

$$\frac{a_n - jb_n}{2} = \frac{1}{N} \sum_{k=0}^{N-1} x_k \left[\cos\left(\frac{2\pi kn}{N}\right) - j \sin\left(\frac{2\pi kn}{N}\right) \right]$$
$$= \frac{1}{N} \sum_{k=0}^{N-1} x_k e^{-jn\left(\frac{2\pi k}{N}\right)}$$

Hence, the **Fourier series coefficients** for the periodic discrete sequence are:

$$F_{0} = a_{0} \text{ and}$$

$$F_{n} = \frac{a_{n} - jb_{n}}{2} = \frac{1}{N} \sum_{k=0}^{N-1} x_{k} e^{-jn\left(\frac{2\pi k}{N}\right)}, \quad n = \pm 1, \pm 2, \pm 3, \cdots$$
(12a)

Since the coefficients F_n are obtained from the Fourier series expansion in the complex form, the resultant spectrum F_n will have two sides.

Now from relations (11) and (12),

$$\frac{a_n - jb_n}{2} = \frac{1}{N} \sum_{k=0}^{N-1} x_k \left[\cos\left(\frac{2\pi kn}{N}\right) - j \sin\left(\frac{2\pi kn}{N}\right) \right]$$
$$= \frac{1}{N} \sum_{k=0}^{N-1} x_k e^{-jn\left(\frac{2\pi k}{N}\right)}$$

Hence, the Fourier series coefficients for the periodic discrete sequence are:

$$F_{0} = a_{0} \text{ and}$$

$$F_{n} = \frac{a_{n} - jb_{n}}{2} = \frac{1}{N} \sum_{k=0}^{N-1} x_{k} e^{-jn\left(\frac{2\pi k}{N}\right)}, \quad n = \pm 1, \pm 2, \pm 3, \cdots$$
(12a)

It can be shown that $F_{n+N} = F_n$. Hence the Fourier series coefficients F_n are periodic having a periodicity of *N*.

Amplitude spectrum of a representative periodic signal

For the *kth* harmonic, the frequency is $f=kf_0$. The frequency spacing between the consecutive spectral lines, called the frequency resolution, is f_0 Hz.

As $F_{n+N} = F_n$, the two-sided line amplitude spectrum $|F_n|$ is periodic.

OBSERVATIONS:

- Only the line spectral portion between the frequency –f_s/2 and frequency f_s/2 (folding frequency) represents the frequency information of the periodic signal.
- The spectral portion from $f_s/2$ to f_s is a copy of the spectrum in the negative frequency range from $-f_s/2$ to 0 Hz due to the spectrum being periodic for every Nf_0 Hz.

OBSERVATIONS:

 For convenience, we compute the spectrum over the range from 0 to f_s Hz with nonnegative indices, i.e.,

$$F_n = \frac{1}{N} \sum_{k=0}^{N-1} x_k e^{-jn\left(\frac{2\pi k}{N}\right)}, \quad n = 0, 1, 2, 3, \dots, N-1 \quad \dots (12b)$$

• If negative indexed spectral values are needed, those can be obtained using the relation: $F_{n+N} = F_n$.

Let us consider a periodic signal $x(t) = \sin(2\pi t)$, sampled using a sampling rate of $f_s = 4$ Hz. (*i*) Compute the Fourier coefficients or spectrum F_n using the samples in one period. (*ii*) Plot the two-sided amplitude spectrum $|F_n|$ over the range from -2 to 2 Hz.

Solution

From the analog signal, we get fundamental frequency $\omega_0 = 2\pi$ rad/s. Hence $f_0 = (\omega_0/2\pi) = 1$ Hz and fundamental time period $T_0 = 1$ s. Sampling interval $\tau = 1/f_s = 0.25$ s. Hence sampled signal = $x_k = x(k\tau) = \sin(2\pi k\tau) = \sin(0.5\pi k)$

First eight samples of the periodic digital signal

Let us consider a periodic signal $x(t) = \sin(2\pi t)$, sampled using a sampling rate of $f_s = 4$ Hz. (*i*) Compute the Fourier coefficients or spectrum F_n using the samples in one period. (*ii*) Plot the two-sided amplitude spectrum $|F_n|$ over the range from -2 to 2 Hz.

Solution (contd.)

For a duration of one period, N = 4. The sample values are: $x_0=0$, $x_1=1$, $x_2=0$, $x_3=-1$. From the expression of F_n in relation (12a), we can compute:

$$F_{0} = \frac{1}{4} \sum_{k=0}^{3} x_{k} = \frac{1}{4} (x_{0} + x_{1} + x_{2} + x_{3}) = \frac{1}{4} (0 + 1 + 0 - 1) = 0$$

$$F_{1} = \frac{1}{4} \sum_{k=0}^{3} x_{k} e^{-j2\pi \times \binom{1k}{4}} = \frac{1}{4} \left(x_{0} + x_{1} e^{-j\pi} + x_{2} e^{-j\pi} + x_{3} e^{-j3\pi} \right)$$

$$= \frac{1}{4} (x_{0} - jx_{1} - x_{2} + jx_{3}) = \frac{1}{4} (0 - j1 - 0 + j(-1)) = -j0.5$$

Let us consider a periodic signal $x(t) = \sin(2\pi t)$, sampled using a sampling rate of $f_s = 4$ Hz. (*i*) Compute the Fourier coefficients or spectrum F_n using the samples in one period. (*ii*) Plot the two-sided amplitude spectrum $|F_n|$ over the range from -2 to 2 Hz.

Solution (contd.)

Similarly we get:

$$F_{2} = \frac{1}{4} \sum_{k=0}^{3} x_{k} e^{-j2\pi \times \binom{2k}{4}} = 0 \quad \text{and} \quad F_{3} = \frac{1}{4} \sum_{k=0}^{3} x_{k} e^{-j2\pi \times \binom{3k}{4}} = j0.5$$

Using periodicity, it follows that:

$$F_{-1} = F_3 = j0.5$$
 and $F_{-2} = F_2 = 0$

Let us consider a periodic signal $x(t) = \sin(2\pi t)$, sampled using a sampling rate of $f_s = 4$ Hz. (*i*) Compute the Fourier coefficients or spectrum F_n using the samples in one period. (*ii*) Plot the two-sided amplitude spectrum $|F_n|$ over the range from -2 to 2 Hz.

Solution (contd.)

Two sided amplitude spectrum $|F_n|$ for the periodic digital signal

Now, from relation (12a), we can write,

$$\left(\frac{N}{2}\right)\left(a_n - jb_n\right) = \sum_{k=0}^{N-1} x_k e^{-jn\left(\frac{2\pi k}{N}\right)}$$

Substituting
$$Na_0 = X_0$$
 and $\left(\frac{N}{2}\right)(a_n - jb_n) = X_n$, for $n = \pm 1, \pm 2, \pm 3, \dots$

$$X_n = NF_n = \sum_{k=0}^{N-1} x_k e^{-jn\left(\frac{2\pi k}{N}\right)} \quad \text{for } n = 0, \pm 1, \pm 2, \dots \quad \dots \dots (13)$$

From relation (13)
$$X_n = NF_n = \sum_{k=0}^{N-1} x_k e^{-jn\left(\frac{2\pi k}{N}\right)}$$
 for $n = 0, \pm 1, \pm 2, ...$

Now, let us consider n = N + m, for $m = 0, \pm 1, \pm 2, ...$

$$X_{n} = \sum_{k=0}^{N-1} x_{k} e^{-j(N+m)\left(\frac{2\pi k}{N}\right)}$$

or
$$X_{m+N} = \sum_{k=0}^{N-1} x_k e^{-j(2\pi k)} \cdot e^{-jm\left(\frac{2\pi k}{N}\right)}$$

or
$$X_{m+N} = \sum_{k=0}^{N-1} x_k e^{-jm\left(\frac{2\pi k}{N}\right)} = X_m$$
(14)

<u>Conclusion</u>: X_n is periodic with a period N.

Then, within one period (i.e. for n = 0, 1, 2, ..., N-1),

$$X_{n} = \sum_{k=0}^{N-1} x_{k} e^{-jn\left(\frac{2\pi k}{N}\right)}, \text{ for } n = 0, 1, 2, \dots, N-1 \qquad \dots \dots (15)$$

<u>Conclusion</u>: Relation (15) is known as the Discrete Fourier Transform (DFT) of a finite sequence x_k , k = 0, 1, 2, ..., N-1.

The X_n constitutes the DFT coefficients.

Relation (14) represents the **periodicity property of DFT**.

 X_n repeats at the *N*th harmonic.

The frequency corresponding to the *N*th harmonic is:

$$Nf_0 = \frac{N}{T_0} = \frac{N}{N\tau} = \frac{1}{\tau} = f_s$$
, the sampling frequency.

