Discrete Fourier Transform

Prof. Anjan Rakshit and Prof. Amitava Chatterjee Electrical Measurement and Instrumentation Laboratory,

Electrical Engineering Department, Jadavpur University, Kolkata, India.

Discrete Fourier Transform

References

M. E. Van Valkenburg. Network Analysis. Prentice Hall.
J. G. Proakis and D. G. Manolakis. Digital Signal Processing: Principles, Algorithms and Applications. Prentice Hall. Fourth Edition.

Johnny R. Johnson. Introduction to Digital Signal Processing. Prentice Hall.

Li Tan. Digital Signal Processing: Fundamentals and Applications. Academic Press.

Discrete Fourier Transform

In time domain or sequence domain, representation of digital signals describes the signal amplitude versus the sampling time instant or the sample number.

However, in some applications, signal frequency content is more useful than the digital signal samples.

Hence representation of the digital signal in terms of its frequency components in frequency domain, i.e. the signal spectrum, needs to be developed.

Discrete Fourier Transform

Time domain representation of a $1,000-\mathrm{Hz}$ sinusoid with 32 samples at a sampling rate of $8,000 \mathrm{~Hz}$

The corresponding signal spectrum i.e. the frequency domain representation

Conclusion: The spectral plot better displays frequency information of a digital signal.

Fourier series for a periodic signal

Let $x(t)$ be a periodic function of time having a time period T_{0}, then the fundamental frequency of $x(t)$ is

$$
\begin{equation*}
\omega_{0}=\frac{2 \pi}{T_{0}} \tag{1}
\end{equation*}
$$

Fourier series for a periodic signal

Let $x(t)$ be a periodic function of time having a time period T_{0}, then the fundamental frequency of $x(t)$ is

$$
\begin{equation*}
\overbrace{n}^{x+1} \quad \omega_{0}=\frac{2 \pi}{T_{0}} \tag{1}
\end{equation*}
$$

The signal $x(t)$ may be expressed in terms of the Fourier series as

$$
\begin{equation*}
x(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right) \tag{2}
\end{equation*}
$$

Fourier series for a periodic signal

$$
\begin{aligned}
& x(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right) \\
& \text { where } \\
& \qquad \begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) d\left(\omega_{0} t\right)=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) d t \quad \text {, the average value } \\
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \cos n \omega_{0} t d\left(\omega_{0} t\right)=\frac{2}{T_{0}} \int_{0}^{T_{0}} x(t) \cos n \omega_{0} t d t \\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \sin n \omega_{0} t d\left(\omega_{0} t\right)=\frac{2}{T_{0}} \int_{0}^{T_{0}} x(t) \sin n \omega_{0} t d t \\
& \text { for } n=1,2,3, \ldots
\end{aligned}
\end{aligned}
$$

$\boldsymbol{a}_{\boldsymbol{n}}$'s are known as cosine coefficients and $\boldsymbol{b}_{\boldsymbol{n}}$'s are known as sine coefficients.

Fourier series for a periodic signal

Relation (2) may be rewritten as

$$
\begin{align*}
& x(t)=a_{0}+\sum_{n=1}^{\infty} \sqrt{a_{n}^{2}+b_{n}^{2}}\left(\frac{a_{n}}{\sqrt{a_{n}^{2}+b_{n}^{2}}} \cos n \omega_{0} t-\frac{\left(-b_{n}\right)}{\sqrt{a_{n}^{2}+b_{n}^{2}}} \sin n \omega_{0} t\right) \\
& \text { or } \quad x(t)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right) \tag{3}
\end{align*}
$$

$[\cos (A+B)=\cos A \cos B-\sin A \sin B]$
where $\quad C_{0}=a_{0} \quad C_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}} \quad \theta_{n}=-\tan ^{-1} \frac{b_{n}}{a_{n}}$

$C_{n}, n=1,2,3, \ldots$ is the amplitude and $\theta_{n}, n=1,2,3, \ldots$ is the phase of the nth harmonic. C_{0} is the average value.

Fourier series for a periodic signal

Expressing cosine and sine terms of relation (2) in terms of their complex exponential values as

$$
\begin{align*}
& x(t)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n}\left(\frac{e^{j n \omega_{0} t}+e^{-j n \omega_{0} t}}{2}\right)+b_{n}\left(\frac{e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}}{2 j}\right)\right] \\
& \text { or } x(t)=a_{0}+\sum_{n=1}^{\infty}\left[e^{j n \omega_{0} t}\left(\frac{a_{n}-j b_{n}}{2}\right)+e^{-j n \omega_{0} t}\left(\frac{a_{n}+j b_{n}}{2}\right)\right] \\
& \text { or } x(t)=F_{0}+\sum_{n=1}^{\infty}\left[F_{n} e^{j n \omega_{0} t}+F_{-n} e^{-j n \omega_{0} t}\right] \tag{4}
\end{align*}
$$

where $\quad F_{0}=a_{0}, \quad F_{n}=\left(\frac{a_{n}-j b_{n}}{2}\right) \quad$ and $\quad F_{-n}=\left(\frac{a_{n}+j b_{n}}{2}\right)$

Fourier series for a periodic signal

Now $\quad x(t)=F_{0}+\sum_{n=1}^{\infty}\left[F_{n} e^{j n \omega_{0} t}+F_{-n} e^{-j n \omega_{0} t}\right]$
where $\quad F_{0}=a_{0}, \quad F_{n}=\left(\frac{a_{n}-j b_{n}}{2}\right)$ and $\quad F_{-n}=\left(\frac{a_{n}+j b_{n}}{2}\right)$

Here $F_{-n}=\hat{F}_{n}$, conjugate of F_{n}.

Relation (4) may be expressed as

$$
x(t)=F_{0}+\sum_{n=1}^{\infty} F_{n} e^{j n \omega_{0} t}+\sum_{n=1}^{\infty} F_{-n} e^{-j n \omega_{0} t}
$$

Fourier series for a periodic signal

$$
\text { Now } \begin{aligned}
x(t) & =F_{0}+\sum_{n=1}^{\infty} F_{n} e^{j n \omega_{0} t}+\sum_{n=1}^{\infty} F_{-n} e^{-j n \omega_{0} t} \\
x(t) & =F_{0}+\sum_{n=1}^{\infty} F_{n} e^{j n \omega_{0} t}+\sum_{n=-1}^{-\infty} F_{n} e^{j n \omega_{0} t}
\end{aligned}
$$

Hence, we can write, $\quad x(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}$

Thus $x(t)$ may be expressed in terms of Complex Fourier Series in relation (5). Here F_{n} is known as the Complex Fourier coefficient.

Fourier series for a periodic signal

$$
\text { Now } \begin{aligned}
x(t) & =F_{0}+\sum_{n=1}^{\infty} F_{n} e^{j n \omega_{0} t}+\sum_{n=1}^{\infty} F_{-n} e^{-j n \omega_{0} t} \\
x(t) & =F_{0}+\sum_{n=1}^{\infty} F_{n} e^{j n \omega_{0} t}+\sum_{n=-1}^{-\infty} F_{n} e^{j n \omega_{0} t}
\end{aligned}
$$

Hence, we can write, $\quad x(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}$

$$
\leftarrow F_{-n}=\hat{F}_{n}
$$

Variation of F_{n} coefficients with n

Fourier series for a periodic signal

Variation of F_{n} coefficients with n

Fourier series for a periodic signal

The amplitudes C_{n} 's of relation (3) may be related to F_{n} 's as

$$
\begin{equation*}
C_{0}=F_{0}, \text { the average value } \tag{6}
\end{equation*}
$$

and $C_{n}=2\left|F_{n}\right|$, for $n=1,2,3, \ldots$
the amplitude of the nth harmonic.
and $\quad \theta_{n}=-\tan ^{-1}\left(\frac{j\left(F_{n}-F_{-n}\right)}{\left(F_{n}+F_{-n}\right)}\right)$
the phase of the nth harmonic.

Fourier series for a periodic signal

From relation (4), F_{n} may be expressed as

$$
F_{n}=\left(\frac{a_{n}-j b_{n}}{2}\right)
$$

Substituting expressions of a_{n} and b_{n} from relation (2)

$$
\begin{equation*}
F_{n}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j n \omega_{0} t} d t \tag{7}
\end{equation*}
$$

For aperiodic signals, the time period T_{0} becomes infinite, and the Fourier transform of an aperiodic signal $x(t)$ is defined as

$$
\begin{equation*}
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{8}
\end{equation*}
$$

Fourier series for a periodic discrete sequence

Let x_{k} be a periodic discrete sequence obtained from a periodic signal $x(t)$ with a time period T_{0}.
Let N number of samples be available in the time period T_{0} with a sampling interval τ. The corresponding sampling frequency $=f_{s} \mathrm{~Hz}$.

$$
\begin{equation*}
T_{0}=N \tau \quad \text { and } \quad \tau=1 / f_{s} \tag{9}
\end{equation*}
$$

Assumption: The periodic discrete sequence is band limited to have all harmonic frequencies less than the folding frequency ($f_{s} / 2$) so that aliasing does not occur.

Fourier series for a periodic discrete sequence

Using rectangular rule for integration, the Fourier coefficients may be obtained as

$$
\begin{aligned}
a_{0} & =\frac{1}{T_{0}} \sum_{k=0}^{N-1} x_{k} \tau \\
\text { or } \quad a_{0} & =\frac{1}{N \tau} \sum_{k=0}^{N-1} x_{k} \tau=\frac{1}{N} \sum_{k=0}^{N-1} x_{k}
\end{aligned}
$$

From relation (2)
$a_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) d t$

Fourier series for a periodic discrete sequence

Using rectangular rule for integration, the Fourier coefficients may be obtained as

Similarly,

> From relation (2)

$$
a_{n}=\frac{2}{T_{0}} \int_{0}^{T_{0}} x(t) \cos n \omega_{0} t d t
$$

$$
a_{n}=\frac{2}{N \tau} \sum_{k=0}^{N-1}\left[x_{k} \cos n\left(\frac{2 \pi}{N \tau}\right)(k \tau)\right] \tau
$$

or $a_{n}=\frac{2}{N} \sum_{k=0}^{N-1} x_{k} \cos \left(\frac{2 \pi k n}{N}\right)$
(using the substitutions: $\omega_{0}=\frac{2 \pi}{T_{0}}=\frac{2 \pi}{N \tau}$ and $T_{0}=N \tau$ and $t=k \tau$ in relation (2))

Fourier series for a periodic discrete sequence

Using rectangular rule for integration, the Fourier coefficients may be obtained as
and
From relation (2)
$b_{n}=\frac{2}{T_{0}} \int_{0}^{T_{0}} x(t) \sin n \omega_{0} t d t$

$$
b_{n}=\frac{2}{N \tau} \sum_{k=0}^{N-1}\left[x_{k} \sin n\left(\frac{2 \pi}{N \tau}\right)(k \tau)\right] \tau
$$

or $\quad b_{n}=\frac{2}{N} \sum_{k=0}^{N-1} x_{k} \sin \left(\frac{2 \pi k n}{N}\right)$
(using the substitutions: $\omega_{0}=\frac{2 \pi}{T_{0}}=\frac{2 \pi}{N \tau}$ and $T_{0}=N \tau$ and $t=k \tau$ in relation (2))

Fourier series for a periodic discrete sequence

Now from relations (11) and (12),

$$
\begin{aligned}
\frac{a_{n}-j b_{n}}{2} & =\frac{1}{N} \sum_{k=0}^{N-1} x_{k}\left[\cos \left(\frac{2 \pi k n}{N}\right)-j \sin \left(\frac{2 \pi k n}{N}\right)\right] \\
& =\frac{1}{N} \sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)}
\end{aligned}
$$

Hence, the Fourier series coefficients for the periodic discrete sequence are:

$$
\begin{align*}
& F_{0}=a_{0} \quad \text { and } \\
& F_{n}=\frac{a_{n}-j b_{n}}{2}=\frac{1}{N} \sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)}, \quad n= \pm 1, \pm 2, \pm 3, \cdots \tag{12a}
\end{align*}
$$

Since the coefficients F_{n} are obtained from the Fourier series expansion in the complex form, the resultant spectrum F_{n} will have two sides.

