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In time domain or sequence domain, representation of digital signals describes 
the signal amplitude versus the sampling time instant or the sample number.  

Discrete Fourier Transform 

However, in some applications, signal frequency content is more useful than the 
digital signal samples.  

Hence representation of the digital signal in terms of its frequency 
components in frequency domain, i.e. the signal spectrum, needs to be 
developed. 



Time domain representation 
of a 1,000-Hz sinusoid with 
32 samples at a sampling 

rate of 8,000 Hz 

Discrete Fourier Transform 

The corresponding signal 
spectrum i.e. the frequency 

domain representation 

Sample number k 

xk 

Conclusion: The spectral plot better displays frequency information of a 
digital signal. 



Let x(t) be a periodic function of time having a time period T0, then 
the fundamental frequency of x(t) is  
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Let x(t) be a periodic function of time having a time period T0, then 
the fundamental frequency of x(t) is  
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The signal x(t) may be expressed in terms of the Fourier series as 
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where   

, the average value 

for n = 1, 2, 3, …  

for n = 1, 2, 3, … 

an’s are known as cosine coefficients and bn’s are known as sine coefficients. 
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Relation (2) may be rewritten as 
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Cn, n = 1, 2, 3, … is the amplitude and n, n = 1, 2, 3, … is the phase 
of the nth harmonic. C0 is the average value. 
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Expressing cosine and sine terms of relation (2) in terms of their complex 
exponential values as 
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Relation (4) may be expressed as 
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Now  
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Thus x(t) may be expressed in terms of Complex Fourier Series in 
relation (5). Here Fn is known as the Complex Fourier coefficient. 
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Now  
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Variation of Fn coefficients with n 
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nn FF ˆ

Fourier series for a periodic signal 

Variation of Fn coefficients with n 



The amplitudes Cn’s of relation (3) may be related to Fn’s as 

00
FC  , the average value 
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FC 2 , for n = 1, 2, 3, … and 

the amplitude of the nth harmonic. 
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the phase of the nth harmonic. 
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From relation (4), Fn may be expressed as 
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Substituting expressions of an and bn from relation (2) 

…….(7) 

For aperiodic signals, the time period T0 becomes infinite, and the Fourier 
transform of an aperiodic signal x(t) is defined as 
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Let xk be a periodic discrete sequence obtained from a periodic signal x(t) 
with a time period T0.  

Let N number of samples be available in the time period T0 with a sampling 
interval . The corresponding sampling frequency = fs Hz. 

T0 = N …….(9) 

Fourier series for a periodic discrete sequence 

 = 1/fs and 

Assumption: The periodic discrete sequence is band limited to have all 
harmonic frequencies less than the folding frequency (fs/2) so that aliasing 
does not occur. 



Using rectangular rule for integration, the Fourier coefficients may be obtained as 
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Using rectangular rule for integration, the Fourier coefficients may be obtained as 

From relation (2) 
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(using the substitutions:  





NT

22

0

0  NT 0 kt  in relation (2)) and and 

Fourier series for a periodic discrete sequence 



Using rectangular rule for integration, the Fourier coefficients may be obtained as 

From relation (2) 
and 
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Now from relations (11) and (12), 
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Hence, the Fourier series coefficients for the periodic discrete sequence are:  
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Since the coefficients Fn are obtained from the Fourier series expansion in 
the complex form, the resultant spectrum Fn will have two sides.  
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Now from relations (11) and (12), 
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Fourier series for a periodic discrete sequence 

It can be shown that Fn+N = Fn. Hence the Fourier series coefficients Fn are 
periodic having a periodicity of N.  

Hence, the Fourier series coefficients for the periodic discrete sequence are:  

…….(12a) ,3,2,1     ,
1

2

1

0

2




 














nex
N

jba
F

N

k

N

k
jn

k
nn

n



00 aF  and 



Fourier series for a periodic discrete sequence 

Amplitude spectrum of a representative periodic signal 

nF

For the kth harmonic, the frequency is f=kf0. The frequency spacing between 
the consecutive spectral lines, called the frequency resolution, is f0 Hz. 

As Fn+N = Fn, the two-sided line amplitude spectrum Fn is periodic. 