<u>Conclusion</u>: X_n repeats at the sampling frequency f_s .

The **Discrete Fourier Transform** (**DFT**) of a finite sequence x_k , k = 0, 1, 2, ..., N-1 is defined as

$$X_n = \sum_{k=0}^{N-1} x_k e^{-jn\left(\frac{2\pi k}{N}\right)} , \text{ for } n = 0, 1, 2, \dots, N-1 \qquad \dots \dots (15)$$

Amplitude C_n (c.f. relation (3)) is related to X_n as

$$C_{_{0}}=\!rac{1}{N}ig|X_{_{0}}ig|\,$$
 , the average value

0

and
$$C_n = \frac{2}{N} |X_n|$$
, for $n = 1, 2, 3, ...$ (16)

The development of the DFT formula

Inverse Discrete Fourier Transform

By multiplying
$$\frac{1}{N}e^{jn\left(\frac{2\pi l}{N}\right)}$$

 $X_n = \sum_{k=0}^{N-1} x_k e^{-jn\left(\frac{2\pi k}{N}\right)}$, for $n = 0, 1, 2, ..., N-1$

on both sides of relation (15) and summing up from n = 0 to N-1 with $0 \le l < N$

.....(17)

$$\frac{1}{N} \sum_{n=0}^{N-1} X_n e^{jn\left(\frac{2\pi l}{N}\right)} = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} x_k e^{-jn\left(\frac{2\pi k}{N}\right)} e^{jn\left(\frac{2\pi l}{N}\right)}$$
$$= \frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} x_k e^{jn(l-k)\frac{2\pi}{N}}$$

Now, changing the order of summation,

$$\frac{1}{N}\sum_{n=0}^{N-1} X_n e^{jn\left(\frac{2\pi l}{N}\right)} = \sum_{k=0}^{N-1} x_k \left[\frac{1}{N}\sum_{n=0}^{N-1} e^{jn\frac{2\pi(l-k)}{N}}\right]$$

Inverse Discrete Fourier Transform

Now, in
$$\sum_{n=0}^{N-1} e^{jn \frac{2\pi(l-k)}{N}}$$
, when $(l-k) = pN$
where *p* is a positive integer, the expression becomes $\sum_{n=0}^{N-1} e^{jn 2\pi p}$
As *np* is another integer, it becomes $\sum_{n=0}^{N-1} e^{j2\pi(np)} = \sum_{n=0}^{N-1} 1 = N$

In the present case, as *I* and *k* are limited within 0 and (N - 1), the possible value of *p* is zero, i.e. when (I - k) = 0 or I = k, the summation becomes *N*.
Now, in
$$\sum_{n=0}^{N-1} e^{jn \frac{2\pi(l-k)}{N}}$$
, let $\frac{2\pi(l-k)}{N} = \theta$
Then the summation becomes $\sum_{n=0}^{N-1} e^{jn \frac{2\pi(l-k)}{N}} = \sum_{n=0}^{N-1} e^{jn\theta}$

It may be expressed as

$$\sum_{n=0}^{N-1} e^{jn\theta} = \sum_{m=1}^{N} e^{j(m-1)\theta} \text{, where } m = n + \frac{1}{2}$$
$$= \sum_{m=1}^{N} e^{jm\theta} \cdot e^{-j\theta}$$

or
$$\sum_{n=0}^{N-1} e^{jn\theta} = \sum_{m=1}^{N} e^{jm\theta} \cdot e^{-j\theta}$$
$$= e^{-j\theta} \left[\sum_{m=1}^{N} (\cos m\theta + j \sin m\theta) \right]$$
$$= e^{-j\theta} \left[\frac{\sin \frac{N\theta}{2}}{\sin \frac{\theta}{2}} \cos \left(\frac{N+1}{2}\theta\right) + j \frac{\sin \frac{N\theta}{2}}{\sin \frac{\theta}{2}} \sin \left(\frac{N+1}{2}\theta\right) \right]$$
$$= e^{-j\theta} \left[\frac{\sin \frac{N\theta}{2}}{\sin \frac{\theta}{2}} e^{j\frac{N+1}{2}\theta} \right]$$

or
$$\sum_{n=0}^{N-1} e^{jn\theta} = e^{-j\theta} \left[\frac{\sin \frac{N\theta}{2}}{\sin \frac{\theta}{2}} e^{j\frac{N+1}{2}\theta} \right]$$
$$= \frac{\sin \frac{N\theta}{2}}{\sin \frac{\theta}{2}} e^{j\frac{N-1}{2}\theta}$$
$$= \frac{\left(e^{j\frac{N\theta}{2}} - e^{-j\frac{N\theta}{2}}\right)}{\left(e^{j\frac{\theta}{2}} - e^{-j\frac{\theta}{2}}\right)} e^{j\frac{N\theta}{2}} = \frac{e^{jN\theta} - 1}{e^{j\theta} - 1}$$

or
$$\sum_{n=0}^{N-1} e^{jn\theta} = \frac{e^{jN\theta} - 1}{e^{j\theta} - 1}$$

Putting the value of θ ,

$$\sum_{n=0}^{N-1} e^{jn2\pi \frac{(l-k)}{N}} = \frac{e^{j2\pi(l-k)}-1}{e^{j2\pi \frac{(l-k)}{N}}-1}$$

Now for $l \neq k$, the summation is zero.

And for I = k, it becomes indeterminate $\left(\frac{0}{0}\right)$ form.

Thus, $\sum_{n=0}^{N-1} e^{jn2\pi \frac{(l-k)}{N}} = N, \text{ for } l = k$ $= 0, \text{ for } l \neq k$

considering $0 \le l, k < N$

Thus all terms on the right hand side of relation (17) vanishes except when I = k.

$$\frac{1}{N}\sum_{n=0}^{N-1} X_n e^{jn\left(\frac{2\pi l}{N}\right)} = \sum_{k=0}^{N-1} x_k \left[\frac{1}{N}\sum_{n=0}^{N-1} e^{jn\frac{2\pi(l-k)}{N}}\right] \qquad \dots \dots (17)$$

Inverse Discrete Fourier Transform Thus, $\sum_{k=1}^{N-1} e^{jn2\pi \frac{(l-k)}{N}} = N$, for l = k

= 0, for $l \neq k$

considering $0 \le l, k < N$

n=0

Thus all terms on the right hand side of relation (17) vanishes except when l = k.

Therefore, $\frac{1}{N} \sum_{n=0}^{N-1} X_n e^{jn\left(\frac{2\pi l}{N}\right)} = x_l \left(\frac{N}{N}\right) = x_l, \text{ for } l = 0, 1, 2, \dots, N-1$

$$\frac{1}{N} \sum_{n=0}^{N-1} X_n e^{jn\left(\frac{2\pi l}{N}\right)} = x_l\left(\frac{N}{N}\right) = x_l, \text{ for } l = 0, 1, 2, \dots, N-1$$

Now, changing the suffix *I* to *k*,

$$x_{k} = \frac{1}{N} \sum_{n=0}^{N-1} X_{n} e^{jn\left(\frac{2\pi k}{N}\right)}, \text{ for } k = 0, 1, 2, \dots, N-1 \qquad \dots \dots (18)$$

Relation (18) is known as the **Inverse Discrete Fourier Transform (IDFT)**.

Relations (15) and (18) are called *N*-point DFT pair.

N-point DFT pair

N-point DFT:

$$X_{n} = \sum_{k=0}^{N-1} x_{k} e^{-jn\left(\frac{2\pi k}{N}\right)}, \text{ for } n = 0, 1, 2, \dots, N-1 \qquad \dots \dots (15)$$

N-point IDFT:

by the term W_N , the DFT pair takes the form

$$X_{n} = \sum_{k=0}^{N-1} x_{k} W_{N}^{nk}, \text{ for } n = 0, 1, 2, ..., N-1 \qquad(19)$$
$$x_{k} = \frac{1}{N} \sum_{n=0}^{N-1} X_{n} W_{N}^{-nk}, \text{ for } k = 0, 1, 2, ..., N-1 \qquad(20)$$

N-point DFT pair

$$X_{n} = \sum_{k=0}^{N-1} x_{k} W_{N}^{nk}, \text{ for } n = 0, 1, 2, ..., N-1 \qquad \dots \dots (19)$$
$$x_{k} = \frac{1}{N} \sum_{n=0}^{N-1} X_{n} W_{N}^{-nk}, \text{ for } k = 0, 1, 2, \dots, N-1 \qquad \dots \dots (20)$$

where
$$W_N = e^{-j\left(\frac{2\pi}{N}\right)}$$

a complex operator (twiddle factor), which rotates any vector through $\left(-2\pi/N\right)$ Radians.

$$W_N = e^{-j2\pi/N} = \cos\left(\frac{2\pi}{N}\right) - j\sin\left(\frac{2\pi}{N}\right)$$

Here, n = harmonic number and k = sample number.