Fourier series for a periodic discrete sequence

Now from relations (11) and (12),

$$
\begin{aligned}
\frac{a_{n}-j b_{n}}{2} & =\frac{1}{N} \sum_{k=0}^{N-1} x_{k}\left[\cos \left(\frac{2 \pi k n}{N}\right)-j \sin \left(\frac{2 \pi k n}{N}\right)\right] \\
& =\frac{1}{N} \sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)}
\end{aligned}
$$

Hence, the Fourier series coefficients for the periodic discrete sequence are:

$$
\begin{align*}
& F_{0}=a_{0} \quad \text { and } \\
& F_{n}=\frac{a_{n}-j b_{n}}{2}=\frac{1}{N} \sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)}, \quad n= \pm 1, \pm 2, \pm 3, \cdots \tag{12a}
\end{align*}
$$

It can be shown that $F_{n+N}=F_{n}$. Hence the Fourier series coefficients F_{n} are periodic having a periodicity of N.

Fourier series for a periodic discrete sequence

2nd harmonic $\mathrm{kf}_{0}=2 \mathrm{xf}_{0}=2 \mathrm{f}_{0} \mathrm{~Hz}$

Amplitude spectrum of a representative periodic signal
For the $k t h$ harmonic, the frequency is $f=k f_{0}$. The frequency spacing between the consecutive spectral lines, called the frequency resolution, is $f_{0} \mathrm{~Hz}$.
As $F_{n+N}=F_{n}$, the two-sided line amplitude spectrum $\left|F_{n}\right|$ is periodic.

Fourier series for a periodic discrete sequence

OBSERVATIONS:

- Only the line spectral portion between the frequency $-f_{s} / 2$ and frequency $f_{s} / 2$ (folding frequency) represents the frequency information of the periodic signal.
- The spectral portion from $f_{s} / 2$ to f_{s} is a copy of the spectrum in the negative frequency range from $-f_{s} / 2$ to 0 Hz due to the spectrum being periodic for every $\mathrm{Nf}_{0} \mathrm{~Hz}$.

Fourier series for a periodic discrete sequence

2nd harmonic $\mathrm{kf}_{0}=2 \mathrm{xf}_{0}=2 \mathrm{f}_{0} \mathrm{~Hz}$

OBSERVATIONS:

- For convenience, we compute the spectrum over the range from 0 to $f_{s} \mathrm{~Hz}$ with nonnegative indices, i.e.,

$$
\begin{equation*}
F_{n}=\frac{1}{N} \sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)}, \quad n=0,1,2,3, \cdots, N-1 \tag{12b}
\end{equation*}
$$

- If negative indexed spectral values are needed, those can be obtained using the relation: $F_{n+N}=F_{n}$.

Fourier series for a periodic discrete sequence

Problem 1

Let us consider a periodic signal $x(t)=\sin (2 \pi t)$, sampled using a sampling rate of $f_{s}=4 \mathrm{~Hz}$.
(i) Compute the Fourier coefficients or spectrum F_{n} using the samples in one period.
(ii) Plot the two-sided amplitude spectrum $\left|F_{n}\right|$ over the range from -2 to 2 Hz .

Solution

From the analog signal, we get fundamental frequency $\omega_{0}=2 \pi \mathrm{rad} / \mathrm{s}$.
Hence $f_{0}=\left(\omega_{0} / 2 \pi\right)=1 \mathrm{~Hz}$ and fundamental time period $T_{0}=1 \mathrm{~s}$.
Sampling interval $\tau=1 / f_{s}=0.25 \mathrm{~s}$.
Hence sampled signal $=x_{k}=x(k \tau)=\sin (2 \pi k \tau)=\sin (0.5 \pi k)$

First eight samples of the periodic digital signal

Fourier series for a periodic discrete sequence

Problem 1

Let us consider a periodic signal $x(t)=\sin (2 \pi t)$, sampled using a sampling rate of $f_{s}=4 \mathrm{~Hz}$.
(i) Compute the Fourier coefficients or spectrum F_{n} using the samples in one period.
(ii) Plot the two-sided amplitude spectrum $\left|F_{n}\right|$ over the range from -2 to 2 Hz .

Solution (contd.)

For a duration of one period, $N=4$. The sample values are: $x_{0}=0, x_{1}=1, x_{2}=0, x_{3}=-1$. From the expression of F_{n} in relation (12a), we can compute:

$$
\begin{aligned}
F_{0} & =\frac{1}{4} \sum_{k=0}^{3} x_{k}=\frac{1}{4}\left(x_{0}+x_{1}+x_{2}+x_{3}\right)=\frac{1}{4}(0+1+0-1)=0 \\
F_{1} & =\frac{1}{4} \sum_{k=0}^{3} x_{k} e^{-j 2 \pi \times(1 k / 4)}=\frac{1}{4}\left(x_{0}+x_{1} e^{-j \pi / 2}+x_{2} e^{-j \pi}+x_{3} e^{-j 3 \pi / 2}\right) \\
& =\frac{1}{4}\left(x_{0}-j x_{1}-x_{2}+j x_{3}\right)=\frac{1}{4}(0-j 1-0+j(-1))=-j 0.5
\end{aligned}
$$

Fourier series for a periodic discrete sequence

Problem 1

Let us consider a periodic signal $x(t)=\sin (2 \pi t)$, sampled using a sampling rate of $f_{s}=4 \mathrm{~Hz}$.
(i) Compute the Fourier coefficients or spectrum F_{n} using the samples in one period.
(ii) Plot the two-sided amplitude spectrum $\left|F_{n}\right|$ over the range from -2 to 2 Hz .

Solution (contd.)

Similarly we get:

$$
F_{2}=\frac{1}{4} \sum_{k=0}^{3} x_{k} e^{-j 2 \pi \times(2 k / 4)}=0 \quad \text { and } \quad F_{3}=\frac{1}{4} \sum_{k=0}^{3} x_{k} e^{-j 2 \pi \times(3 k / 4)}=j 0.5
$$

Using periodicity, it follows that:

$$
F_{-1}=F_{3}=j 0.5 \quad \text { and } \quad F_{-2}=F_{2}=0
$$

Fourier series for a periodic discrete sequence

Problem 1

Let us consider a periodic signal $x(t)=\sin (2 \pi t)$, sampled using a sampling rate of $f_{s}=4 \mathrm{~Hz}$.
(i) Compute the Fourier coefficients or spectrum F_{n} using the samples in one period.
(ii) Plot the two-sided amplitude spectrum $\left|F_{n}\right|$ over the range from -2 to 2 Hz .

Solution (contd.)

Two sided amplitude spectrum $\left|F_{n}\right|$ for the periodic digital signal

Fourier series for a periodic discrete sequence

Now, from relation (12a), we can write,

$$
\left(\frac{N}{2}\right)\left(a_{n}-j b_{n}\right)=\sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)}
$$

Substituting $N a_{0}=X_{0}$ and $\left(\frac{N}{2}\right)\left(a_{n}-j b_{n}\right)=X_{n}$, for $n= \pm 1, \pm 2, \pm 3, \ldots$

$$
\begin{equation*}
X_{n}=N F_{n}=\sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 n k}{N}\right)} \quad \text { for } n=0, \pm 1, \pm 2, \ldots \tag{13}
\end{equation*}
$$

Fourier series for a periodic discrete sequence

From relation (13) $\quad X_{n}=N F_{n}=\sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)} \quad$ for $n=0, \pm 1, \pm 2, \ldots$
Now, let us consider $n=N+m$, for $m=0, \pm 1, \pm 2, \ldots$

$$
\begin{align*}
X_{n} & =\sum_{k=0}^{N-1} x_{k} e^{-j(N+m)\left(\frac{2 \pi k}{N}\right)} \\
\text { or } X_{m+N} & =\sum_{k=0}^{N-1} x_{k} e^{-j(2 \pi k)} \cdot e^{-j m\left(\frac{2 \pi k}{N}\right)} \\
\text { or } \quad X_{m+N}= & \sum_{k=0}^{N-1} x_{k} e^{-j m\left(\frac{2 \pi k}{N}\right)}=X_{m} \tag{14}
\end{align*}
$$

Conclusion: X_{n} is periodic with a period N.

Fourier series for a periodic discrete sequence

Then, within one period (i.e. for $n=0,1,2, \ldots, N-1$),

$$
\begin{equation*}
X_{n}=\sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)} \text {, for } n=0,1,2, \ldots ., N-1 \tag{15}
\end{equation*}
$$

Conclusion: Relation (15) is known as the Discrete Fourier Transform (DFT) of a finite sequence $x_{k}, k=0,1,2, \ldots, N-1$.

The X_{n} constitutes the DFT coefficients.

Fourier series for a periodic discrete sequence

Relation (14) represents the periodicity property of DFT.
X_{n} repeats at the Nth harmonic.

The frequency corresponding to the N th harmonic is:

$$
N f_{0}=\frac{N}{T_{0}}=\frac{N}{N \tau}=\frac{1}{\tau}=f_{s} \quad \text {, the sampling frequency. }
$$

Conclusion: X_{n} repeats at the sampling frequency f_{s}.

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) of a finite sequence $x_{k}, k=0,1,2, \ldots, N-1$ is defined as

$$
\begin{equation*}
X_{n}=\sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)}, \text { for } n=0,1,2, \ldots, N-1 \tag{15}
\end{equation*}
$$

Amplitude C_{n} (c.f. relation (3)) is related to X_{n} as

$$
C_{0}=\frac{1}{N}\left|X_{0}\right|, \text { the average value }
$$

and $\quad C_{n}=\frac{2}{N}\left|X_{n}\right|$, for $n=1,2,3, \ldots$

Discrete Fourier Transform

The development of the DFT formula

Inverse Discrete Fourier Transform

By multiplying $\frac{1}{N} e^{j n\left(\frac{2 \pi l}{N}\right)}$

$$
\begin{aligned}
& \text { Relation (15): } \\
& X_{n}=\sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 n k}{N}\right)}, \text { for } n=0,1,2, \ldots ., N-1
\end{aligned}
$$

on both sides of relation (15) and summing up from $n=0$ to $N-1$ with $0 \leq I<N$

$$
\begin{aligned}
\frac{1}{N} \sum_{n=0}^{N-1} X_{n} e^{j n\left(\frac{2 \pi l}{N}\right)}= & \frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)} \cdot e^{j n\left(\frac{2 \pi l}{N}\right)} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} x_{k} e^{j n(l-k) \frac{2 \pi}{N}}
\end{aligned}
$$

Now, changing the order of summation,

$$
\begin{equation*}
\frac{1}{N} \sum_{n=0}^{N-1} X_{n} e^{j n\left(\frac{2 \pi l}{N}\right)}=\sum_{k=0}^{N-1} x_{k}\left[\frac{1}{N} \sum_{n=0}^{N-1} e^{j n \frac{2 \pi(l-k)}{N}}\right] \tag{17}
\end{equation*}
$$

Inverse Discrete Fourier Transform

Now, in $\sum_{n=0}^{N-1} e^{j n \frac{2 \pi(l-k)}{N}}$, when $(l-k)=p N$
where p is a positive integer, the expression becomes $\sum_{n=0}^{N-1} e^{j n 2 \pi p}$
As $n p$ is another integer, it becomes $\sum_{n=0}^{N-1} e^{j 2 \pi(n p)}=\sum_{n=0}^{N-1} 1=N$
In the present case, as I and k are limited within 0 and ($N-1$), the possible value of p is zero, i.e. when $(\boldsymbol{I} \boldsymbol{k})=0$ or $I=\boldsymbol{k}$, the summation becomes \boldsymbol{N}.