Fourier series for a periodic discrete sequence 

OBSERVATIONS: 

nF

• Only the line spectral portion between the frequency –fs/2 and frequency 
fs/2 (folding frequency) represents the frequency information of the 
periodic signal.  

• The spectral portion from fs/2 to fs is a copy of the spectrum in the 
negative frequency range from –fs/2 to 0 Hz due to the spectrum being 
periodic for every Nf0 Hz.  



Fourier series for a periodic discrete sequence 

OBSERVATIONS: 

nF

• For convenience, we compute the spectrum over the range from 0 to fs Hz 
with nonnegative indices, i.e.,  
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• If negative indexed spectral values are needed, those can be obtained 
using the relation: Fn+N = Fn. 



Let us consider a periodic signal x(t) = sin(2t), sampled using a sampling rate of fs = 4 Hz.
(i)  Compute the Fourier coefficients or spectrum Fn using the samples in one period. 
(ii) Plot the two-sided amplitude spectrum Fn  over the range from -2 to 2 Hz. 

Fourier series for a periodic discrete sequence 
Problem 1 

Solution 

From the analog signal, we get fundamental frequency 0 = 2 rad/s.  
Hence f0 = (0/2) = 1 Hz and fundamental time period T0 = 1 s.  
Sampling interval  = 1/fs = 0.25 s.  
Hence sampled signal = xk = x(k) = sin(2k) = sin(0.5k)   

First eight samples of the 
periodic digital signal 

xk x1 

x2 

x3 

x0 



Let us consider a periodic signal x(t) = sin(2t), sampled using a sampling rate of fs = 4 Hz.
(i)  Compute the Fourier coefficients or spectrum Fn using the samples in one period. 
(ii) Plot the two-sided amplitude spectrum Fn  over the range from -2 to 2 Hz. 

Fourier series for a periodic discrete sequence 
Problem 1 

Solution (contd.) 

For a duration of one period, N = 4. The sample values are: x0=0, x1=1, x2=0, x3=-1.   
From the expression of Fn in relation (12a), we can compute: 
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Let us consider a periodic signal x(t) = sin(2t), sampled using a sampling rate of fs = 4 Hz.
(i)  Compute the Fourier coefficients or spectrum Fn using the samples in one period. 
(ii) Plot the two-sided amplitude spectrum Fn  over the range from -2 to 2 Hz. 

Fourier series for a periodic discrete sequence 
Problem 1 

Solution (contd.) 

Similarly we get: 
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Using periodicity, it follows that: 
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Let us consider a periodic signal x(t) = sin(2t), sampled using a sampling rate of fs = 4 Hz.
(i)  Compute the Fourier coefficients or spectrum Fn using the samples in one period. 
(ii) Plot the two-sided amplitude spectrum Fn  over the range from -2 to 2 Hz. 

Fourier series for a periodic discrete sequence 
Problem 1 

Solution (contd.) 

Two sided amplitude 
spectrum Fn for the 
periodic digital signal 

nF



Now, from relation (12a), we can write, 
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Now, let us consider n = N + m, for m = 0, 1, 2, … 

From relation (13) 
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Conclusion: Xn is periodic with a period N. 
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for n = 0, 1, 2, … 



Then, within one period (i.e. for n = 0, 1, 2, …, N-1), 
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, for n = 0, 1, 2, …., N-1 …….(15) 

Conclusion: Relation (15) is known as the Discrete Fourier Transform 
(DFT) of a finite sequence xk, k = 0, 1, 2, …, N-1. 

Fourier series for a periodic discrete sequence 

The Xn constitutes the DFT coefficients. 



Relation (14) represents the periodicity property of DFT.  
 
Xn repeats at the Nth harmonic. 

The frequency corresponding to the Nth harmonic is: 
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, the sampling frequency.   