X = fft(x) x = ifft(X) x = input vectorX = DFT coefficient vector % Calculate DFT coefficients % Inverse DFT

MATLAB FFT functions

Problem 2

A sequence x_k , for k = 0,1,2,3, is given as: $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, and $x_3 = 4$. Evaluate its DFT X_n .

Solution Here N = 4. Hence $W_N = W_4 = e^{-j(\frac{2\pi}{4})} = e^{-j(\frac{\pi}{2})}$ Therefore, $X_n = \sum_{k=1}^{3} x_k W_4^{nk} = \sum_{k=1}^{3} x_k e^{-j\frac{\pi nk}{2}}$ For n = 0, $X_0 = \sum_{k=0}^{3} x_k e^{-j0} = x_0 e^{-j0} + x_1 e^{-j0} + x_2 e^{-j0} + x_3 e^{-j0}$ $= x_0 + x_1 + x_2 + x_3 = 1 + 2 + 3 + 4 = 10$ For n = 1, $X_1 = \sum_{k=1}^{3} x_k e^{-j\frac{\pi k}{2}} = x_0 e^{-j0} + x_1 e^{-j\frac{\pi}{2}} + x_2 e^{-j\pi} + x_3 e^{-j\frac{3\pi}{2}}$ $= x_0 - jx_1 - x_2 + jx_3 = 1 - j2 - 3 + j4 = -2 + j2$

Problem 2

A sequence x_k , for k = 0,1,2,3, is given as: $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, and $x_3 = 4$. Evaluate its DFT X_n .

Solution (contd.) Here N = 4. Hence $W_N = W_4 = e^{-j\left(\frac{2\pi}{4}\right)} = e^{-j\left(\frac{\pi}{2}\right)}$ Therefore, $X_n = \sum_{k=1}^{3} x_k W_4^{nk} = \sum_{k=1}^{3} x_k e^{-j\frac{\pi n\kappa}{2}}$ For n = 2, $X_2 = \sum_{k=1}^{3} x_k e^{-j\frac{2\pi k}{2}} = x_0 e^{-j0} + x_1 e^{-j\pi} + x_2 e^{-j2\pi} + x_3 e^{-j3\pi}$ $= x_0 - x_1 + x_2 - x_3 = 1 - 2 + 3 - 4 = -2$ For n = 3, $X_3 = \sum_{k=1}^{3} x_k e^{-j\frac{3\pi k}{2}} = x_0 e^{-j0} + x_1 e^{-j\frac{3\pi}{2}} + x_2 e^{-j3\pi} + x_3 e^{-j\frac{9\pi}{2}}$ $= x_0 + jx_1 - x_2 - jx_3 = 1 + j2 - 3 - j4 = -2 - j2$

Problem 2

A sequence x_k , for k = 0,1,2,3, is given as: $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, and $x_3 = 4$. Evaluate its DFT X_n .

Solution (contd.)

This result can be verified in MATLAB[®] as:

 $\gg X = fft([1 \ 2 \ 3 \ 4])$ X = 10.0000 - 2.0000 + 2.0000i - 2.0000 - 2.0000 - 2.0000i

Problem 3

Using the DFT coefficients X_n , for n = 0,1,2,3, computed in the previous problem, evaluate its inverse DFT to determine the time domain sequence x_k .

Solution
Here N = 4. Hence
$$W_N^{-1} = W_4^{-1} = e^{j\left(\frac{2\pi}{4}\right)} = e^{j\left(\frac{\pi}{2}\right)}$$

Therefore, $x_k = \frac{1}{4}\sum_{n=0}^3 X_n W_4^{-nk} = \frac{1}{4}\sum_{n=0}^3 X_n e^{j\frac{\pi nk}{2}}$

For k = 0, $x_{0} = \frac{1}{4} \sum_{n=0}^{3} X_{n} e^{j0} = \frac{1}{4} \left(X_{0} e^{j0} + X_{1} e^{j0} + X_{2} e^{j0} + X_{3} e^{j0} \right)$ $= \frac{1}{4} \left(X_{0} + X_{1} + X_{2} + X_{3} \right)$ $= \frac{1}{4} \left(10 + \left(-2 + j2 \right) - 2 + \left(-2 - j2 \right) \right) = 1$

Problem 3

Using the DFT coefficients X_n , for n = 0, 1, 2, 3, computed in the previous problem, evaluate its inverse DFT to determine the time domain sequence x_k .

Solution (contd.) Here N = 4. Hence $W_N^{-1} = W_4^{-1} = e^{j\left(\frac{2\pi}{4}\right)} = e^{j\left(\frac{\pi}{2}\right)}$ Therefore, $x_k = \frac{1}{4}\sum_{n=0}^3 X_n W_4^{-nk} = \frac{1}{4}\sum_{n=0}^3 X_n e^{j\frac{\pi nk}{2}}$

For
$$k = 1$$
,
 $x_1 = \frac{1}{4} \sum_{n=0}^{3} X_n e^{j\frac{n\pi}{2}} = \frac{1}{4} \left(X_0 e^{j0} + X_1 e^{j\frac{\pi}{2}} + X_2 e^{j\pi} + X_3 e^{j\frac{3\pi}{2}} \right)$
 $= \frac{1}{4} \left(X_0 + jX_1 - X_2 - jX_3 \right)$
 $= \frac{1}{4} \left(10 + j(-2 + j2) + 2 - j(-2 - j2) \right) = 2$

Problem 3

Using the DFT coefficients X_n , for n = 0,1,2,3, computed in the previous problem, evaluate its inverse DFT to determine the time domain sequence x_k .

Solution (contd.) Here N = 4. Hence $W_N^{-1} = W_4^{-1} = e^{j\left(\frac{2\pi}{4}\right)} = e^{j\left(\frac{\pi}{2}\right)}$ Therefore, $x_k = \frac{1}{4}\sum_{n=0}^3 X_n W_4^{-nk} = \frac{1}{4}\sum_{n=0}^3 X_n e^{j\frac{\pi nk}{2}}$

For
$$k = 2$$
,
 $x_2 = \frac{1}{4} \sum_{n=0}^{3} X_n e^{jn\pi} = \frac{1}{4} \left(X_0 e^{j0} + X_1 e^{j\pi} + X_2 e^{j2\pi} + X_3 e^{j3\pi} \right)$
 $= \frac{1}{4} \left(X_0 - X_1 + X_2 - X_3 \right)$
 $= \frac{1}{4} \left(10 - \left(-2 + j2 \right) + \left(-2 \right) - \left(-2 - j2 \right) \right) = 3$

Problem 3

Using the DFT coefficients X_n , for n = 0,1,2,3, computed in the previous problem, evaluate its inverse DFT to determine the time domain sequence x_k .

Solution (contd.) Here N = 4. Hence $W_N^{-1} = W_4^{-1} = e^{j\left(\frac{2\pi}{4}\right)} = e^{j\left(\frac{\pi}{2}\right)}$ Therefore, $x_k = \frac{1}{4}\sum_{n=0}^3 X_n W_4^{-nk} = \frac{1}{4}\sum_{n=0}^3 X_n e^{j\frac{\pi nk}{2}}$

For
$$k = 3$$
,
 $x_3 = \frac{1}{4} \sum_{n=0}^{3} X_n e^{j\frac{3n\pi}{2}} = \frac{1}{4} \left(X_0 e^{j0} + X_1 e^{j\frac{3\pi}{2}} + X_2 e^{j3\pi} + X_3 e^{j\frac{9\pi}{2}} \right)$
 $= \frac{1}{4} \left(X_0 - jX_1 - X_2 + jX_3 \right)$
 $= \frac{1}{4} \left(10 - j(-2 + j2) - (-2) + j(-2 - j2) \right) = 4$

Problem 3

Using the DFT coefficients X_n , for n = 0,1,2,3, computed in the previous problem, evaluate its inverse DFT to determine the time domain sequence x_k .

Solution (contd.)

This result can be verified in MATLAB® as:

$$\gg x = ifft([10 - 2 + 2j - 2 - 2 - 2j])$$

x = 1 2 3 4.

Periodicity

From relation (19),

$$X_n = \sum_{k=0}^{N-1} x_k W_N^{nk}$$
, for $n = 0, 1, 2, ..., N-1$, where $W_N = e^{-j\left(\frac{2\pi}{N}\right)}$

Then,

$$X_{n+pN} = \sum_{k=0}^{N-1} x_k W_N^{(n+pN)k} \text{ for } p = 0, \pm 1, \pm 2, \dots$$

$$= \sum_{k=0}^{N-1} x_k W_N^{nk}, \text{ as } W_N^{pNk} = W_N^{N(pk)} = 1$$

$$= X_n$$
i.e. $X_{n+pN} = X_n \text{ for } p = 0, \pm 1, \pm 2, \dots$ (21)

Thus X_n is **periodic** with a period N, i.e. the *pN*th harmonic or at the *p* times sampling frequency, the DFT repeats.