Inverse Discrete Fourier Transform

Now, in $\sum_{n=0}^{N-1} e^{j n \frac{2 \pi(l-k)}{N}}$, let $\frac{2 \pi(l-k)}{N}=\theta$
Then the summation becomes $\sum_{n=0}^{N-1} e^{j n \frac{2 \pi(l-k)}{N}}=\sum_{n=0}^{N-1} e^{j n \theta}$
It may be expressed as

$$
\begin{aligned}
\sum_{n=0}^{N-1} e^{j n \theta} & =\sum_{m=1}^{N} e^{j(m-1) \theta}, \text { where } m=n+1 \\
& =\sum_{m=1}^{N} e^{j m \theta} \cdot e^{-j \theta}
\end{aligned}
$$

Inverse Discrete Fourier Transform

$$
\text { or } \begin{aligned}
\sum_{n=0}^{N-1} e^{j n \theta} & =\sum_{m=1}^{N} e^{j m \theta} \cdot e^{-j \theta} \\
& =e^{-j \theta}\left[\sum_{m=1}^{N}(\cos m \theta+j \sin m \theta)\right] \\
& =e^{-j \theta}\left[\frac{\sin \frac{N \theta}{2}}{\sin \frac{\theta}{2}} \cos \left(\frac{N+1}{2} \theta\right)+j \frac{\sin \frac{N \theta}{2}}{\sin \frac{\theta}{2}} \sin \left(\frac{N+1}{2} \theta\right)\right] \\
& =e^{-j \theta}\left[\frac{\sin \frac{N \theta}{2}}{\sin \frac{\theta}{2}} e^{j \frac{N+1}{2} \theta}\right]
\end{aligned}
$$

Inverse Discrete Fourier Transform

$$
\text { or } \begin{aligned}
\sum_{n=0}^{N-1} e^{j n \theta} & =e^{-j \theta}\left[\frac{\sin \frac{N \theta}{2}}{\sin \frac{\theta}{2}} e^{j \frac{N+1}{2} \theta}\right] \\
& =\frac{\sin \frac{N \theta}{2}}{\sin \frac{\theta}{2}} e^{j \frac{N-1}{2} \theta} \\
& =\frac{\left(e^{\frac{j N \theta}{2}}-e^{\frac{-j N \theta}{2}}\right) / 2 j}{\left(e^{\frac{j \theta}{2}}-e^{\frac{-j \theta}{2}}\right) / 2 j} \cdot \frac{e^{\frac{j N \theta}{2}}}{e^{\frac{j \theta}{2}}}=\frac{e^{j N \theta}-1}{e^{j \theta}-1}
\end{aligned}
$$

Inverse Discrete Fourier Transform

$$
\text { or } \sum_{n=0}^{N-1} e^{j n \theta}=\frac{e^{j N \theta}-1}{e^{j \theta}-1}
$$

Putting the value of θ,

$$
\sum_{n=0}^{N-1} e^{j n 2 \pi \frac{(l-k)}{N}}=\frac{e^{j 2 \pi(l-k)}-1}{e^{j 2 \pi \frac{(l-k)}{N}}-1}
$$

Now for $I \neq \boldsymbol{k}$, the summation is zero.
And for $I=\boldsymbol{k}$, it becomes indeterminate $\left(\frac{0}{0}\right)$ form.

Inverse Discrete Fourier Transform

$$
=0, \text { for } l \neq k
$$

considering $\quad 0 \leq l, k<N$

Thus all terms on the right hand side of relation (17) vanishes except when $I=k$.

$$
\begin{equation*}
\frac{1}{N} \sum_{n=0}^{N-1} X_{n} e^{j n\left(\frac{2 \pi l}{N}\right)}=\sum_{k=0}^{N-1} x_{k}\left[\frac{1}{N} \sum_{n=0}^{N-1} e^{j n \frac{2 \pi(l-k)}{N}}\right] \tag{17}
\end{equation*}
$$

Inverse Discrete Fourier Transform

$$
=0, \text { for } l \neq k
$$

considering $\quad 0 \leq l, k<N$

Thus all terms on the right hand side of relation (17) vanishes except when $I=k$.

Therefore,

$$
\begin{equation*}
\frac{1}{N} \sum_{n=0}^{N-1} X_{n} e^{j n\left(\frac{2 \pi l}{N}\right)}=\sum_{k=0}^{N-1} x_{k}\left[\frac{1}{N} \sum_{n=0}^{N-1} e^{j n \frac{2 \pi(l-k)}{N}}\right] \tag{17}
\end{equation*}
$$

$\frac{1}{N} \sum_{n=0}^{N-1} X_{n} e^{j n\left(\frac{2 \pi l}{N}\right)}=x_{l}\left(\frac{N}{N}\right)=x_{l}$, for $l=0,1,2, \ldots, N-1$

Inverse Discrete Fourier Transform

$$
\frac{1}{N} \sum_{n=0}^{N-1} X_{n} e^{j n\left(\frac{2 \pi l}{N}\right)}=x_{l}\left(\frac{N}{N}\right)=x_{l}, \text { for } l=0,1,2, \ldots, N-1
$$

Now, changing the suffix / to k,

$$
\begin{equation*}
x_{k}=\frac{1}{N} \sum_{n=0}^{N-1} X_{n} e^{j n\left(\frac{2 \pi k}{N}\right)}, \text { for } k=0,1,2, \ldots, N-1 \tag{18}
\end{equation*}
$$

Relation (18) is known as the Inverse Discrete Fourier Transform (IDFT).

Relations (15) and (18) are called \boldsymbol{N}-point DFT pair.

N-point DFT pair

N -point DFT:

$$
\begin{equation*}
X_{n}=\sum_{k=0}^{N-1} x_{k} e^{-j n\left(\frac{2 \pi k}{N}\right)}, \text { for } n=0,1,2, \ldots, N-1 \tag{15}
\end{equation*}
$$

N-point IDFT:

$x_{k}=\frac{1}{N} \sum_{n=0}^{N-1} X_{n} e^{j n\left(\frac{2 \pi k}{N}\right)}$, for $k=0,1,2, \ldots, N-1$
Replacing the expression $e^{-j\left(\frac{2 \pi}{N}\right)}$
by the term W_{N}, the DFT pair takes the form

$$
\begin{align*}
& X_{n}=\sum_{k=0}^{N-1} x_{k} W_{N}^{n k}, \text { for } n=0,1,2, \ldots, N-1 \tag{19}\\
& x_{k}=\frac{1}{N} \sum_{n=0}^{N-1} X_{n} W_{N}^{-n k}, \text { for } k=0,1,2, \ldots, N-1 \tag{20}
\end{align*}
$$

N-point DFT pair

$X_{n}=\sum_{k=0}^{N-1} x_{k} W_{N}^{n k}$, for $n=0,1,2, \ldots, N-1$
$x_{k}=\frac{1}{N} \sum_{n=0}^{N-1} X_{n} W_{N}^{-n k}$, for $k=0,1,2, \ldots, N-1$
where $W_{N}=e^{-j\left(\frac{2 \pi}{N}\right)}$
a complex operator (twiddle factor), which rotates any vector through $(-2 \pi / N)$ Radians.

$$
W_{N}=e^{-j 2 \pi / N}=\cos \left(\frac{2 \pi}{N}\right)-j \sin \left(\frac{2 \pi}{N}\right)
$$

Here, $n=$ harmonic number and $\boldsymbol{k}=$ sample number.

DFT and IDFT

```
X = fft(x)
\(\mathrm{x}=\operatorname{ifft}(\mathrm{X})\)
\(\mathrm{x}=\) input vector
\(\mathrm{X}=\mathrm{DFT}\) coefficient vector
```

\% Calculate DFT coefficients
\% Inverse DFT

MATLAB FFT functions

DFT and IDFT

Problem 2

A sequence x_{k}, for $k=0,1,2,3$, is given as: $x_{0}=1, x_{1}=2, x_{2}=3$, and $x_{3}=4$. Evaluate its DFT X_{n}.

Solution

Here $N=4$. Hence $W_{N}=W_{4}=e^{-j\left(\frac{2 \pi}{4}\right)}=e^{-j\left(\frac{\pi}{2}\right)}$
Therefore, $X_{n}=\sum_{k=0}^{3} x_{k} W_{4}^{n k}=\sum_{k=0}^{3} x_{k} e^{-j \frac{\pi n k}{2}}$
For $n=0, \quad X_{0}=\sum_{k=0}^{3} x_{k} e^{-j 0}=x_{0} e^{-j 0}+x_{1} e^{-j 0}+x_{2} e^{-j 0}+x_{3} e^{-j 0}$

$$
=x_{0}+x_{1}+x_{2}+x_{3}=1+2+3+4=10
$$

For $n=1, \quad X_{1}=\sum_{k=0}^{3} x_{k} e^{-j \frac{\pi k}{2}}=x_{0} e^{-j 0}+x_{1} e^{-j \frac{\pi}{2}}+x_{2} e^{-j \pi}+x_{3} e^{-j \frac{3 \pi}{2}}$

$$
=x_{0}-j x_{1}-x_{2}+j x_{3}=1-j 2-3+j 4=-2+j 2
$$

DFT and IDFT

Problem 2

A sequence x_{k}, for $k=0,1,2,3$, is given as: $x_{0}=1, x_{1}=2, x_{2}=3$, and $x_{3}=4$. Evaluate its DFT X_{n}.

Solution (contd.)

Here $N=4$. Hence $W_{N}=W_{4}=e^{-j\left(\frac{2 \pi}{4}\right)}=e^{-j\left(\frac{\pi}{2}\right)}$
Therefore, $X_{n}=\sum_{k=0}^{3} x_{k} W_{4}^{n k}=\sum_{k=0}^{3} x_{k} e^{-j \frac{\pi n k}{2}}$
For $n=2, X_{2}=\sum_{k=0}^{3} x_{k} e^{-j \frac{2 \pi k}{2}}=x_{0} e^{-j 0}+x_{1} e^{-j \pi}+x_{2} e^{-j 2 \pi}+x_{3} e^{-j 3 \pi}$

$$
=x_{0}-x_{1}+x_{2}-x_{3}=1-2+3-4=-2
$$

For $n=3, \quad X_{3}=\sum_{k=0}^{3} x_{k} e^{-j \frac{3 \pi k}{2}}=x_{0} e^{-j 0}+x_{1} e^{-j \frac{3 \pi}{2}}+x_{2} e^{-j 3 \pi}+x_{3} e^{-j \frac{9 \pi}{2}}$

$$
=x_{0}+j x_{1}-x_{2}-j x_{3}=1+j 2-3-j 4=-2-j 2
$$

DFT and IDFT

Problem 2

A sequence x_{k}, for $k=0,1,2,3$, is given as: $x_{0}=1, x_{1}=2, x_{2}=3$, and $x_{3}=4$. Evaluate its DFT X_{n}.

Solution (contd.)

This result can be verified in MATLAB ${ }^{\circledR}$ as:

$$
\left.\left.\begin{array}{rl}
\gg \mathrm{X} & =\mathrm{fft}\left(\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right.
\end{array}\right]\right) \text { (} \begin{aligned}
& \mathrm{X}=10.0000 \quad-2.0000+2.0000 \mathrm{i} \\
& \hline
\end{aligned}
$$

DFT and IDFT

Problem 3

Using the DFT coefficients X_{n}, for $n=0,1,2,3$, computed in the previous problem, evaluate its inverse DFT to determine the time domain sequence x_{k}.

Solution

Here $N=4$. Hence $W_{N}^{-1}=W_{4}^{-1}=e^{j\left(\frac{2 \pi}{4}\right)}=e^{j\left(\frac{\pi}{2}\right)}$
Therefore, $\quad x_{k}=\frac{1}{4} \sum_{n=0}^{3} X_{n} W_{4}^{-n k}=\frac{1}{4} \sum_{n=0}^{3} X_{n} e^{j \frac{\pi n k}{2}}$
For $k=0$,

$$
\begin{aligned}
x_{0} & =\frac{1}{4} \sum_{n=0}^{3} X_{n} e^{j 0}=\frac{1}{4}\left(X_{0} e^{j 0}+X_{1} e^{j 0}+X_{2} e^{j 0}+X_{3} e^{j 0}\right) \\
& =\frac{1}{4}\left(X_{0}+X_{1}+X_{2}+X_{3}\right) \\
& =\frac{1}{4}(10+(-2+j 2)-2+(-2-j 2))=1
\end{aligned}
$$

DFT and IDFT

Problem 3

Using the DFT coefficients X_{n}, for $n=0,1,2,3$, computed in the previous problem, evaluate its inverse DFT to determine the time domain sequence x_{k}.

Solution (contd.)