Conclusion: Xn repeats at the sampling frequency fs.  
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Discrete Fourier Transform 

Amplitude Cn (c.f. relation (3)) is related to Xn as 

The Discrete Fourier Transform (DFT) of a finite sequence                              
xk, k = 0, 1, 2, …, N-1 is defined as  
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Discrete Fourier Transform 

The development of 
the DFT formula 

T0 = N 

xk 

x1 

xN+1=x1 

xN=x0 

x0 
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xk Xn=NFn 

t = k f = nf 

f = fs/N 

xN-1 



Inverse Discrete Fourier Transform 

By multiplying 
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, for n = 0, 1, 2, …., N-1 

Relation (15): 

Now, changing the order of summation, 

 

 






























1

0

1

0

221

0

11 N

k

N

n

N

kl
jn

k
N

l
jnN

n
n e

N
xeX

N



…….(17) 



Inverse Discrete Fourier Transform 

Now, in  
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In the present case, as l and k are limited within 0 and (N – 1), the possible 
value of p is zero, i.e. when (l - k) = 0 or l = k, the summation becomes N. 



Inverse Discrete Fourier Transform 

Now, in  
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Inverse Discrete Fourier Transform 
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Inverse Discrete Fourier Transform 
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Now for l  k, the summation is zero.  

And for l = k, it becomes indeterminate 
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Inverse Discrete Fourier Transform 

Thus, 
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Thus all terms on the right hand side of relation (17) vanishes except 
when l = k. 
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Inverse Discrete Fourier Transform 

Thus, 
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when l = k. 
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for l = 0,1,2,…,N-1 



Inverse Discrete Fourier Transform 

Relation (18) is known as the Inverse Discrete Fourier Transform (IDFT).  

Relations (15) and (18) are called N-point DFT pair.  
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Now, changing the suffix l to k, 
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for l = 0,1,2,…,N-1 

for k = 0,1,2,…,N-1 



N-point DFT pair 

Replacing the expression 
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for n = 0,1,2,…, N-1 …….(15) 

N-point DFT: 

N-point IDFT: 

for k = 0,1,2,…,N-1 

for n = 0,1,2,…, N-1 

for k = 0,1,2,…,N-1 



N-point DFT pair 
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a complex operator (twiddle factor), which rotates any vector through  
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Here, n  =  harmonic number and k  =  sample number. 
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for k = 0,1,2,…,N-1 



DFT and IDFT 

MATLAB FFT functions 



DFT and IDFT 

A sequence xk, for k = 0,1,2,3, is given as: x0 = 1, x1 = 2, x2 = 3, and x3 = 4. 
Evaluate its DFT Xn.  

Problem 2 

Solution 

Here N = 4. Hence 
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DFT and IDFT 

A sequence xk, for k = 0,1,2,3, is given as: x0 = 1, x1 = 2, x2 = 3, and x3 = 4. 
Evaluate its DFT Xn.  

Problem 2 

Solution (contd.) 

Here N = 4. Hence 
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For n = 2,  
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DFT and IDFT 

A sequence xk, for k = 0,1,2,3, is given as: x0 = 1, x1 = 2, x2 = 3, and x3 = 4. 
Evaluate its DFT Xn.  

Problem 2 

Solution (contd.) 

This result can be verified in MATLAB as: 



DFT and IDFT 

Using the DFT coefficients Xn, for n = 0,1,2,3, computed in the previous problem, 
evaluate its inverse DFT to determine the time domain sequence xk.  

Problem 3 

Solution 

Here N = 4. Hence 
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DFT and IDFT 

Using the DFT coefficients Xn, for n = 0,1,2,3, computed in the previous problem, 
evaluate its inverse DFT to determine the time domain sequence xk.  

Problem 3 

Solution (contd.) 

Here N = 4. Hence 
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For k = 1,  



DFT and IDFT 

Using the DFT coefficients Xn, for n = 0,1,2,3, computed in the previous problem, 
evaluate its inverse DFT to determine the time domain sequence xk.  

Problem 3 

Solution (contd.) 

Here N = 4. Hence 
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For k = 2,  



DFT and IDFT 

Using the DFT coefficients Xn, for n = 0,1,2,3, computed in the previous problem, 
evaluate its inverse DFT to determine the time domain sequence xk.  

Problem 3 

Solution (contd.) 

Here N = 4. Hence 
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For k = 3,  



DFT and IDFT 

This result can be verified in MATLAB as: 

Using the DFT coefficients Xn, for n = 0,1,2,3, computed in the previous problem, 
evaluate its inverse DFT to determine the time domain sequence xk.  

Problem 3 

Solution (contd.) 