Linearity

If
$$x_{1k} \xleftarrow{\text{DFT}}_{N} X_{1n}$$
 and $x_{2k} \xleftarrow{\text{DFT}}_{N} X_{2n}$

then for any real-valued or complex-valued constants a_1 and a_2 ,

$$a_1 x_{1k} + a_2 x_{2k} \xleftarrow{\text{DFT}}{N} a_1 X_{1n} + a_2 X_{2n}$$

This property follows immediately from the definition of DFT given in (19).

Circular symmetries of a sequence

The *N*-point DFT of a finite duration sequence x_k of length $L \le N$, is equivalent to the *N*-point DFT of a periodic sequence x_{pk} of period *N*, which is obtained by periodically extending x_k i.e.

Let us assume that the periodic sequence x_{pk} is shifted by m units to the right. Thus we obtain another periodic sequence, given as:

$$x'_{pk} = x_{p(k-m)} = \sum_{l=-\infty}^{\infty} x_{k-m-lN}$$
(21b)

The finite duration sequence

$$x'_{k} = \begin{cases} x'_{pk}, & 0 \le k \le N-1 \\ 0, & \text{otherwise} \end{cases}$$
(21c)

Is related to the original sequence x_k by a circular shift.

Circular symmetries of a sequence

In general, the circular shift of the sequence can be represented as the index modulo N. Thus we can write,

$$x'_{k} = x_{(k-m, \text{ modulo } N)} \equiv x_{(k-m)_{N}}$$
(21d)

For example, let us assume m = 2 and N = 4. Then we have,

$$x'_k = x_{(k-2)_4}$$

This implies that

$$x'_{0} = x_{(-2)_{4}} = x_{2}$$
$$x'_{1} = x_{(-1)_{4}} = x_{3}$$
$$x'_{2} = x_{(0)_{4}} = x_{0}$$
$$x'_{3} = x_{(1)_{4}} = x_{1}$$

Hence x'_k is simply x_k shifted circularly by two units in time, where counterclockwise direction has been arbitrarily selected as the positive direction.

Circular symmetries of a sequence

Hence we can conclude that a circular shift of an *N*-point sequence is equivalent to a linear shift of its periodic extension, and vice versa.

The inherent periodicity resulting from the arrangement of the *N*-point sequence on the circumference of a circle dictates a different definition of even and odd symmetry, and time reversal of a sequence.

An *N*-point sequence is called circularly even if it is symmetric about the point zero on the circle i.e.

$$x_{N-k} = x_k$$
 $1 \le k \le N-1$ (21e)

An *N*-point sequence is called circularly odd if it is antisymmetric about the point zero on the circle i.e.

$$x_{N-k} = -x_k$$
 $1 \le k \le N-1$ (21f)

The **time reversal of an** *N***-point sequence** is attained by reversing its samples about the point zero on the circle i.e.

$$x_{(-k)_N} = x_{(N-k)}$$
 $1 \le k \le N-1$ (21g)

Circular symmetries of a sequence

This **time reversal** is equivalent to plotting x_k in a clockwise direction on a circle.

An equivalent definition of even and odd sequences for the associated periodic sequence x_{pk} is given as:

even:
$$x_{pk} = x_{p(-k)} = x_{p(N-k)}$$

odd: $x_{pk} = -x_{p(-k)} = -x_{p(N-k)}$ (21h)

If the periodic sequence is complex valued, then:

conjugate even : $x_{pk} = x_{p(N-k)}^{*}$ conjugate odd : $x_{pk} = -x_{p(N-k)}^{*}$ (21i)

Circular symmetries of a sequence

Hence we can decompose the sequence x_{pk} as:

$$x_{pk} = x_{pe(k)} + x_{po(k)}$$
(21j)

where

$$x_{pe(k)} = \frac{1}{2} \left(x_{pk} + x_{p(N-k)}^{*} \right)$$
$$x_{po(k)} = \frac{1}{2} \left(x_{pk} - x_{p(N-k)}^{*} \right) \qquad \dots \dots (21k)$$

Symmetry

From relation (19),

$$X_n = \sum_{k=0}^{N-1} x_k W_N^{nk}$$
, for $n = 0, 1, 2, ..., N-1$, where $W_N = e^{-j\left(\frac{2\pi}{N}\right)}$

Then

Real and imaginary parts of X_n

Multiplication of two DFTs and Circular Convolution

Let us assume that we have two finite duration sequences of length *N*, x_{1k} and x_{2k} . Their respective *N*-point DFTs are:

$$X_{1n} = \sum_{k=0}^{N-1} x_{1k} e^{\frac{-j2\pi kn}{N}}, \quad n = 0, 1, \dots, N-1 \quad \dots \dots (22a)$$
$$X_{2n} = \sum_{k=0}^{N-1} x_{2k} e^{\frac{-j2\pi kn}{N}}, \quad n = 0, 1, \dots, N-1 \quad \dots \dots (22b)$$

If these two DFTs are multiplied together, the resultant will be a DFT X_{3n} of a sequence x_{3k} of length N.

Now our objective is to determine the relationship between x_{3k} and sequences x_{1k} and x_{2k}

Now, we have:

$$X_{3n} = X_{1n} X_{2n} \qquad n = 0, 1, \cdots, N - 1 \qquad \dots (22c)$$

The IDFT of $\{X_{3n}\}$ is:

$$x_{3m} = \frac{1}{N} \sum_{n=0}^{N-1} X_{3n} e^{\frac{j2\pi nm}{N}} = \frac{1}{N} \sum_{n=0}^{N-1} X_{1n} X_{2n} e^{\frac{j2\pi nm}{N}} \qquad \dots \dots (22d)$$

Multiplication of two DFTs and Circular Convolution

Substituting X_{1n} and X_{2n} in (22d) using the DFTs in (22a) and (22b), we get:

The inner sum in the brackets in (22e) has the form:

$$\sum_{n=0}^{N-1} a^n = \begin{cases} N, & a=1\\ \frac{1-a^N}{1-a}, & a\neq1 \end{cases}$$
(22f)

where *a* is defined as:

$$a = e^{\frac{j2\pi(m-k-l)}{N}} \qquad \dots \dots (22g)$$

Multiplication of two DFTs and Circular Convolution

We observe that a = 1, when *m*-*k*-*l* is a multiple of *N*. On the other hand, $a^N = 1$, for any value of $a \neq 0$. Hence (22f) gets reduced to:

$$\sum_{n=0}^{N-1} a^n = \begin{cases} N, & l = m - k + pN = (m - k)_N \\ 0, & \text{otherwise} \end{cases}$$
.....(22h)

If we substitute this result in (22e), we obtain the desired expression of x_{3m} as:

$$x_{3m} = \sum_{k=0}^{N-1} x_{1k} x_{2(m-k)_N}, \qquad m = 0, 1, \cdots, N-1 \qquad \dots (22i)$$

The expression in (22i) has the form of a convolution sum.

However it is not the ordinary linear convolution. Instead, the convolution sum in (22i) Involves the index $(m-k)_N$ and is called **circular convolution**.

<u>Conclusion</u>: The <u>multiplication</u> of the DFTs of two sequences is equivalent to the <u>circular convolution</u> of the two sequences in the time domain.

Circular Convolution

If
$$x_{1k} \xleftarrow{\text{DFT}}_{N} X_{1n}$$
 and $x_{2k} \xleftarrow{\text{DFT}}_{N} X_{2n}$

then

$$x_{1k}(N)x_{2k} \xleftarrow{\text{DFT}} X_{1n}X_{2n}$$

where $x_{1k}(N)x_{2k}$ denotes the circular convolution of the sequences x_{1k} and x_{2k} .

From relation (19),

$$X_n = \sum_{k=0}^{N-1} x_k W_N^{nk}$$
, for $n = 0, 1, 2, ..., N-1$, where $W_N = e^{-j\left(\frac{2\pi}{N}\right)}$

It may be represented in matrix form as

$$\begin{bmatrix} \boldsymbol{X}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{W}_N^{nk} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_k \end{bmatrix} \qquad \dots \dots (23)$$

where $[X_n]$ and $[X_k]$ are $N \times 1$ column matrices and $[W_N^{nk}]$ is an $N \times N$ square matrix.