Here $N=4$. Hence $W_{N}^{-1}=W_{4}^{-1}=e^{j\left(\frac{2 \pi}{4}\right)}=e^{j\left(\frac{\pi}{2}\right)}$
Therefore, $x_{k}=\frac{1}{4} \sum_{n=0}^{3} X_{n} W_{4}^{-n k}=\frac{1}{4} \sum_{n=0}^{3} X_{n} e^{j \frac{\pi n k}{2}}$
For $k=1$,

$$
\begin{aligned}
x_{1} & =\frac{1}{4} \sum_{n=0}^{3} X_{n} e^{j \frac{n \pi}{2}}=\frac{1}{4}\left(X_{0} e^{j 0}+X_{1} e^{j \frac{\pi}{2}}+X_{2} e^{j \pi}+X_{3} e^{j \frac{3 \pi}{2}}\right) \\
& =\frac{1}{4}\left(X_{0}+j X_{1}-X_{2}-j X_{3}\right) \\
& =\frac{1}{4}(10+j(-2+j 2)+2-j(-2-j 2))=2
\end{aligned}
$$

DFT and IDFT

Problem 3

Using the DFT coefficients X_{n}, for $n=0,1,2,3$, computed in the previous problem, evaluate its inverse DFT to determine the time domain sequence x_{k}.

Solution (contd.)

Here $N=4$. Hence $W_{N}^{-1}=W_{4}^{-1}=e^{j\left(\frac{2 \pi}{4}\right)}=e^{j\left(\frac{\pi}{2}\right)}$
Therefore, $x_{k}=\frac{1}{4} \sum_{n=0}^{3} X_{n} W_{4}^{-n k}=\frac{1}{4} \sum_{n=0}^{3} X_{n} e^{j \frac{\pi n k}{2}}$
For $k=2$,

$$
\begin{aligned}
x_{2} & =\frac{1}{4} \sum_{n=0}^{3} X_{n} e^{j n \pi}=\frac{1}{4}\left(X_{0} e^{j 0}+X_{1} e^{j \pi}+X_{2} e^{j 2 \pi}+X_{3} e^{j 3 \pi}\right) \\
& =\frac{1}{4}\left(X_{0}-X_{1}+X_{2}-X_{3}\right) \\
& =\frac{1}{4}(10-(-2+j 2)+(-2)-(-2-j 2))=3
\end{aligned}
$$

DFT and IDFT

Problem 3

Using the DFT coefficients X_{n}, for $n=0,1,2,3$, computed in the previous problem, evaluate its inverse DFT to determine the time domain sequence x_{k}.

Solution (contd.)

Here $N=4$. Hence $W_{N}^{-1}=W_{4}^{-1}=e^{j\left(\frac{2 \pi}{4}\right)}=e^{j\left(\frac{\pi}{2}\right)}$
Therefore, $x_{k}=\frac{1}{4} \sum_{n=0}^{3} X_{n} W_{4}^{-n k}=\frac{1}{4} \sum_{n=0}^{3} X_{n} e^{j \frac{\pi n k}{2}}$
For $k=3$,

$$
\begin{aligned}
x_{3} & =\frac{1}{4} \sum_{n=0}^{3} X_{n} e^{j \frac{3 n \pi}{2}}=\frac{1}{4}\left(X_{0} e^{j 0}+X_{1} e^{j \frac{3 \pi}{2}}+X_{2} e^{j 3 \pi}+X_{3} e^{j \frac{9 \pi}{2}}\right) \\
& =\frac{1}{4}\left(X_{0}-j X_{1}-X_{2}+j X_{3}\right) \\
& =\frac{1}{4}(10-j(-2+j 2)-(-2)+j(-2-j 2))=4
\end{aligned}
$$

DFT and IDFT

Problem 3

Using the DFT coefficients X_{n}, for $n=0,1,2,3$, computed in the previous problem, evaluate its inverse DFT to determine the time domain sequence x_{k}.

Solution (contd.)

This result can be verified in MATLAB ${ }^{\circledR}$ as:

$$
\begin{aligned}
\gg \mathrm{x} & =\operatorname{ifft}\left(\left[\begin{array}{llll}
10 & -2+2 j & -2 & -2-2 j
\end{array}\right]\right) \\
\mathrm{x} & =1
\end{aligned} \quad 2 \quad 3 \quad 4 .
$$

Important Properties of DFT

Periodicity

From relation (19),
$X_{n}=\sum_{k=0}^{N-1} x_{k} W_{N}^{n k}$, for $n=0,1,2, \ldots, N-1$, where $W_{N}=e^{-j\left(\frac{2 \pi}{N}\right)}$
Then,

$$
\begin{align*}
X_{n+p N} & =\sum_{k=0}^{N-1} x_{k} W_{N}^{(n+p N) k} \text { for } p=0, \pm 1, \pm 2, \ldots \\
& =\sum_{k=0}^{N-1} x_{k} W_{N}^{n k}, \text { as } W_{N}^{p N k}=W_{N}^{N(p k)}=1 \\
& =X_{n} \tag{21}
\end{align*}
$$

i.e. $X_{n+p N}=X_{n}$ for $p=0, \pm 1, \pm 2, \ldots$.

Thus X_{n} is periodic with a period N, i.e. the $p N$ th harmonic or at the p times sampling frequency, the DFT repeats.

Important Properties of DFT

Linearity

If $\quad x_{1 k} \underset{N}{\stackrel{\text { DFT }}{\longleftrightarrow}} X_{1 n} \quad$ and $\quad x_{2 k} \stackrel{N}{\stackrel{\mathrm{DFT}}{\longrightarrow}} X_{2 n}$
then for any real-valued or complex-valued constants a_{1} and a_{2},

$$
a_{1} x_{1 k}+a_{2} x_{2 k} \underset{N}{\stackrel{\mathrm{DFT}}{\longleftrightarrow}} a_{1} X_{1 n}+a_{2} X_{2 n}
$$

This property follows immediately from the definition of DFT given in (19).

Important Properties of DFT

Circular symmetries of a sequence

The N-point DFT of a finite duration sequence x_{k} of length $L \leq N$, is equivalent to the N-point DFT of a periodic sequence $x_{p k}$ of period N, which is obtained by periodically extending x_{k} i.e.

$$
\begin{equation*}
x_{p k}=\sum_{l=-\infty}^{\infty} x_{k-l N} \tag{21a}
\end{equation*}
$$

Let us assume that the periodic sequence $x_{p k}$ is shifted by m units to the right. Thus we obtain another periodic sequence, given as:

$$
\begin{equation*}
x_{p k}^{\prime}=x_{p(k-m)}=\sum_{l=-\infty}^{\infty} x_{k-m-l N} \tag{21b}
\end{equation*}
$$

The finite duration sequence

$$
x_{k}^{\prime}=\left\{\begin{array}{cc}
x_{p k}^{\prime}, & 0 \leq k \leq N-1 \tag{21c}\\
0, & \text { otherwise }
\end{array}\right.
$$

Is related to the original sequence x_{k} by a circular shift.

Important Properties of DFT

Circular symmetries of a sequence

In general, the circular shift of the sequence can be represented as the index modulo N. Thus we can write,

$$
\begin{equation*}
x_{k}^{\prime}=x_{(k-m, \text { modulo } N)} \equiv x_{(k-m)_{N}} \tag{21d}
\end{equation*}
$$

For example, let us assume $m=2$ and $N=4$. Then we have,

$$
x_{k}^{\prime}=x_{(k-2)_{4}}
$$

This implies that

$$
\begin{aligned}
& x_{0}^{\prime}=x_{(-2)_{4}}=x_{2} \\
& x_{1}^{\prime}=x_{(-1)_{4}}=x_{3} \\
& x_{2}^{\prime}=x_{(0)_{4}}=x_{0} \\
& x_{3}^{\prime}=x_{(1)_{4}}=x_{1}
\end{aligned}
$$

Hence x_{k}^{\prime} is simply x_{k} shifted circularly by two units in time, where counterclockwise direction has been arbitrarily selected as the positive direction.

Important Properties of DFT

Circular symmetries of a sequence

Hence we can conclude that a circular shift of an N-point sequence is equivalent to a linear shift of its periodic extension, and vice versa.
The inherent periodicity resulting from the arrangement of the N-point sequence on the circumference of a circle dictates a different definition of even and odd symmetry, and time reversal of a sequence.

An N-point sequence is called circularly even if it is symmetric about the point zero on the circle i.e.

$$
\begin{equation*}
x_{N-k}=x_{k} \quad 1 \leq k \leq N-1 \tag{21e}
\end{equation*}
$$

An N-point sequence is called circularly odd if it is antisymmetric about the point zero on the circle i.e.

$$
\begin{equation*}
x_{N-k}=-x_{k} \quad 1 \leq k \leq N-1 \tag{21f}
\end{equation*}
$$

The time reversal of an N-point sequence is attained by reversing its samples about the point zero on the circle i.e.

$$
\begin{equation*}
x_{(-k)_{N}}=x_{(N-k)} \quad 1 \leq k \leq N-1 \tag{21g}
\end{equation*}
$$

Important Properties of DFT

Circular symmetries of a sequence

This time reversal is equivalent to plotting x_{k} in a clockwise direction on a circle.
An equivalent definition of even and odd sequences for the associated periodic sequence $x_{p k}$ is given as:

$$
\begin{array}{ll}
\text { even : } & x_{p k}=x_{p(-k)}=x_{p(N-k)} \\
\text { odd }: & x_{p k}=-x_{p(-k)}=-x_{p(N-k)} \tag{21h}
\end{array}
$$

If the periodic sequence is complex valued, then:

$$
\begin{array}{ll}
\text { conjugate even }: & x_{p k}=x_{p(N-k)}^{*} \\
\text { conjugate odd }: & x_{p k}=-x_{p(N-k)}^{*} \tag{21i}
\end{array}
$$

Important Properties of DFT

Circular symmetries of a sequence

Hence we can decompose the sequence x_{pk} as:

$$
\begin{equation*}
x_{p k}=x_{p e(k)}+x_{p o(k)} \tag{21j}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{p e(k)}=\frac{1}{2}\left(x_{p k}+x_{p(N-k)}^{*}\right) \\
& x_{p o(k)}=\frac{1}{2}\left(x_{p k}-x_{p(N-k)}^{*}\right) \tag{21k}
\end{align*}
$$

Important Properties of DFT

Symmetry

From relation (19),
$X_{n}=\sum_{k=0}^{N-1} x_{k} W_{N}^{n k}$, for $n=0,1,2, \ldots, N-1$, where $W_{N}=e^{-j\left(\frac{2 \pi}{N}\right)}$
Then,

$$
\begin{align*}
X_{p N-n} & =\sum_{k=0}^{N-1} x_{k} W_{N}^{(p N-n) k} \text { for } p=0, \pm 1, \pm 2, \ldots \\
& =\sum_{k=0}^{N-1} x_{k} W_{N}^{-n k}, \text { as } W_{N}^{p N k}=W_{N}^{N(p k)}=1 \\
& =\hat{X}_{n}, \text { conjugate of } X_{n}, \text { if } x_{k} \text { is a real sequence. } \tag{22}
\end{align*}
$$

Thus, $X_{p N-n}=\hat{X}_{n}$, for $p=0, \pm 1, \pm 2, \ldots$.
For $p=0, \quad X_{-n}=\hat{X}_{n}$ and for $p=1, X_{N-n}=\hat{X}_{n}$

Real and imaginary parts of X_{n}

Multiplication of two DFTs and Circular Convolution

Let us assume that we have two finite duration sequences of length $N, x_{1 \mathrm{k}}$ and $x_{2 \mathrm{k}}$. Their respective N-point DFTs are:

$$
\begin{align*}
& X_{1 n}=\sum_{k=0}^{N-1} x_{1 k} e^{\frac{-j 2 \pi k n}{N}}, \quad n=0,1, \cdots, N-1 \tag{22a}\\
& X_{2 n}=\sum_{k=0}^{N-1} x_{2 k} e^{\frac{-j 2 \pi k n}{N}}, \quad n=0,1, \cdots, N-1 \tag{22b}
\end{align*}
$$