Important Properties of DFT 

Periodicity 

From relation (19), 
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Then,  

i.e. …….(21) 

Thus Xn is periodic with a period N, i.e. the pNth harmonic or at the p times 
sampling frequency, the DFT repeats. 
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Important Properties of DFT 

Linearity 

If 

This property follows immediately from the definition of DFT given in (19).    

…. 

       and     2
DFT
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DFT

1 n
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kn
N

k XxXx   

then for any real-valued or complex-valued constants a1 and a2,  
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Important Properties of DFT 
Circular symmetries of a sequence 

The N-point DFT of a finite duration sequence xk of length L  N, is equivalent to the  
N-point DFT of a periodic sequence xpk of period N, which is obtained by periodically 
extending  xk i.e.    







l
lNkpk xx …….(21a) 

Let us assume that the periodic sequence xpk is shifted by m units to the right. Thus 
we obtain another periodic sequence, given as: 

  



 

l
lNmkmkppk xxx …….(21b) 

The finite duration sequence 
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10, Nkx
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k

Is related to the original sequence xk  by a circular shift.  

…….(21c) 



Important Properties of DFT 
Circular symmetries of a sequence 

In general, the circular shift of the sequence can be represented as the index modulo 
N.  Thus we can write,  

…….(21d) 

For example, let us assume m = 2 and N = 4. Then we have,   

   NmkNmkk xxx    modulo ,

 42 kk xx

This implies that   
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Hence        is simply xk shifted circularly by two units in time, where counterclockwise 
direction has been arbitrarily selected as the positive direction.    

kx



Important Properties of DFT 
Circular symmetries of a sequence 

Hence we can conclude that a circular shift of an N-point sequence is equivalent 
to a linear shift of its periodic extension, and vice versa. 

…….(21e) 

The inherent periodicity resulting from the arrangement of the N-point sequence on 
the circumference of a circle dictates a different definition of even and odd symmetry, 
and time reversal of a sequence.  

An N-point sequence is called circularly even if it is symmetric about the point 
zero on the circle i.e.   

11      Nkxx kkN

…….(21f) 

An N-point sequence is called circularly odd if it is antisymmetric about the point 
zero on the circle i.e.   

11       Nkxx kkN

…….(21g) 

The time reversal of an N-point sequence is attained by reversing its samples  
about the point zero on the circle i.e.   

    11      Nkxx kNk N



Important Properties of DFT 
Circular symmetries of a sequence 

This time reversal is equivalent to plotting xk in a clockwise direction on a circle.  

…….(21h) 

An equivalent definition of even and odd sequences for the associated periodic 
sequence xpk is given as: 
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If the periodic sequence is complex valued, then: 
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Important Properties of DFT 
Circular symmetries of a sequence 

Hence we can decompose the sequence xpk as: 

…….(21j) 

where 
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Important Properties of DFT 

Symmetry 

From relation (19), 
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Thus, 

For p = 0,  nn XX ˆ and for p = 1,  nnN XX ˆ

…….(22) 
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Real and imaginary parts of Xn 



Multiplication of two DFTs and Circular Convolution 
Let us assume that we have two finite duration sequences of length N, x1k and x2k.  
Their respective N-point DFTs are:  

If these two DFTs are multiplied together, the resultant will be a DFT  X3n  
of a sequence x3k of length N. 

…….(22a) 1,,1,0     ,
1

0

2

11  




NnexX
N

k

N

kn-j

kn 


…….(22b) 1,,1,0     ,
1

0

2

22  




NnexX
N

k

N

kn-j

kn 


Now our objective is to determine the relationship between x3k and sequences x1k  and x2k .

Now, we have: 

…….(22c) 1,,1,0     213  NnXXX nnn 

The IDFT of  {X3n} is: 
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Multiplication of two DFTs and Circular Convolution 
Substituting X1n and X2n  in (22d) using the DFTs in (22a) and (22b), we get: 

The inner sum in the brackets in (22e) has the form: 

…….(22e) 

…….(22f) 
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where a is defined as:  
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Multiplication of two DFTs and Circular Convolution 
We observe that a = 1, when m-k-l is a multiple of N.  
On the other hand, aN = 1, for any value of  a  0. Hence (22f) gets reduced to: 

If we substitute this result in (22e), we obtain the desired expression of x3m as: 

…….(22h) 

…….(22i) 
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The expression in (22i) has the form of a convolution sum.   