 $\begin{bmatrix} X_n \end{bmatrix} = \begin{bmatrix} W_N^{nk} \end{bmatrix} \begin{bmatrix} X_k \end{bmatrix}$(23)

.....(23)

$$\begin{bmatrix} \boldsymbol{X}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{W}_N^{nk} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_k \end{bmatrix}$$

For N = 4, relation (23) becomes

$$\begin{bmatrix} X_{0} \\ X_{1} \\ X_{2} \\ X_{3} \end{bmatrix} = \begin{bmatrix} W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\ W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\ W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

(Frequency)

(Time)

$$\begin{bmatrix} X_n \end{bmatrix} = \begin{bmatrix} W_N^{nk} \end{bmatrix} \begin{bmatrix} X_k \end{bmatrix}$$

For N = 4, relation (23) becomes

$$\begin{bmatrix} X_{0} \\ X_{1} \\ X_{2} \\ X_{3} \end{bmatrix} = \begin{bmatrix} W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\ W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\ W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

(Frequency)

(Time)

Hence, computation of X_0 requires 4 complex multiplications and 4 complex additions.

.....(23)

$$\begin{bmatrix} \boldsymbol{X}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{W}_N^{nk} \end{bmatrix} \boldsymbol{X}_k \end{bmatrix} \qquad \dots \dots (23)$$

For N = 4, relation (23) becomes

$$\begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^4 & W_4^6 \\ W_4^0 & W_4^3 & W_4^6 & W_4^9 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

(Frequency)

(Time)

Hence, computation of X_0 requires 4 complex multiplications and 4 complex additions.

In general, execution of relation (23) requires N^2 complex multiplications and N^2 complex additions. Thus computational load increases rapidly with increasing *N*. Fast Fourier Transform (FFT) algorithms allow computation of DFT with reduced computational burden.
From relation (19),

$$X_{n} = \sum_{k=0}^{N-1} x_{k} W_{N}^{nk}, \text{ for } n = 0, 1, 2, \dots, N-1$$

Assuming *N* to be a power of 2, *N*-point data sequence x_k in relation (19) may be split into two N/2 point data sequences as follows:

$$\begin{split} X_{n} &= \sum_{k=0}^{\frac{N}{2}-1} x_{k} W_{N}^{nk} + \sum_{k=\frac{N}{2}}^{\frac{N-1}{2}} x_{k} W_{N}^{nk} \\ &= \sum_{k=0}^{\frac{N}{2}-1} x_{k} W_{N}^{nk} + \sum_{k=0}^{\frac{N}{2}-1} x_{k+\frac{N}{2}} W_{N}^{n\left(k+\frac{N}{2}\right)} \\ &= \sum_{k=0}^{\frac{N}{2}-1} x_{k} W_{N}^{nk} + W_{N}^{\frac{nN}{2}} \sum_{k=0}^{\frac{N}{2}-1} x_{k+\frac{N}{2}} W_{N}^{nk} \end{split}$$

or
$$X_n = \sum_{k=0}^{\frac{N}{2}-1} x_k W_N^{nk} + W_N^{\frac{nN}{2}} \sum_{k=0}^{\frac{N}{2}-1} x_{k+\frac{N}{2}} W_N^{nk}$$

Now, $W_N^{\frac{nN}{2}} = e^{-jn\left(\frac{2\pi}{N}\right)\frac{N}{2}} = e^{-jn\pi} = (-1)^n$
Then, $X_n = \sum_{k=0}^{\frac{N}{2}-1} \left[x_k W_N^{nk} + (-1)^n x_{k+\frac{N}{2}} W_N^{nk} \right]$

or
$$X_n = \sum_{k=0}^{\frac{N}{2}-1} \left[x_k + (-1)^n x_{k+\frac{N}{2}} \right] W_N^{nk}$$

.....(24)

.....(24)

or
$$X_n = \sum_{k=0}^{\frac{N}{2}-1} \left[x_k + (-1)^n x_{k+\frac{N}{2}} \right] W_N^{nk}$$

Now, splitting (or decimating) X_n into even and odd harmonics,

for even harmonics, n = 2p, for $p = 0, 1, 2, \dots, (N/2-1)$ and

for odd harmonics, n = 2p+1, for p = 0, 1, 2, ..., (N/2-1).

For even harmonics,

$$X_{2p} = \sum_{k=0}^{\frac{N}{2}-1} \left[x_{k} + x_{k+\frac{N}{2}} \right] W_{N}^{2pk} = \sum_{k=0}^{\frac{N}{2}-1} \left[x_{k} + x_{k+\frac{N}{2}} \right] W_{\frac{N}{2}}^{pk}$$

as $W_{N}^{2pk} = W_{\frac{N}{2}}^{pk}$

Now,
$$X_{2p} = \sum_{k=0}^{\frac{N}{2}-1} \left[x_k + x_{k+\frac{N}{2}} \right] W_{\frac{N}{2}}^{pk}$$

Let,
$$g_k = x_k + x_{k+\frac{N}{2}}$$
, for $k = 0, 1, 2, ... (N/2-1)$
Then, $X_{2p} = \sum_{k=0}^{\frac{N}{2}-1} g_k W_{\frac{N}{2}}^{pk}$ (25)

This is an N/2 point DFT sequence g_k , k = 0, 1, 2, ..., (N/2 - 1)

Now, for odd harmonics [c.f. relation (24)],

$$\begin{split} X_{2p+1} &= \sum_{k=0}^{\frac{N}{2}-1} \left[x_{k} - x_{k+\frac{N}{2}}^{k} \right] W_{N}^{(2p+1)k} \\ &= \sum_{k=0}^{\frac{N}{2}-1} \left[x_{k} - x_{k+\frac{N}{2}}^{k} \right] W_{N}^{k} W_{N}^{2pk} \\ &= \sum_{k=0}^{\frac{N}{2}-1} \left[x_{k} - x_{k+\frac{N}{2}}^{k} \right] W_{N}^{k} W_{N}^{pk} \quad \text{as} \quad W_{N}^{2pk} = W_{\frac{N}{2}}^{pk} \\ \text{.et,} \quad g_{k}^{\prime} = \left(x_{k}^{k} - x_{k+\frac{N}{2}}^{k} \right) W_{N}^{k} \quad \text{for } k = 0, 1, 2, \dots, (N/2-1) \end{split}$$

.....(26)

Then,
$$X_{2p+1} = \sum_{k=0}^{\frac{N}{2}-1} g_k^{\prime} W_{\frac{N}{2}}^{pk}$$

This is an N/2 point DFT sequence g'_k , k = 0, 1, 2, ..., (N/2 - 1)

Thus an *N*-point DFT may be split into two N/2-point DFTs.

This process of splitting may be continued up to 2-point transforms as *N* is a power of 2.

Let N = 4. Then from relation (25),

$$X_{2p} = \sum_{k=0}^{\frac{N}{2}-1} g_k W_{\frac{N}{2}}^{pk}$$
, for $p = 0, 1, 2, ..., (N/2-1)$

Where,
$$g_k = x_k + x_{k+\frac{N}{2}}$$
, for $k = 0, 1, 2, ..., (N/2-1)$
or, $X_{2p} = \sum_{k=0}^{1} g_k W_2^{pk}$, for $p = 0, 1$

and, $g_k = x_k + x_{k+2}$, for k = 0,1(27)

Now,
$$X_{2p} = \sum_{k=0}^{1} g_k W_2^{pk}$$
, for $p = 0,1$

and,
$$g_k = x_k + x_{k+2}$$
, for $k = 0,1$ (27)

Then for p = 0,

$$X_{0} = \sum_{k=0}^{1} g_{k} W_{2}^{0} = \sum_{k=0}^{1} g_{k} = g_{0} + g_{1}$$
(28)

and for p = 1,

Now from relation (26),

$$X_{2p+1} = \sum_{k=0}^{\frac{N}{2}-1} g'_{k} W_{\frac{N}{2}}^{pk} \text{, for } p = 0, 1, 2, \dots, (N/2-1)$$

where
$$g'_{k} = \left(x_{k} - x_{k+\frac{N}{2}}\right)W_{N}^{k}$$
, for $k = 0, 1, 2, ..., (N/2-1)$

or,
$$X_{2p+1} = \sum_{k=0}^{1} g'_{k} W_{2}^{pk}$$
 , for $p = 0,1$

and, $g'_{k} = (x_{k} - x_{k+2})W_{4}^{k}$, for k = 0,1(30)

Now,
$$X_{2p+1} = \sum_{k=0}^{1} g_{k}^{T} W_{2}^{pk}$$
 , for $p = 0,1$

and,
$$g'_{k} = (x_{k} - x_{k+2})W_{4}^{k}$$
, for $k = 0,1$ (30)

Then for
$$p=0,$$

$$X_{1} = \sum_{k=0}^{1} g_{k}^{\prime} W_{2}^{0} = g_{0}^{\prime} + g_{1}^{\prime} \qquad \dots \dots (31)$$

and for
$$p = l$$
,

$$X_{3} = \sum_{k=0}^{1} g_{k}^{\prime} W_{2}^{k} = g_{0}^{\prime} + g_{1}^{\prime} W_{2}^{1}$$
$$= g_{0}^{\prime} - g_{1}^{\prime} \qquad(32)$$