If these two DFTs are multiplied together, the resultant will be a DFT $X_{3 n}$ of a sequence $x_{3 k}$ of length N.
Now our objective is to determine the relationship between $x_{3 k}$ and sequences $x_{1 k}$ and $x_{2 k}$
Now, we have:

$$
\begin{equation*}
X_{3 n}=X_{1 n} X_{2 n} \quad n=0,1, \cdots, N-1 \tag{22c}
\end{equation*}
$$

The IDFT of $\left\{X_{3 n}\right\}$ is:

$$
\begin{equation*}
x_{3 m}=\frac{1}{N} \sum_{n=0}^{N-1} X_{3 n} e^{\frac{j 2 \pi n m}{N}}=\frac{1}{N} \sum_{n=0}^{N-1} X_{1 n} X_{2 n} e^{\frac{j 2 \pi n m}{N}} \tag{22d}
\end{equation*}
$$

Multiplication of two DFTs and Circular Convolution

Substituting $X_{1 n}$ and $X_{2 n}$ in (22d) using the DFTs in (22a) and (22b), we get:

$$
\begin{align*}
x_{3 m} & =\frac{1}{N} \sum_{n=0}^{N-1}\left[\sum_{k=0}^{N-1} x_{1 k} e^{\frac{-j 2 \pi n k}{N}}\right]\left[\sum_{l=0}^{N-1} x_{2 l} e^{\frac{-j 2 \pi n l}{N}}\right] e^{\frac{j 2 \pi n m}{N}} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} x_{1 k} \sum_{l=0}^{N-1} x_{2 l}\left[\sum_{n=0}^{N-1} e^{\frac{j 2 \pi n(m-k-l)}{N}}\right] \tag{22e}
\end{align*}
$$

The inner sum in the brackets in (22e) has the form:

$$
\sum_{n=0}^{N-1} a^{n}=\left\{\begin{array}{cc}
N, & a=1 \tag{22f}\\
\frac{1-a^{N}}{1-a}, & a \neq 1
\end{array}\right.
$$

where a is defined as:

$$
\begin{equation*}
a=e^{\frac{j 2 \pi(m-k-l)}{N}} \tag{22g}
\end{equation*}
$$

Multiplication of two DFTs and Circular Convolution

We observe that $a=1$, when $m-k-l$ is a multiple of N.
On the other hand, $a^{N}=1$, for any value of $a \neq 0$. Hence (22f) gets reduced to:

$$
\sum_{n=0}^{N-1} a^{n}=\left\{\begin{array}{cc}
N, & l=m-k+p N=(m-k)_{N} \tag{22h}\\
0, & \text { otherwise }
\end{array}\right.
$$

If we substitute this result in (22e), we obtain the desired expression of $x_{3 m}$ as:

$$
\begin{equation*}
x_{3 m}=\sum_{k=0}^{N-1} x_{1 k} x_{2(m-k)_{N}}, \quad m=0,1, \cdots, N-1 \tag{22i}
\end{equation*}
$$

The expression in (22i) has the form of a convolution sum.
However it is not the ordinary linear convolution. Instead, the convolution sum in (22i) Involves the index $(m-k)_{N}$ and is called circular convolution.

Conclusion: The multiplication of the DFTs of two sequences is equivalent to the circular convolution of the two sequences in the time domain.

Important Properties of DFT

Circular Convolution

If $\quad x_{1 k} \underset{N}{\stackrel{\text { DFT }}{\longleftrightarrow}} X_{1 n} \quad$ and $\quad x_{2 k} \stackrel{N}{\stackrel{\text { DFT }}{\longrightarrow}} X_{2 n}$
then

$$
x_{1 k}(\mathrm{~N}) x_{2 k} \underset{N}{\stackrel{\mathrm{DFT}}{\longleftrightarrow}} X_{1 n} X_{2 n}
$$

where $x_{1 k}(\mathrm{~N}) x_{2 k}$ denotes the circular convolution of the sequences $x_{1 k}$ and $x_{2 k}$.

Computation of DFT

From relation (19),
$X_{n}=\sum_{k=0}^{N-1} x_{k} W_{N}^{n k}$, for $n=0,1,2, \ldots, N-1$, where $W_{N}=e^{-j\left(\frac{2 \pi}{N}\right)}$
It may be represented in matrix form as

$$
\begin{equation*}
\left[\boldsymbol{X}_{n}\right]=\left[\boldsymbol{W}_{N}^{n k}\right]\left[\boldsymbol{X}_{k}\right] \tag{23}
\end{equation*}
$$

where $\left[\boldsymbol{X}_{n}\right]$ and $\left[\boldsymbol{X}_{k}\right]$ are $N \times 1$ column matrices and $\left[\boldsymbol{W}_{N}^{n k}\right]$ is an $N \times N$ square matrix.

Computation of DFT

$$
\begin{equation*}
\left[\boldsymbol{X}_{n}\right]=\left[\boldsymbol{W}_{N}^{n k}\left[\boldsymbol{X}_{k}\right]\right. \tag{23}
\end{equation*}
$$

Here, $\left[\boldsymbol{X}_{\boldsymbol{n}}\right]=\left[\begin{array}{c}X_{0} \\ X_{1} \\ \\ X_{N-1}\end{array}\right], \quad\left[\boldsymbol{X}_{k}\right]=\left[\begin{array}{c}x_{0} \\ x_{1} \\ \\ x_{N-1}\end{array}\right]$
and $\quad\left[\boldsymbol{W}_{N}^{n k}\right]=\left[\begin{array}{cccc}W_{N}^{0} & W_{N}^{0} & \cdots & W_{N}^{0} \\ W_{N}^{0} & W_{N}^{1} & \cdots & W_{N}^{(N-1)} \\ W_{N}^{0} & W_{N}^{2} & \cdots & W_{N}^{2(N-1)} \\ \vdots & \vdots & & \vdots \\ W_{N}^{0} & W_{N}^{(N-1)} & \cdots & W_{N}^{(N-1)(N-1)}\end{array}\right]$

Computation of DFT

$$
\begin{equation*}
\left[\boldsymbol{X}_{n}\right]=\left[\boldsymbol{W}_{N}^{n k}\left[\boldsymbol{X}_{k}\right]\right. \tag{23}
\end{equation*}
$$

For $N=4$, relation (23) becomes

$$
\left[\begin{array}{l}
X_{0} \\
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{0}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

(Frequency)
(Time)

Computation of DFT

$$
\begin{equation*}
\left[\boldsymbol{X}_{n}\right]=\left[\boldsymbol{W}_{N}^{n k}\left[\boldsymbol{X}_{k}\right]\right. \tag{23}
\end{equation*}
$$

For $N=4$, relation (23) becomes

$$
\left[\begin{array}{l}
X_{2} \\
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

(Frequency) (Time)

Hence, computation of X_{0} requires 4 complex multiplications and 4 complex additions.

Computation of DFT

$$
\begin{equation*}
\left[\boldsymbol{X}_{n}\right]=\left[\boldsymbol{W}_{N}^{n k}\left[\boldsymbol{X}_{k}\right]\right. \tag{23}
\end{equation*}
$$

For $\mathrm{N}=4$, relation (23) becomes

$$
\left[\begin{array}{c}
X_{0} \\
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

(Frequency)
(Time)
Hence, computation of X_{0} requires 4 complex multiplications and 4 complex additions.

In general, execution of relation (23) requires \boldsymbol{N}^{2} complex multiplications and \boldsymbol{N}^{2} complex additions. Thus computational load increases rapidly with increasing \boldsymbol{N}. Fast Fourier Transform (FFT) algorithms allow computation of DFT with reduced computational burden.

Fast Fourier Transform (FFT)

From relation (19),

$$
X_{n}=\sum_{k=0}^{N-1} x_{k} W_{N}^{n k}, \text { for } n=0,1,2, \ldots, N-1
$$

Assuming N to be a power of $2, N$-point data sequence x_{k} in relation (19) may be split into two N/2 point data sequences as follows:

$$
\begin{aligned}
& X_{n}=\sum_{k=1}^{N-1} x_{k} W_{k}^{N+w}+\sum_{k=\frac{N}{2}}^{N-\frac{1}{2}} x_{k} W_{N}^{n k}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{\frac{N}{2}-1} x_{k} W_{N}^{n k}+W_{N}^{\left(\frac{\pi N}{N}\right.} \sum_{k=0}^{\frac{N}{2}-1} x_{k+\frac{N}{2}} W_{N}^{w}
\end{aligned}
$$

Fast Fourier Transform (FFT)

or $\quad X_{n}=\sum_{k=0}^{N-1} x_{k} W_{N}^{n k}+W_{N}^{\frac{n N}{2}} \sum_{k=0}^{N-1} x_{k+\frac{N}{2}} W_{N}^{n k}$
Now, $W_{N}^{\frac{n N}{2}}=e^{-j \eta\left(\frac{2 \pi}{N}\right) \frac{N}{2}}=e^{-j n \pi}=(-1)^{n}$
Then, $X_{n}=\sum_{k=0}^{\frac{N}{2-1}}\left[x_{k} W_{N}^{n k}+(-1)^{n} x_{k+\frac{N}{2}} W_{N}^{n k}\right]$
or $\quad X_{n}=\sum_{k=0}^{\frac{N}{N-1}}\left[x_{k}+(-1)^{n} x_{k+\frac{N}{2}}\right] W_{N}^{n k}$

Fast Fourier Transform (FFT)

or $\quad X_{n}=\sum_{k=0}^{\frac{N}{2}-1}\left[x_{k}+(-1)^{n} x_{k+\frac{N}{2}}\right] W_{N}^{n k}$
Now, splitting (or decimating) X_{n} into even and odd harmonics,
for even harmonics, $n=2 p$, for $p=0,1,2, \ldots,(\mathrm{~N} / 2-1)$ and
for odd harmonics, $n=2 p+1$, for $p=0,1,2, \ldots,(\mathrm{~N} / 2-1)$.

For even harmonics,

$$
X_{2 p}=\sum_{k=0}^{\frac{N}{2}-1}\left[x_{k}+x_{k+\frac{N}{2}}\right] W_{N}^{2 p k}=\sum_{k=0}^{\frac{N}{2}-1}\left[x_{k}+x_{k+\frac{N}{2}}\right] W_{\frac{N}{2}}^{p k}
$$

$$
\text { as } W_{N}^{2 p k}=W_{\frac{N}{2}}^{p k}
$$

Fast Fourier Transform (FFT)

Now, $\quad X_{2 p}=\sum_{k=0}^{\frac{N}{2}-1}\left[x_{k}+x_{k+\frac{N}{2}}\right] W_{\frac{N}{2}}^{p k}$
Let, $g_{k}=x_{k}+x_{k+\frac{N}{2}}$, for $k=0,1,2, \ldots(\mathrm{~N} / 2-1)$
Then, $\quad X_{2 p}=\sum_{k=0}^{\frac{N}{2}-1} g_{k} W_{\frac{N}{2}}^{p k}$
This is an $\mathrm{N} / 2$ point DFT sequence $\mathrm{g}_{\mathrm{k}}, k=0,1,2, \ldots .(\mathrm{N} / 2-1)$

Fast Fourier Transform (FFT)

Now, for odd harmonics [c.f. relation (24)],

$$
\begin{aligned}
& \begin{aligned}
X_{2 p+1} & =\sum_{k=0}^{\frac{N}{2}-1}\left[x_{k}-x_{k+\frac{N}{2}}\right] W_{N}^{(2 p+1) k} \\
& =\sum_{k=0}^{\frac{N}{2}-1}\left[x_{k}-x_{k+\frac{N}{2}}\right] W_{N}^{k} W_{N}^{2 p k} \\
& =\sum_{k=0}^{\frac{N}{2}-1}\left[x_{k}-x_{k+\frac{N}{2}}\right] W_{N}^{k} W_{\frac{N}{2}}^{p k} \text { as } W_{N}^{2 p k}=W_{\frac{N}{2}}^{p k}
\end{aligned} \\
& \text { Let, } \quad g_{k}^{\prime}
\end{aligned}=\left(x_{k}-x_{k+\frac{N}{2}}\right) W_{N}^{k} \text { for } k=0,1,2, \ldots,(\mathrm{~N} / 2-1) \text {. }
$$

Fast Fourier Transform (FFT)

Then, $X_{2 p+1}=\sum_{k=0}^{\frac{N}{2}-1} g_{k}^{\prime} W_{\frac{N}{2}}^{p k}$
This is an $\mathrm{N} / 2$ point DFT sequence $\mathrm{g}^{\prime}{ }_{k}, k=0,1,2, \ldots .(\mathrm{N} / 2-1)$

Thus an N-point DFT may be split into two N/2-point DFTs.
This process of splitting may be continued up to 2-point transforms as N is a power of 2.