Now from relations (27) and (30), for k = 0,1

$$g_{0} = x_{0} + x_{2}$$

$$g_{1} = x_{1} + x_{3}$$

$$g_{0}' = (x_{0} - x_{2})W_{4}^{0} = x_{0} - x_{2} = x_{0} + x_{2}W_{4}^{2}$$

$$g_{1}' = (x_{1} - x_{3})W_{4}^{1} = x_{1}W_{4}^{1} - x_{3}W_{4}^{1} = x_{1}W_{4}^{1} + x_{3}W_{4}^{3}$$

Then in matrix form,

$$\begin{bmatrix} g_{0} \\ g_{1} \\ g_{0}' \\ g_{1}' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & W_{4}^{2} & 0 \\ 0 & W_{4}^{1} & 0 & W_{4}^{3} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$
(33)

From relations (28), (29), (31) and (32),

 $X_{0} = g_{0} + g_{1}$ $X_{2} = g_{0} - g_{1}$ $X_{1} = g_{0}' + g_{1}'$ $X_{3} = g_{0}' - g_{1}'$

Then in matrix form,

$$\begin{bmatrix} X_{0} \\ X_{2} \\ X_{1} \\ X_{3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} g_{0} \\ g_{1} \\ g_{0}' \\ g_{1}' \end{bmatrix}$$

.....(34)

From relations (33) and (34),

$$\begin{bmatrix} g_{0} \\ g_{1} \\ g_{0}' \\ g_{1}' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & W_{4}^{2} & 0 \\ 0 & W_{4}^{1} & 0 & W_{4}^{3} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \xrightarrow{\mathsf{Time history}}$$
Frequency
$$\begin{bmatrix} X_{0} \\ X_{2} \\ X_{1} \\ X_{3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} g_{0} \\ g_{1} \\ g_{0}' \\ g_{1}' \end{bmatrix}$$

Bit reversed order

Frequency
$$\begin{bmatrix} X_{0} \\ X_{2} \\ X_{1} \\ X_{3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} g_{0} \\ g_{1} \\ g_{0} \\ g_{1} \end{bmatrix}$$

Bit reversed order

since, $X_0 = X_{00}$ $X_2 = X_{10}$ $X_1 = X_{01}$ $X_3 = X_{11}$

in terms of binary bits

From relations (33) and (34),

Number of iterations = M, where $M = \log_2 N$ [as $N = 2^M$], here N = 4 and M = 2

Each iteration involves N/2 number of butterfly computations.

Computation of g_1 and g_1' may be represented as:

Each iteration involves N/2 number of butterfly computations. Computation of g_1 and $g_1^{/}$ may be represented as:

This involves **two** complex additions and **one** complex multiplication. This is true for all butterflies.

The procedure can be summarized as,

No. of iterations = $M = \log_2 N$ Total no. of butterflies = $\frac{NM}{2} = \frac{N}{2}\log_2 N$ No. of complex multiplications per butterfly = 1 No. of complex additions per butterfly = 2 Total no. of complex multiplications = $\frac{NM}{2} = \frac{N}{2}\log_2 N$ Total no. of complex additions = $NM = N\log_2 N$

Computation of each butterfly may be carried out *in-place* to reduce memory requirement as follows:

Here *T* is a scratch-pad variable and *W* is the twiddle factor.

The above algorithm for the computation of FFT of sequence x_k , k = 0,1,2,...,(N-1) may be called *radix-2 decimation-in-frequency in-place* FFT algorithm. Here, N should be a power of 2.

Similarly, **radix-2 decimation-in-time in-place FFT algorithm** may be derived with same computation load.

Comparison of computational loads of DFT and FFT

	DFT		FFT	
N	complex	complex	complex	complex
	additions	multiplications	additions	multiplications
4	16	16	8	4
8	64	64	24	12
16	256	256	64	32
32	1024	1024	160	80

Relations (25) and (26) may be split further (i.e. decimated) into N/2-point DFTs as follows:

$$X_{2p} = \sum_{k=0}^{\frac{N}{2}-1} g_k W_{\frac{N}{2}}^{pk} \dots (25)$$
$$X_{2p+1} = \sum_{k=0}^{\frac{N}{2}-1} g'_k W_{\frac{N}{2}}^{pk} \dots (26)$$

Relations (25) and (26) may be split further (i.e. decimated) into N/2-point DFTs as follows:

In relation (25), splitting N/2-point sequence g_k into two N/4-point sequences,

$$X_{2p} = \sum_{k=0}^{\frac{N}{4}-1} g_{k} W_{\frac{N}{2}}^{pk} + \sum_{k=\frac{N}{4}}^{\frac{N}{2}-1} g_{k} W_{\frac{N}{2}}^{pk}$$
$$= \sum_{k=0}^{\frac{N}{4}-1} g_{k} W_{\frac{N}{2}}^{pk} + \sum_{k=0}^{\frac{N}{4}-1} g_{k+\frac{N}{4}} W_{\frac{N}{2}}^{p\left(k+\frac{N}{4}\right)}$$
$$= \sum_{k=0}^{\frac{N}{4}-1} g_{k} W_{\frac{N}{2}}^{pk} + \sum_{k=0}^{\frac{N}{4}-1} g_{k+\frac{N}{4}} W_{\frac{N}{2}}^{pk} W_{\frac{N}{2}}^{\frac{pN}{4}}$$

$$X_{2p} = \sum_{k=0}^{\frac{N}{2}-1} g_k W_{\frac{N}{2}}^{pk} \quad \dots \dots \dots (25)$$

Now,
$$X_{2p} = \sum_{k=0}^{\frac{N}{4}-1} g_k W_{\frac{N}{2}}^{pk} + \sum_{k=0}^{\frac{N}{4}-1} g_{k+\frac{N}{4}} W_{\frac{N}{2}}^{pk} W_{\frac{N}{2}}^{\frac{pN}{4}}$$

Here, $W_{\frac{N}{2}}^{\frac{pN}{4}} = (-1)^p$
Therefore, $X_{2p} = \sum_{k=0}^{\frac{N}{4}-1} \left[g_k + (-1)^p g_{k+\frac{N}{4}} \right] W_{\frac{N}{2}}^{pk}$

.....(35)

Now splitting X_{2p} into even and odd harmonics,

for even harmonics, p = 2r, for $r = 0, 1, 2, \dots, (N/4-1)$

and for odd harmonics, p = (2r+1), for r = 0, 1, 2, ..., (N/4-1)

Now, for even harmonics,

$$X_{4r} = \sum_{k=0}^{\frac{N}{4}-1} \left[g_{k} + g_{k+\frac{N}{4}} \right] W_{\frac{N}{2}}^{2rk}$$
$$= \sum_{k=0}^{\frac{N}{4}-1} \left[g_{k} + g_{k+\frac{N}{4}} \right] W_{\frac{N}{4}}^{rk}$$

Let
$$h_k = g_k + g_{k+\frac{N}{4}}$$
, for $k = 0, 1, 2, ..., (N/4-1)$
Then, $X_{4r} = \sum_{k=0}^{\frac{N}{4}-1} h_k W_{\frac{N}{4}}^{rk}$, for $r = 0, 1, 2, ..., (N/4-1)$ (36)

This is an N/4-point DFT of sequence h_k , k = 0, 1, 2, ..., (N/4-1)

Now, for odd harmonics,

$$X_{4r+2} = \sum_{k=0}^{N-1} \left[g_k - g_{k+\frac{N}{4}} \right] W_{\frac{N}{2}}^{(2r+1)k}$$

$$= \sum_{k=0}^{N-1} \left[g_k - g_{k+\frac{N}{4}} \right] W_{N}^{2k} W_{\frac{N}{4}}^{rk}$$

Let $h'_k = \left(g_k - g_{k+\frac{N}{4}} \right) W_{N}^{2k}$, for $k = 0, 1, 2, ..., (N/4-1)$
Then, $X_{4r+2} = \sum_{k=0}^{N-1} h'_k W_{\frac{N}{4}}^{rk}$, for $r = 0, 1, 2, ..., (N/4-1)$ (37)

This is an N/4-point DFT of sequence h_k^{\prime} , k = 0, 1, 2, ..., (N/4-1)

Thus the *N*/2-point DFT as represented in relation (25), may be split into two N/4-point DFTs, as represented in relations (36) and (37).