4-point FFT

Let $N=4$. Then from relation (25),

$$
\begin{equation*}
X_{2 p}=\sum_{k=0}^{\frac{N}{2}-1} g_{k} W_{\frac{N}{2}}^{p k} \tag{25}
\end{equation*}
$$

$X_{2 p}=\sum_{k=0}^{\frac{N}{2}-1} g_{k} W_{\frac{N}{2}}^{p k} \quad$, for $p=0,1,2, \ldots,(\mathrm{~N} / 2-1)$
Where, $g_{k}=x_{k}+x_{k+\frac{N}{2}}$, for $k=0,1,2, \ldots,(\mathrm{~N} / 2-1)$
or, $X_{2 p}=\sum_{k=0}^{1} g_{k} W_{2}^{p k}$, for $p=0,1$
and, $g_{k}=x_{k}+x_{k+2}$, for $k=0,1$

4-point FFT

Now, $\quad X_{2 p}=\sum_{k=0}^{1} g_{k} W_{2}^{p k}$, for $p=0,1$
and, $g_{k}=x_{k}+x_{k+2}$, for $k=0,1$
Then for $p=0$,

$$
\begin{equation*}
X_{0}=\sum_{k=0}^{1} g_{k} W_{2}^{0}=\sum_{k=0}^{1} g_{k}=g_{0}+g_{1} \tag{28}
\end{equation*}
$$

and for $p=1$,

$$
\begin{align*}
X_{2} & =\sum_{k=0}^{1} g_{k} W_{2}^{k}=g_{0} W_{2}^{0}+g_{1} W_{2}^{1} \\
& =g_{0}+(-1) g_{1}=g_{0}-g_{1} \tag{29}
\end{align*}
$$

4-point FFT

Now from relation (26),

$$
\begin{equation*}
X_{2 p+1}=\sum_{k=0}^{\frac{N}{2}-1} g_{k}^{\prime} W_{\frac{N}{2}}^{p k} \tag{26}
\end{equation*}
$$

$$
X_{2 p+1}=\sum_{k=0}^{\frac{N}{2}-1} g_{k}^{\prime} W_{\frac{N}{2}}^{p k} \quad, \text { for } p=0,1,2, \ldots,(\mathrm{~N} / 2-1)
$$

where $g_{k}^{\prime}=\left(x_{k}-x_{k+\frac{N}{2}}\right) W_{N}^{k}$, for $k=0,1,2, \ldots,(\mathrm{~N} / 2-1)$
or, $\quad X_{2 p+1}=\sum_{k=0}^{1} g_{k}^{\prime} W_{2}^{p k}$, for $p=0,1$
and, $g_{k}^{\prime}=\left(x_{k}-x_{k+2}\right) W_{4}^{k}$, for $k=0,1$

4-point FFT

Now, $X_{2 p+1}=\sum_{k=0}^{1} g_{k}^{\prime} W_{2}^{p k}$, for $p=0,1$
and, $g_{k}^{\prime}=\left(x_{k}-x_{k+2}\right) W_{4}^{k}$, for $k=0,1$
Then for $p=0$,

$$
\begin{equation*}
X_{1}=\sum_{k=0}^{1} g_{k}^{\prime} W_{2}^{0}=g_{0}^{\prime}+g_{1}^{\prime} \tag{31}
\end{equation*}
$$

and for $p=1$,

$$
\begin{align*}
X_{3} & =\sum_{k=0}^{1} g_{k}^{\prime} W_{2}^{k}=g_{0}^{\prime}+g_{1}^{\prime} W_{2}^{1} \\
& =g_{0}^{\prime}-g_{1}^{\prime} \tag{32}
\end{align*}
$$

4-point FFT

Now from relations (27) and (30), for $k=0,1$

$$
\begin{aligned}
& g_{0}=x_{0}+x_{2} \\
& g_{1}=x_{1}+x_{3} \\
& g_{0}^{\prime}=\left(x_{0}-x_{2}\right) W_{4}^{0}=x_{0}-x_{2}=x_{0}+x_{2} W_{4}^{2} \\
& g_{1}^{\prime}=\left(x_{1}-x_{3}\right) W_{4}^{1}=x_{1} W_{4}^{1}-x_{3} W_{4}^{1}=x_{1} W_{4}^{1}+x_{3} W_{4}^{3}
\end{aligned}
$$

Then in matrix form,

$$
\left[\begin{array}{l}
g_{0} \tag{33}\\
g_{1} \\
g_{0}^{\prime} \\
g_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & W_{4}^{2} & 0 \\
0 & W_{4}^{1} & 0 & W_{4}^{3}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

4-point FFT

From relations (28), (29), (31) and (32),

$$
\begin{aligned}
& X_{0}=g_{0}+g_{1} \\
& X_{2}=g_{0}-g_{1} \\
& X_{1}=g_{0}^{\prime}+g_{1}^{\prime} \\
& X_{3}=g_{0}^{\prime}-g_{1}^{\prime}
\end{aligned}
$$

Then in matrix form,

$$
\left[\begin{array}{l}
X_{0} \tag{34}\\
X_{2} \\
X_{1} \\
X_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
g_{0} \\
g_{1} \\
g_{0}^{\prime} \\
g_{1}^{\prime}
\end{array}\right]
$$

4-point FFT

From relations (33) and (34),

$$
\begin{aligned}
& {\left[\begin{array}{l}
g_{0} \\
g_{1} \\
g_{0}^{\prime} \\
g_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & W_{4}^{2} & 0 \\
0 & W_{4}^{1} & 0 & W_{4}^{3}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \downarrow} \\
& \text { Frequency }
\end{aligned}\left[\begin{array}{l}
X_{0} \\
X_{2} \\
X_{2} \\
X_{1} \\
X_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
g_{0} \\
g_{1} \\
g_{0}^{\prime} \\
g_{1}^{\prime}
\end{array}\right] \text {. }
$$

Bit reversed order

4-point FFT

Frequency $\left[\begin{array}{l}X_{0} \\ X_{2} \\ X_{1} \\ X_{3}\end{array}\right]=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1\end{array}\right]\left[\begin{array}{c}g_{0} \\ g_{1} \\ g_{0}^{\prime} \\ g_{1}^{\prime}\end{array}\right]$

Bit reversed order
since,

$$
\left.\begin{array}{l}
X_{0}=X_{00} \\
X_{2}=X_{10} \\
X_{1}=X_{01} \\
X_{3}=X_{11}
\end{array}\right\}
$$

Signal Flow Graph for $\mathbf{N}=4$

From relations (33) and (34),

$$
\left[\begin{array}{l}
g_{0} \\
g_{1} \\
g_{0}^{\prime} \\
g_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & W_{4}^{2} & 0 \\
0 & W_{4}^{1} & 0 & W_{4}^{3}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{l}
X_{0} \\
X_{2} \\
X_{1} \\
X_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
g_{0} \\
g_{1} \\
g_{0}^{\prime} \\
g_{1}^{\prime}
\end{array}\right]
$$

Number of iterations $=M$, where $M=\log _{2} N\left[\right.$ as $\left.N=2^{M}\right]$, here $N=4$ and $M=2$

Signal Flow Graph for $\mathbf{N}=4$

Each iteration involves $\mathrm{N} / 2$ number of butterfly computations.
Computation of g_{1} and $g_{1}{ }^{\prime}$ may be represented as:

Signal Flow Graph for $\mathbf{N}=4$

Each iteration involves $\mathrm{N} / 2$ number of butterfly computations.
Computation of g_{1} and $g_{1}{ }^{\prime}$ may be represented as:

This involves two complex additions and one complex multiplication.
This is true for all butterflies.

Signal Flow Graph for $\mathbf{N}=4$

The procedure can be summarized as,
No. of iterations $=M=\log _{2} N$
Total no. of butterflies $=\frac{N M}{2}=\frac{N}{2} \log _{2} N$
No. of complex multiplications per butterfly $=1$
No. of complex additions per butterfly $=2$
Total no. of complex multiplications $=\frac{N M}{2}=\frac{N}{2} \log _{2} N$
Total no. of complex additions $=N M=N \log _{2} N$

Signal Flow Graph for $\mathbf{N}=4$

Computation of each butterfly may be carried out in-place to reduce memory requirement as follows:

Here \boldsymbol{T} is a scratch-pad variable and \boldsymbol{W} is the twiddle factor.

Signal Flow Graph for $\mathbf{N}=4$

The above algorithm for the computation of FFT of sequence $x_{k}, k=0,1,2, \ldots,(N-1)$ may be called radix-2 decimation-in-frequency in-place FFT algorithm. Here, \mathbf{N} should be a power of 2.

Similarly, radix-2 decimation-in-time in-place FFT algorithm may be derived with same computation load.

Comparison of computational loads of DFT and FFT

N	DFT		FFT	
	complex additions	complex multiplications	complex additions	complex multiplications
4	16	16	8	4
8	64	64	24	12
16	256	256	64	32
32	1024	1024	160	80

8-point FFT

Relations (25) and (26) may be split further (i.e. decimated) into N/2-point DFTs as follows:

$$
\begin{align*}
& X_{2 p}=\sum_{k=0}^{\frac{N}{2}-1} g_{k} W_{\frac{N}{2}}^{p k} \tag{25}\\
& X_{2 p+1}=\sum_{k=0}^{\frac{N}{2}-1} g_{k}^{\prime} W_{\frac{N}{2}}^{p k} \tag{26}
\end{align*}
$$

8-point FFT

Relations (25) and (26) may be split further (i.e. decimated) into N/2-point DFTs as follows:

In relation (25), splitting N/2-point sequence g_{k} into two N/4-point sequences,

$$
\begin{equation*}
X_{2 p}=\sum_{k=0}^{\frac{N}{2}-1} g_{k} W_{\frac{N}{2}}^{p k} \tag{25}
\end{equation*}
$$

$$
\begin{aligned}
X_{2 p} & =\sum_{k=0}^{\frac{N}{4}-1} g_{k} W_{\frac{N}{2}}^{p k}+\sum_{k=\frac{N}{4}}^{\frac{N}{2}-1} g_{k} W_{\frac{N}{2}}^{p k} \\
& =\sum_{k=0}^{\frac{N}{4}-1} g_{k} W_{\frac{N}{2}}^{p k}+\sum_{k=0}^{\frac{N}{4}-1} g_{k+\frac{N}{4}} W_{\frac{N}{2}}^{p\left(k+\frac{N}{4}\right)} \\
& =\sum_{k=0}^{\frac{N}{4}-1} g_{k} W_{\frac{N}{2}}^{p k}+\sum_{k=0}^{\frac{N}{4}-1} g_{k+\frac{N}{4}} W_{\frac{N}{2}}^{p k} W_{\frac{N}{2}}^{\frac{p N}{4}}
\end{aligned}
$$

8-point FFT

Now, $\quad X_{2 p}=\sum_{k=0}^{\frac{N}{4}-1} g_{k} W_{\frac{N}{2}}^{p k}+\sum_{k=0}^{\frac{N}{4}-1} g_{k+\frac{N}{4}} W_{\frac{N}{2}}^{p k} W_{\frac{N}{2}}^{\frac{p N}{4}}$
Here, $\quad W_{\frac{N}{2}}^{\frac{p N}{4}}=(-1)^{p}$
Therefore, $X_{2 p}=\sum_{k=0}^{\frac{N}{4}-1}\left[g_{k}+(-1)^{p} g_{k+\frac{N}{4}}\right] W_{\frac{N}{2}}^{p k}$
Now splitting $X_{2 p}$ into even and odd harmonics, for even harmonics, $p=2 r$, for $r=0,1,2, \ldots,(\mathrm{~N} / 4-1)$
and for odd harmonics, $p=(2 r+1)$, for $r=0,1,2, \ldots,(\mathrm{~N} / 4-1)$

8-point FFT

Now, for even harmonics,

$$
\begin{aligned}
X_{4 r} & =\sum_{k=0}^{\frac{N}{5}-1}\left[g_{k}+g_{k+\frac{N}{4}}\right] W_{\frac{k}{2}}^{2 n k} \\
& =\sum_{k=0}^{\frac{N}{5}-1}\left[g_{k}+g_{k+\frac{N}{4}}\right]_{\frac{1}{4}} W^{k}
\end{aligned}
$$

Let $h_{k}=g_{k}+g_{k+\frac{N}{4}}$, for $k=0,1,2, \ldots,(\mathrm{~N} / 4-1)$
Then, $X_{4 r}=\sum_{k=0}^{\frac{N}{4}-1} h_{k} W_{\frac{N}{4}}^{r k}$, for $r=0,1,2, \ldots,(\mathrm{~N} / 4-1)$
This is an N/4-point DFT of sequence $h_{k}, k=0,1,2, \ldots,(\mathrm{~N} / 4-1)$

8-point FFT

Now, for odd harmonics,

$$
\begin{align*}
& \begin{aligned}
X_{4 r+2} & =\sum_{k=0}^{\frac{N}{4}-1}\left[g_{k}-g_{k+\frac{N}{4}}\right] W_{\frac{N}{2}}^{(2 r+1) k} \\
& =\sum_{k=0}^{\frac{N}{4}-1}\left[g_{k}-g_{k+\frac{N}{4}}\right] W_{N}^{2 k} W_{\frac{N}{4}}^{r k}
\end{aligned} \\
& \text { Let } h_{k}^{\prime}=\left(g_{k}-g_{k+\frac{N}{4}}\right) W_{N}^{2 k}, \text { for } k=0,1,2, \ldots,(\mathrm{~N} / 4-1)
\end{align*} \text { Then, } X_{4 r+2}=\sum_{k=0}^{\frac{N}{4}-1} h_{k}^{\prime} W_{\frac{N}{4}}^{r k}, \text { for } r=0,1,2, \ldots,(\mathrm{~N} / 4-1) \quad 1 \text {. }
$$

This is an N/4-point DFT of sequence $h_{k}^{\prime}, k=0,1,2, \ldots,(\mathrm{~N} / 4-1)$
Thus the N/2-point DFT as represented in relation (25), may be split into two N/4-point DFTs, as represented in relations (36) and (37).

8-point FFT

Similarly, the N/2-point DFT in relation (26) may be split into two even and odd harmonic N/4point DFTs as follows:

$$
\begin{equation*}
X_{2 p+1}=\sum_{k=0}^{\frac{N}{2}-1} g_{k}^{\prime} W_{\frac{N}{2}}^{p k} . \tag{26}
\end{equation*}
$$

For even harmonics,

$$
\begin{equation*}
X_{4 r+1}=\sum_{k=0}^{\frac{N}{4}-1} l_{k} W_{\frac{N}{4}}^{r k}, \text { for } r=0,1,2, \ldots,(\mathrm{~N} / 4-1) \tag{38}
\end{equation*}
$$

This is an N/4-point DFT where $l_{k}=g_{k}^{\prime}+g_{k+\frac{N}{4}}^{\prime}$, for $k=0,1,2, \ldots,(\mathrm{~N} / 4-1)$

8-point FFT

Similarly for odd harmonics,

$$
X_{2 p+1}=\sum_{k=0}^{\frac{N}{2}-1} g_{k}^{\prime} W_{\frac{N}{2}}^{p k} \ldots \ldots . .(26)
$$

$$
\begin{equation*}
X_{4 r+3}=\sum_{k=0}^{\frac{N}{4}-1} l_{k}^{\prime} W_{\frac{N}{4}}^{r k}, \text { for } r=0,1,2, \ldots,(\mathrm{~N} / 4-1) \tag{39}
\end{equation*}
$$

This is another N/4-point DFT where

$$
l_{k}^{\prime}=\left(g_{k}^{\prime}-g_{k+\frac{N}{4}}^{\prime}\right) W_{N}^{2 k}, \text { for } k=0,1,2, \ldots,(\mathrm{~N} / 4-1)
$$

8-point FFT

Let $N=8\left(=2^{3}\right)$ for 8 -point FFT.

In relation (25),
$g_{k}=x_{k}+x_{k+\frac{N}{2}}$, for $k=0,1,2, \ldots,(\mathrm{~N} / 2-1)$
Possible values of k are $k=0,1,2,3$.
Then,

$$
\left.\begin{array}{l}
g_{0}=x_{0}+x_{4} \\
g_{1}=x_{1}+x_{5} \\
g_{2}=x_{2}+x_{6} \\
g_{3}=x_{3}+x_{7}
\end{array}\right\}
$$

$$
\begin{equation*}
X_{2 p}=\sum_{k=0}^{\frac{N}{2}-1} g_{k} W_{\frac{N}{2}}^{p k} \tag{25}
\end{equation*}
$$

8-point FFT

Now in relation (26),

$$
\begin{equation*}
X_{2 p+1}=\sum_{k=0}^{\frac{N}{2}-1} g_{k}^{\prime} W_{\frac{N}{2}}^{p k} \tag{26}
\end{equation*}
$$

$g_{k}^{\prime}=\left(x_{k}-x_{k+\frac{N}{2}}\right) W_{N}^{k}$, for $k=0,1,2, \ldots,(\mathrm{~N} / 2-1)$
Possible values of k are $k=0,1,2,3$.
Then, $\left.\quad g_{0}^{\prime}=\left(x_{0}-x_{4}\right) W_{8}^{0}\right)$

$$
\left.\begin{array}{l}
g_{1}^{\prime}=\left(x_{1}-x_{5}\right) W_{8}^{1} \tag{41}\\
g_{2}^{\prime}=\left(x_{2}-x_{6}\right) W_{8}^{2} \\
g_{3}^{\prime}=\left(x_{3}-x_{7}\right) W_{8}^{3}
\end{array}\right\}
$$

8-point FFT

$$
\left.\begin{array}{l}
g_{0}=x_{0}+x_{4} \\
g_{1}=x_{1}+x_{5} \\
g_{2}=x_{2}+x_{6} \tag{40}\\
g_{3}=x_{3}+x_{7}
\end{array}\right\}
$$

From relations (40) and (41), signal flow graph for computations of g_{0-3} and g_{0-3}^{\prime} may be represented as:

8-point FFT

Now from relation (36),

$$
h_{k}=g_{k}+g_{k+\frac{N}{4}}, \text { for } k=0,1,2, \ldots,(\mathrm{~N} / 4-1)
$$

Possible values of K are $K=0,1$.
Then, $\left.\quad h_{0}=g_{0}+g_{2}\right\}$

$$
\begin{equation*}
\left.h_{1}=g_{1}+g_{3}\right\} \tag{42}
\end{equation*}
$$

8-point FFT

And from relation (37),
$h_{k}^{\prime}=\left(g_{k}-g_{k+\frac{N}{4}}\right) W_{N}^{2 k}$, for $k=0,1,2, \ldots,(\mathrm{~N} / 4-1)$
Possible values of K are $K=0,1$.
Then, $\left.\quad h_{0}^{\prime}=\left(g_{0}-g_{2}\right) W_{8}^{0}\right\}$

$$
\begin{equation*}
\left.h_{1}^{\prime}=\left(g_{1}-g_{3}\right) W_{8}^{2}\right\} \tag{43}
\end{equation*}
$$

8-point FFT

Now from relation (38),

$$
l_{k}=g_{k}^{\prime}+g_{k+\frac{N}{4}}^{\prime}, \text { for } k=0,1,2, \ldots,(\mathrm{~N} / 4-1)
$$

Possible values of K are $K=0,1$.
Then, $\left.l_{0}=g_{0}^{\prime}+g_{2}^{\prime}\right\}$

$$
\begin{equation*}
\left.l_{1}=g_{1}^{\prime}+g_{3}^{\prime}\right\} \tag{44}
\end{equation*}
$$

8-point FFT

And from relation (39),

$$
l_{k}^{\prime}=\left(g_{k}^{\prime}-g_{k+\frac{N}{4}}^{\prime}\right) W_{N}^{2 k}, \text { for } k=0,1,2, \ldots,(\mathrm{~N} / 4-1)
$$

Possible values of K are $K=0,1$.
Then,

$$
\left.\begin{array}{l}
l_{0}^{\prime}=\left(g_{0}^{\prime}-g_{2}^{\prime}\right) W_{8}^{0} \tag{45}\\
l_{1}^{\prime}=\left(g_{1}^{\prime}-g_{3}^{\prime}\right) W_{8}^{2}
\end{array}\right\}
$$

8-point FFT

$$
\left.\left.\left.\begin{array}{l}
h_{0}=g_{0}+g_{2} \tag{45}\\
h_{1}=g_{1}+g_{3}
\end{array}\right\} . \begin{array}{ll}
h_{0}^{\prime}=\left(g_{0}-g_{2}\right) W_{8}^{0} \\
h_{1}^{\prime}=\left(g_{1}-g_{3}\right) W_{8}^{2}
\end{array}\right\} . . .(43) \quad \begin{array}{l}
l_{0}=g_{0}^{\prime}+g_{2}^{\prime} \\
l_{1}=g_{1}^{\prime}+g_{3}^{\prime}
\end{array}\right\} .\left(\begin{array}{l}
l_{0}^{\prime}=\left(g_{0}^{\prime}-g_{2}^{\prime}\right) W_{8}^{0} \\
l_{1}^{\prime}=\left(g_{1}^{\prime}-g_{3}^{\prime}\right) W_{8}^{2}
\end{array}\right\} .
$$

From relations (42), (43), (44) and (45), signal flow graph for computation of $h_{0-1}, h_{0-1}^{\prime}, l_{0-1}$ and l_{0-1}^{\prime} may be represented as:

8-point FFT

Now, from relation (36),
possible values of r are $r=0,1$.

$$
\begin{equation*}
X_{4 r}=\sum_{k=0}^{\frac{N}{4}-1} h_{k} W_{\frac{N}{4}}^{r k}, \text { for } r=0,1,2, \ldots,(\mathrm{~N} / 4-1) \tag{36}
\end{equation*}
$$

Then,

$$
\left.\begin{array}{l}
X_{0}=h_{0} W_{2}^{0}+h_{1} W_{2}^{0}=h_{0}+h_{1} \\
X_{4}=h_{0} W_{2}^{0}+h_{1} W_{2}^{1}=h_{0}-h_{1} \tag{46}
\end{array}\right\}
$$

And, from relation (37), possible values of r are $r=0,1$.

$$
\begin{equation*}
X_{4 r+2}=\sum_{k=0}^{\frac{N}{4}-1} h_{k}^{\prime} W_{\frac{N}{4}}^{r k}, \text { for } r=0,1,2, \ldots,(\mathrm{~N} / 4-1) \tag{37}
\end{equation*}
$$

Then,

$$
\left.\begin{array}{l}
X_{2}=h_{0}^{\prime} W_{2}^{0}+h_{1}^{\prime} W_{2}^{0}=h_{0}^{\prime}+h_{1}^{\prime} \\
X_{6}=h_{0}^{\prime} W_{2}^{0}+h_{1}^{\prime} W_{2}^{1}=h_{0}^{\prime}-h_{1}^{\prime} \tag{47}
\end{array}\right\}
$$

8-point FFT

From relation (38),
possible values of r are $r=0,1$.

$$
\begin{equation*}
X_{4 r+1}=\sum_{k=0}^{\frac{N}{4}-1} l_{k} W_{\frac{N}{4}}^{r k}, \text { for } r=0,1,2, \ldots,(\mathrm{~N} / 4-1) \tag{38}
\end{equation*}
$$

Then,

$$
\left.\begin{array}{l}
X_{1}=l_{0} W_{2}^{0}+l_{1} W_{2}^{0}=l_{0}+l_{1} \\
X_{5}=l_{0} W_{2}^{0}+l_{1} W_{2}^{1}=l_{0}-l_{1} \tag{48}
\end{array}\right\}
$$