Similarly, the N/2-point DFT in relation (26) may be split into two even and odd harmonic N/4point DFTs as follows:

$$X_{2p+1} = \sum_{k=0}^{\frac{N}{2}-1} g_k^{\prime} W_{\frac{N}{2}}^{pk} \dots \dots \dots (26)$$

For even harmonics,

$$X_{4r+1} = \sum_{k=0}^{\frac{N}{4}-1} l_k W_{\frac{N}{4}}^{rk} \text{, for } r = 0, 1, 2, \dots, (N/4-1) \tag{38}$$

This is an N/4-point DFT where $l_k = g'_k + g'_{k+\frac{N}{4}}$, for k = 0, 1, 2, ..., (N/4-1)

$$X_{2p+1} = \sum_{k=0}^{\frac{N}{2}-1} g_k^{\prime} W_{\frac{N}{2}}^{pk} \dots \dots \dots (26)$$

Similarly for odd harmonics,

$$X_{4r+3} = \sum_{k=0}^{\frac{N}{4}-1} l_k^{\prime} W_{\frac{N}{4}}^{rk}$$
, for $r = 0, 1, 2, ..., (N/4-1)$

.....(39)

This is another N/4-point DFT where

$$l'_{k} = \left(g'_{k} - g'_{k+\frac{N}{4}}\right) W_{N}^{2k}$$
, for $k = 0, 1, 2, ..., (N/4-1)$

Let N = 8 (= 2³) for 8-point FFT.

In relation (25),

$$X_{2p} = \sum_{k=0}^{\frac{N}{2}-1} g_k W_{\frac{N}{2}}^{pk} \quad \dots \dots (25)$$

$$g_k = x_k + x_{k+\frac{N}{2}}$$
, for $k = 0, 1, 2, ..., (N/2-1)$

Possible values of k are k = 0, 1, 2, 3.

Then, $g_0 = x_0 + x_4$ $g_1 = x_1 + x_5$ $g_2 = x_2 + x_6$ $g_3 = x_3 + x_7$

.....(40)

Now in relation (26),

$$g'_{k} = \left(x_{k} - x_{k+\frac{N}{2}}\right)W_{N}^{k}$$
, for $k = 0, 1, 2, ..., (N/2-1)$

Possible values of k are k = 0,1,2,3.

Then,
$$g_0' = (x_0 - x_4) W_8^0$$

 $g_1' = (x_1 - x_5) W_8^1$
 $g_2' = (x_2 - x_6) W_8^2$
 $g_3' = (x_3 - x_7) W_8^3$

.....(41)

.....(41)

From relations (40) and (41), signal flow graph for computations of g_{0-3} and $g_{0-3}^{'}$ may be represented as:

Now from relation (36),

$$h_k = g_k + g_{k+\frac{N}{4}}$$
, for $k = 0, 1, 2, ..., (N/4-1)$

Possible values of K are K = 0, 1.

Then,
$$h_0 = g_0 + g_2$$

 $h_1 = g_1 + g_3$

And from relation (37),

$$h'_{k} = \left(g_{k} - g_{k+\frac{N}{4}}\right) W_{N}^{2k}$$
, for $k = 0, 1, 2, ..., (N/4-1)$

Possible values of K are K = 0, 1.

Then,
$$h_0' = (g_0 - g_2)W_8^0$$

 $h_1' = (g_1 - g_3)W_8^2$

Now from relation (38),

$$l_k = g'_k + g'_{k+\frac{N}{4}}$$
, for $k = 0, 1, 2, ..., (N/4-1)$

Possible values of K are K = 0, 1.

Then,
$$l_0 = g_0' + g_2'$$

 $l_1 = g_1' + g_3'$

And from relation (39),

$$l'_{k} = \left(g'_{k} - g'_{k+\frac{N}{4}}\right) W_{N}^{2k}$$
, for $k = 0, 1, 2, ..., (N/4-1)$

Possible values of K are K = 0, 1.

Then,
$$l_0' = (g_0' - g_2')W_8^0$$

 $l_1' = (g_1' - g_3')W_8^2$

.....(45)

$$\begin{array}{l} h_{0} = g_{0} + g_{2} \\ h_{1} = g_{1} + g_{3} \end{array} \qquad \begin{array}{l} h_{0}' = (g_{0} - g_{2})W_{8}^{0} \\ h_{1}' = (g_{1} - g_{3})W_{8}^{2} \end{array} \qquad \begin{array}{l} l_{0} = g_{0}' + g_{2}' \\ l_{1} = g_{1}' + g_{3}' \end{array} \qquad \begin{array}{l} l_{0}' = (g_{0}' - g_{2}')W_{8}^{0} \\ l_{1}' = (g_{1}' - g_{3}')W_{8}^{2} \end{array} \qquad \begin{array}{l} l_{0}' = g_{0}' + g_{2}' \\ l_{1} = g_{1}' + g_{3}' \end{array} \qquad \begin{array}{l} l_{0}' = (g_{0}' - g_{2}')W_{8}^{0} \\ l_{1}' = (g_{1}' - g_{3}')W_{8}^{2} \end{array} \qquad \begin{array}{l} l_{0}' = g_{0}' + g_{2}' \\ l_{1}' = g_{1}' + g_{3}' \end{array} \qquad \begin{array}{l} l_{0}' = g_{0}' - g_{2}' \\ l_{1}' = g_{1}' - g_{3}' W_{8}^{2} \end{array} \qquad \begin{array}{l} l_{0}' = g_{0}' - g_{2}' \\ l_{1}' = g_{1}' - g_{3}' W_{8}^{2} \end{array} \qquad \begin{array}{l} l_{0}' = g_{0}' - g_{2}' \\ l_{1}' = g_{1}' - g_{3}' W_{8}^{2} \end{array} \qquad \begin{array}{l} l_{0}' = g_{0}' - g_{2}' \\ l_{1}' = g_{1}' - g_{3}' W_{8}^{2} \end{array} \qquad \begin{array}{l} l_{0}' = g_{0}' - g_{2}' W_{8}^{0} \\ l_{1}' = g_{1}' - g_{3}' W_{8}^{2} \end{array} \qquad \begin{array}{l} l_{0}' = g_{0}' - g_{2}' W_{8}^{0} \\ l_{1}' = g_{1}' - g_{1}' - g_{1}' W_{8}^{2} \end{array} \qquad \begin{array}{l} l_{0}' = g_{1}' - g_{1}' W_{8}^{0} \\ l_{1}' = g_{1}' - g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' - g_{1}' W_{8}^{0} \end{array} \qquad \begin{array}{l} l_{1}' W_{8}' \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' W_{8}' W_{8}' \end{array} \qquad \begin{array}{l} l_{1}' = g_{1}' W_{8}' W_{8}' \end{array} \qquad \begin{array}{l} l_{1}' W_{8}' W_{8}' W_{8}' \end{array}$$

From relations (42), (43), (44) and (45), signal flow graph for computation of h_{0-1} , h'_{0-1} , l_{0-1} and l'_{0-1} may be represented as:

Now, from relation (36), possible values of r are r = 0,1.

$$X_{4r} = \sum_{k=0}^{\frac{N}{4}-1} h_k W_{\frac{N}{4}}^{rk}, \text{ for } r = 0, 1, 2, \dots, (N/4-1) \quad \dots \dots (36)$$

$$X_{0} = h_{0}W_{2}^{0} + h_{1}W_{2}^{0} = h_{0} + h_{1}$$

$$X_{4} = h_{0}W_{2}^{0} + h_{1}W_{2}^{1} = h_{0} - h_{1}$$
.....(46)

And, from relation (37), possible values of *r* are r = 0,1.

$$X_{4r+2} = \sum_{k=0}^{\frac{N}{4}-1} h_k^{\prime} W_{\frac{N}{4}}^{rk}, \text{ for } r = 0, 1, 2, \dots, (N/4-1) \dots (37)$$

Then,

$$X_{2} = h_{0}^{\prime}W_{2}^{0} + h_{1}^{\prime}W_{2}^{0} = h_{0}^{\prime} + h_{1}^{\prime}$$

$$X_{6} = h_{0}^{\prime}W_{2}^{0} + h_{1}^{\prime}W_{2}^{1} = h_{0}^{\prime} - h_{1}^{\prime}$$
.....(47)

From relation (38), possible values of *r* are r = 0,1.

Then,

$$X_{1} = l_{0}W_{2}^{0} + l_{1}W_{2}^{0} = l_{0} + l_{1}$$
$$X_{5} = l_{0}W_{2}^{0} + l_{1}W_{2}^{1} = l_{0} - l_{1}$$

And, from relation (39), possible values of r are r = 0,1.