And, from relation (39),
possible values of r are $r=0,1$.

$$
\begin{equation*}
X_{4 r+3}=\sum_{k=0}^{\frac{N}{4}-1} l_{k}^{\prime} W_{\frac{N}{4}}^{r k}, \text { for } r=0,1,2, \ldots,(\mathrm{~N} / 4-1) \tag{39}
\end{equation*}
$$

Then,

$$
\left.\begin{array}{l}
X_{3}=l_{0}^{\prime} W_{2}^{0}+l_{1}^{\prime} W_{2}^{0}=l_{0}^{\prime}+l_{1}^{\prime} \\
X_{7}=l_{0}^{\prime} W_{2}^{0}+l_{1}^{\prime} W_{2}^{\prime}=l_{0}^{\prime}-l_{1}^{\prime} \tag{49}
\end{array}\right\}
$$

8-point FFT

$$
\left.\begin{array}{l}
X_{0}=h_{0} W_{2}^{0}+h_{1} W_{2}^{0}=h_{0}+h_{1} \\
X_{4}=h_{0} W_{2}^{0}+h_{1} W_{2}^{1}=h_{0}-h_{1}
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
X_{2}=h_{0}^{\prime} W_{2}^{0}+h_{1}^{\prime} W_{2}^{0}=h_{0}^{\prime}+h_{1}^{\prime} \\
X_{6}=h_{0}^{\prime} W_{2}^{0}+h_{1}^{\prime} W_{2}^{\prime}=h_{0}^{\prime}-h_{1}^{\prime} \\
X_{3}=l_{0}^{\prime} W_{2}^{0}+l_{1}^{\prime} W_{2}^{0}=l_{0}^{\prime}+l_{1}^{\prime} \\
X_{7}=l_{0}^{\prime} W_{2}^{0}+l_{1}^{\prime} W_{2}^{\prime}=l_{0}^{\prime}-l_{1}^{\prime}
\end{array}\right\} .
$$

From relations (46), (47), (48) and (49), signal flow graph for computation of X_{0-7} may be represented as:

not in natural order, hence bit-reversal should be carried out to bring it in natural order

8-point FFT
Bit Reversal procedure

8-point FFT

Complete Signal Flow Graph

Frequency

FORTRAN subroutine to compute radix-2 FFT

C ***Subroutine to compute radix- $2 \mathrm{FFT}^{* * *}$
C Decimation-in-frequency in-place algorithm SUBROUTINE FFT(A,N,INV)
C N: Dimension of Array (must be a power of 2)
C A: Complex array containing data sequence
C DFT coefficients are returned in the array
C INV = 0 for forward FFT
C INV = 1 for inverse FFT
DIMENSION A(N)
COMPLEX T,W,A
IF (INV.EQ.0) GO TO 8
C Divide sequence by N for inverse FFT
DO $7 \mathrm{I}=1, \mathrm{~N}$
$7 \quad \mathrm{~A}(\mathrm{I})=\mathrm{A}(\mathrm{I}) / \mathrm{CMPLX}(\mathrm{FLOAT}(\mathrm{N}), 0.0)$
$8 \quad S=-1.0$
IF (INV.EQ.1) $S=1.0$

FORTRAN subroutine to compute radix-2 FFT

C Calculate number of iterations

C M: Number of iterations $(\log (\mathrm{N})$ to the base 2)
M=1
$\mathrm{K}=\mathrm{N}$
$2 \quad \mathrm{~K}=\mathrm{K} / 2$
IF (K.EQ.1) GO TO 1
$\mathrm{M}=\mathrm{M}+1$
GO TO 2
C Compute for each iteration
C NP: Number of points in each partition
$1 \quad \mathrm{NB}=\mathrm{N}$
DO $3 \mathrm{I}=1$, M
NP=NB
$N B=N P / 2$
PHI=3.14159265/FLOAT(NB)

FORTRAN subroutine to compute radix-2 FFT

C Compute for each iteration

C NP: Number of points in each partition
$1 \quad \mathrm{NB}=\mathrm{N}$
\Rightarrow DO $3 \mathrm{I}=1, \mathrm{M}$
NP=NB
$N B=N P / 2$
PHI=3.14159265/FLOAT(NB)
C Calculate the twiddle factor W for each butterfly
C NB: Number of butterflies for each partition
\longrightarrow DO $3 \mathrm{~J}=1$,NB
ARG=FLOAT(J-1)*PHI
W=CMPLX(COS(ARG),S*SIN(ARG))
C Compute butterfly for each partition
\longrightarrow DO 3 K=NP,N,NP
J1 $=\mathrm{K}-\mathrm{NP}+\mathrm{J}$
J2=J1+NB
$\mathrm{T}=\mathrm{A}(\mathrm{J} 1)-\mathrm{A}(\mathrm{J} 2)$
$\mathrm{A}(\mathrm{J} 1)=\mathrm{A}(\mathrm{J} 1)+\mathrm{A}(\mathrm{J} 2)$
$A(J 2)=T^{*} W$
3 CONTINUE

FORTRAN subroutine to compute radix-2 FFT

```
C Bit reversal operation
    N2=N/2
    N1=N-1
    J=1
    DO 4 I=1,N1
    IF (I.GE.J) GO TO 5
    T=A(J)
    A(J)=A(I)
    A(I)=T
5 K=N2
6 IF (K.GE.J) GO TO 4
    J=J-K
    K=K/2
    GO TO 6
4 J=J+K
    RETURN
    END
```

During the bit-reversal operation, N/2 DFT coefficients remain unchanged and the remaining $\mathrm{N} / 2$ coefficients are exchanged in place as required.

Applications of FFT

Computation of amplitude spectrum of a finite real data sequence

(N must be a power of 2)
$C_{0}=\frac{1}{N}\left|X_{0}\right|$, the average value
and $C_{n}=\frac{2}{N}\left|X_{n}\right|$, for $n=1,2, \ldots,(\mathrm{~N} / 2-1)$, the nth harmonic amplitude.

Applications of FFT
Computation of amplitude spectrum of a finite real data sequence

The range of frequency may be expressed as $f_{s} / 2$ where f_{s} is the sampling frequency $\left(=\frac{1}{\tau}\right)$.
The frequency resolution may be estimated as f_{0} where f_{0} is the fundamental frequency ($=1 / T_{0}$), where T_{0} is the time period of fundamental frequency and also the width of the analysis window.

Applications of FFT

FORTRAN program for computation of amplitude spectrum
C ***Amplitude spectrum analysis program using FFT*** DIMENSION A(1024),B(1024),C(512),PHASE(512) COMPLEX A
CHARACTER*64 FNAME
WRITE(*,10)
10 FORMAT(1X,'Enter file name - 'l)
READ (*,20)FNAME
20 FORMAT(A) OPEN(2,FILE=FNAME)
$\operatorname{READ}\left(2,{ }^{*}, E N D=100\right)(B(I), I=1,1024)$
$100 \quad \mathrm{~N}=\mathrm{I}-1$
CLOSE(2)
WRITE(*,200)N
200 FORMAT(1X,'Data points = ',14)

Applications of FFT

FORTRAN program for computation of amplitude spectrum

	DO $15 \mathrm{I}=1,10$
	IF(N-2**I)24,25,15
15	CONTINUE
24	WRITE(*,5)
5	FORMAT(1X,'Incorrect size - it must be a power of 2')
	STOP
25	DO $30 \mathrm{I}=1, \mathrm{~N}$
30	A(I) $=$ CMPLX(B(I),0.0)/CMPLX(FLOAT(N),0.0)
	WRITE $(*, 300)$
300	FORMAT(1X,'FFT analysis in progress')
	CALL FFT(A,N,0)

Applications of FFT

FORTRAN program for computation of amplitude spectrum

	NA=N/2
	C(1)=CABS(A $(1))$
40	DO $40 \mathrm{I}=2, \mathrm{NA}$
	C(I)=CABS(A(I))*2.0
	D=180.0/3.141592654
	DO $80 \mathrm{I}=2, \mathrm{NA}$
	R=REAL(A(I))
	X=AIMAG(A(I))
80	ALPHA=ATAN2(X,R)
	PHASE(I)=D*ALPHA

Applications of FFT

FORTRAN program for computation of amplitude spectrum

	WRITE(*,60)
60	FORMAT('0','Harmonic no.',7X,'Amplitude',12X,'Phase (deg)') WRITE (*, 70)
70	FORMAT(1X,'------------',7X,'--------', 12X,'----------'//)
	NB=0
	WRITE(* ${ }^{*} 75$)NB, C(1)
75	FORMAT(5X,I3,9X,1P,E13.6)
	DO $85 \mathrm{I}=2, \mathrm{NA}$
	NB=1-1
85	WRITE(*,90)NB, C(I),PHASE(I)
90	FORMAT(5X,I3,9X,1P,E13.6,9X,E13.6)
	END

Applications of FFT

FFT-based digital filtering of a finite real data sequence convolution

$y_{k}=h_{k}{ }^{*} x_{k}, h_{k}$ is the impulse sequence of the digital filter

Applications of FFT

FFT-based digital filtering of a finite real data sequence

$Y_{n}=H_{n} \cdot X_{n}, H_{n}$ is the complex gain of the digital filter

Applications of FFT

FFT-based digital filtering of a finite real data sequence

Applications of FFT

FFT-based digital filtering of a finite real data sequence

Applications of FFT

FORTRAN program for FFT-based digital filtering
C ***FFT based digital filter program***
DIMENSION X(1024),A(513), PH(513) COMPLEX H(1024),CX(1024) CHARACTER*64 FNAME1,FNAME2 WRITE(*,20)
20 FORMAT(1X,'Enter input file name - 'l) READ (*,30)FNAME1
30 FORMAT(A) WRITE(*,40)
40 FORMAT(1X,'Enter output file name - 'l) $\operatorname{READ}\left({ }^{*}, 30\right)$ FNAME2

Applications of FFT

FORTRAN program for FFT-based digital filtering

```
OPEN(1,FILE=FNAME1)
READ(1,*,END=50)(X(I),I=1,1024)
```

GOTO 60
50 I=l-1
$60 \quad \mathrm{~N}=1$
WRITE (*,70)N
70 FORMAT(1X,'Data points = ',l4)
DO 375 I=1,10
IF(N-2**I)380,390,375
375 CONTINUE
380 WRITE(*,400)
400 FORMAT(1X,'Incorrect size of data')
STOP

Applications of FFT

FORTRAN program for FFT-based digital filtering

```
390 WRITE(*,100)N/2+1
100 FORMAT(1X,'Enter filter gain (',I3,' points)')
    READ(*,*)(A(I),I=1,N/2+1)
    PH(1)=0.0
    WRITE(*,110)N/2
110 FORMAT(1X,'Enter filter phase (',I3,' points)')
    READ(*,*)(PH(I),I=2,N/2+1)
C Form complex filter gain array
    H(1)=CMPLX(A(1)*N,0.0)
    DO 200 I=2,N/2+1
200 H(I)=CMPLX(A(I)*N*COS(PH(I))/2.0,A(I)*N*SIN(PH(I))/2.0)
```


Applications of FFT

FORTRAN program for FFT-based digital filtering

Applications of FFT

FORTRAN program for FFT-based digital filtering

C Form complex input data array
DO 350 I=1,N
$350 \quad$ CX(I) $=\operatorname{CMPLX}(X(I), 0.0)$
C Compute FFT
CALL FFT(CX,N,0)
C Perform filtering in frequency domain
DO 360 I=1,N
$360 \quad \mathrm{CX}(\mathrm{I})=\mathrm{CX}(\mathrm{I})^{*} \mathrm{H}(\mathrm{I})$
C Back to time
CALL FFT(CX,N,1)
DO 370 I=1,N
$370 \quad \mathrm{X}(\mathrm{I})=$ REAL(CX(I))

Applications of FFT

FORTRAN program for FFT-based digital filtering

C Save output
IF(FNAME1.EQ.FNAME2)CLOSE(1)
OPEN(2,FILE=FNAME2,STATUS='NEW')
WRITE(2,*)(X(I),I=1,N)
END