Then,

$$X_{3} = l_{0}^{\prime}W_{2}^{0} + l_{1}^{\prime}W_{2}^{0} = l_{0}^{\prime} + l_{1}^{\prime}$$
$$X_{7} = l_{0}^{\prime}W_{2}^{0} + l_{1}^{\prime}W_{2}^{1} = l_{0}^{\prime} - l_{1}^{\prime}$$

$$X_{4r+1} = \sum_{k=0}^{\frac{N}{4}-1} l_k W_{\frac{N}{4}}^{rk} \text{, for } r = 0, 1, 2, \dots, (N/4-1) \quad \dots \dots (38)$$

.....(48)

$$X_{4r+3} = \sum_{k=0}^{\frac{N}{4}-1} l_k^{\prime} W_{\frac{N}{4}}^{rk}, \text{ for } r = 0, 1, 2, \dots, (N/4-1) \dots (39)$$

.....(49)

$$X_{0} = h_{0}W_{2}^{0} + h_{1}W_{2}^{0} = h_{0} + h_{1} \\ X_{4} = h_{0}W_{2}^{0} + h_{1}W_{2}^{1} = h_{0} - h_{1} \\ X_{4} = h_{0}W_{2}^{0} + h_{1}W_{2}^{1} = h_{0} - h_{1} \\ X_{5} = l_{0}W_{2}^{0} + l_{1}W_{2}^{1} = l_{0} - l_{1} \\ X_{5} = l_{0}W_{2}^{0} + l_{1}W_{2}^{0} + l_{1}W_{2}^{0} + l_{1}W_{2}^{0$$

From relations (46), (47), (48) and (49), signal flow graph for computation of $X_{_{0-7}}$ may be represented as:

not in natural order, hence bit-reversal should be carried out to bring it in natural order

Bit Reversal procedure

Complete Signal Flow Graph

Time history

```
C ***Subroutine to compute radix-2 FFT***
C Decimation-in-frequency in-place algorithm
        SUBROUTINE FFT(A,N,INV)
C N: Dimension of Array (must be a power of 2)
C A: Complex array containing data sequence
C DFT coefficients are returned in the array
C INV = 0 for forward FFT
C INV = 1 for inverse FFT
        DIMENSION A(N)
        COMPLEX T,W,A
        IF (INV.EQ.0) GO TO 8
C Divide sequence by N for inverse FFT
        DO 7 I=1,N
7
        A(I)=A(I)/CMPLX(FLOAT(N),0.0)
8
        S = -1.0
        IF (INV.EQ.1) S=1.0
```

C Calculate number of iterations C M: Number of iterations (log(N) to the base 2) M=1 K=N 2 K=K/2IF (K.EQ.1) GO TO 1 M=M+1GO TO 2 C Compute for each iteration C NP: Number of points in each partition NB=N 1 DO 3 I=1,M NP=NB NB=NP/2 PHI=3.14159265/FLOAT(NB)

During the bit-reversal operation, N/2 DFT coefficients remain unchanged and the remaining N/2 coefficients are exchanged in place as required.

Computation of amplitude spectrum of a finite real data sequence

(*N* must be a power of 2)

$$C_{_0} = \frac{1}{N} |X_{_0}| \text{ , the average value}$$

and $C_{_n} = \frac{2}{N} |X_{_n}| \text{ , for } n = 1, 2, \dots, (N/2-1), \text{ the } n\text{th harmonic amplitude.}$

Computation of amplitude spectrum of a finite real data sequence

The range of frequency may be expressed as $f_s/2$ where f_s is the sampling frequency $\left(=\frac{1}{\tau}\right)$.

The frequency resolution may be estimated as f_0 where f_0 is the fundamental frequency (=1/ T_0), where T_0 is the time period of fundamental frequency and also the width of the analysis window.

C *	**Amplitude spectrum analysis program using FFT***
	DIMENSION A(1024), B(1024), C(512), PHASE(512)
	COMPLEX A
	CHARACTER*64 FNAME
	WRITE(*,10)
10	FORMAT(1X, 'Enter file name - '\)
	READ(*,20)FNAME
20	FORMAT(A)
	OPEN(2,FILE=FNAME)
	READ(2,*,END=100)(B(I),I=1,1024)
10	0 N=I-1
	CLOSE(2)
	WRITE(*,200)N
200	0 FORMAT(1X,'Data points = ',I4)

	DO 15 I=1,10
	IF(N-2**I)24,25,15
15	CONTINUE
24	WRITE(*,5)
5	FORMAT(1X,'Incorrect size - it must be a power of 2')
	STOP
25	DO 30 I=1,N
30	A(I)=CMPLX(B(I),0.0)/CMPLX(FLOAT(N),0.0)
	WRITE(*,300)
300	FORMAT(1X, 'FFT analysis in progress')
	CALL FFT(A,N,0)

	NA=N/2
	C(1)=CABS(A(1))
	DO 40 I=2,NA
40	C(I)=CABS(A(I))*2.0
	D=180.0/3.141592654
	DO 80 I=2,NA
	R=REAL(A(I))
	X=AIMAG(A(I))
	ALPHA=ATAN2(X,R)
80	PHASE(I)=D*ALPHA

	WRITE(*,60)
60	FORMAT('0','Harmonic no.',7X,'Amplitude',12X,'Phase (deg)')
	WRITE(*,70)
70	FORMAT(1X,'',7X,'',12X,''//)
	NB=0
	WRITE(*,75)NB,C(1)
75	FORMAT(5X,I3,9X,1P,E13.6)
	DO 85 I=2,NA
	NB=I-1
85	WRITE(*,90)NB,C(I),PHASE(I)
90	FORMAT(5X,I3,9X,1P,E13.6,9X,E13.6)
	END

FFT-based digital filtering of a finite real data sequence

 $y_k = h_k * x_k$, h_k is the impulse sequence of the digital filter

FFT-based digital filtering of a finite real data sequence

FFT-based digital filtering of a finite real data sequence

FFT-based digital filtering of a finite real data sequence

C ***FF	Γ based digital filter program***
	DIMENSION X(1024), A(513), PH(513)
	COMPLEX H(1024),CX(1024)
	CHARACTER*64 FNAME1, FNAME2
	WRITE(*,20)
20	FORMAT(1X,'Enter input file name - '\)
	READ(*,30)FNAME1
30	FORMAT(A)
	WRITE(*,40)
40	FORMAT(1X,'Enter output file name - '\)
	READ(*,30)FNAME2

	OPEN(1,FILE=FNAME1)
	READ(1,*,END=50)(X(I),I=1,1024)
	GOTO 60
50	I=I-1
60	N=I
	WRITE(*,70)N
70	FORMAT(1X,'Data points = ',I4)
	DO 375 I=1,10
	IF(N-2**I)380,390,375
375	CONTINUE
380	WRITE(*,400)
400	FORMAT(1X,'Incorrect size of data')
	STOP
60 70 375 380 400	N=I WRITE(*,70)N FORMAT(1X,'Data points = ',I4) DO 375 I=1,10 IF(N-2**I)380,390,375 CONTINUE WRITE(*,400) FORMAT(1X,'Incorrect size of data') STOP

390	WRITE(*,100)N/2+1
100	FORMAT(1X,'Enter filter gain (',I3,' points)')
	READ(*,*)(A(I),I=1,N/2+1)
	PH(1)=0.0
	WRITE(*,110)N/2
110	FORMAT(1X, 'Enter filter phase (', I3, ' points)')
	READ(*,*)(PH(I),I=2,N/2+1)
C Form	complex filter gain array
	H(1)=CMPLX(A(1)*N,0.0)
	DO 200 I=2,N/2+1
200	H(I)=CMPLX(A(I)*N*COS(PH(I))/2.0,A(I)*N*SIN(PH(I))/2.0)

390	WRITE(*,100)N/2+1
100	FORMAT(1X,'Enter filter gain (',I3,' points)')
	READ(*,*)(A(I),I=1,N/2+1)
	PH(1)=0.0
	WRITE(*,110)N/2
110	FORMAT(1X, 'Enter filter phase (', I3, ' points)')
	READ(*,*)(PH(I),I=2,N/2+1)
C Form	complex filter gain array
	H(1)=CMPLX(A(1)*N,0.0)
	DO 200 I=2,N/2+1
200	H(I)=CMPLX(A(I)*N*COS(PH(I))/2.0,A(I)*N*SIN(PH(I))/2.0)
C Form	rest of the gain array by complex conjugate
	DO 340 I=2,N/2
	J=N+2-I
340	H(J)=CONJG(H(I))
	N/2 N-1 n

complex input data array	
DO 350 I=1,N	
CX(I)=CMPLX(X(I),0.0)	
ute FFT	
CALL FFT(CX,N,0)	
C Perform filtering in frequency domain	
DO 360 I=1,N	
CX(I)=CX(I)*H(I)	
o time	
CALL FFT(CX,N,1)	
DO 370 I=1,N	
X(I)=REAL(CX(I))	

FORTRAN program for FFT-based digital filtering

C Save output IF(FNAME1.EQ.FNAME2)CLOSE(1) OPEN(2,FILE=FNAME2,STATUS='NEW') WRITE(2,*)(X(I),I=1,N) END