 



 

1

0
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N
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Nkmkm Nmxxx 

However it is not the ordinary linear convolution. Instead, the convolution sum in (22i) 
Involves the index (m-k)N and is called circular convolution. 

Conclusion:  The multiplication of the DFTs of two sequences is equivalent to the  
circular convolution of the two sequences in the time domain.  



Important Properties of DFT 

Circular Convolution 

If        and     2
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where                      denotes the circular convolution of the sequences x1k and x2k.        N 21 kk xx



Computation of DFT 

From relation (19), 

It may be represented in matrix form as 
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Nn XWX  …….(23) 

where  nX and  kX are 1N column matrices and 

 nk
NW is an  NN square matrix. 
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for n = 0,1,2,…, N-1, where 



Computation of DFT 
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Computation of DFT 

    k
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Nn XWX  …….(23) 

For N = 4, relation (23) becomes 
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Computation of DFT 

    k
nk

Nn XWX  …….(23) 

For N = 4, relation (23) becomes 
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Hence, computation of X0 requires 4 complex multiplications and 4 complex 
additions. 



Computation of DFT 

    k
nk

Nn XWX  …….(23) 

For N = 4, relation (23) becomes 
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Hence, computation of X0 requires 4 complex multiplications and 4 complex 
additions. 

In general, execution of relation (23) requires N2 complex multiplications 
and N2 complex additions. Thus computational load increases rapidly 
with increasing N. Fast Fourier Transform (FFT) algorithms allow 
computation of DFT with reduced computational burden. 



Fast Fourier Transform (FFT) 

From relation (19), 

Assuming N to be a power of 2, N-point data sequence xk in relation (19) 
may be split into two N/2 point data sequences as follows: 
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Fast Fourier Transform (FFT) 
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Fast Fourier Transform (FFT) 
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Now, splitting (or decimating) Xn into even and odd harmonics, 
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for odd harmonics, n = 2p+1, for p = 0,1,2,…,(N/2-1). 

for even harmonics, n = 2p, for p = 0,1,2,…,(N/2-1) and 
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This is an N/2 point DFT sequence gk, k = 0,1,2,….(N/2 - 1)  

for k = 0,1,2,…(N/2-1) 



Fast Fourier Transform (FFT) 

Now, for odd harmonics [c.f. relation (24)], 

 kp

N

N

k
N

k
kp

WxxX 12

1
2

0
2

12
 



 
  







pk

N

N

k

k

NN
k

k
WWxx 2

1
2

0
2

 


  







pk

N

N

k

k

NN
k

k
WWxx

2

1
2

0
2

 


  





 as pk

N

pk

N
WW

2

2 

Let,  
k

NN
k

kk
Wxxg 










2

/
for k = 0,1,2,…,(N/2-1) 



Fast Fourier Transform (FFT) 

Then,  
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 …….(26) 

This is an N/2 point DFT sequence g’k, k = 0,1,2,….(N/2 – 1)  

Thus an N-point DFT may be split into two N/2-point DFTs.  

This process of splitting may be continued up to 2-point transforms as N is 
a power of 2. 



4-point FFT 

Let N = 4. Then from relation (25), 
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, for p = 0,1,2,…,(N/2-1)  

for k = 0,1,2,…,(N/2-1) 
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4-point FFT 

Now from relation (26), 
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Now from relations (27) and (30), 
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From relations (28), (29), (31) and (32), 
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From relations (33) and (34), 
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Signal Flow Graph for N = 4  

From relations (33) and (34), 
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Number of iterations = M, where M = log2N [as N = 2M], here N = 4 and M = 2 



Signal Flow Graph for N = 4  

Each iteration involves N/2 number of butterfly computations. 

Computation of g1 and g1
/ may be represented as: 
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Signal Flow Graph for N = 4  

Each iteration involves N/2 number of butterfly computations. 

Computation of g1 and g1
/ may be represented as: 

x1

w4
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This involves two complex additions and one complex multiplication. 

This is true for all butterflies. 



Signal Flow Graph for N = 4  

The procedure can be summarized as,  

No. of iterations =  NM 2log

Total no. of butterflies =  N
NNM

2log
22



No. of complex multiplications per butterfly = 1 

No. of complex additions per butterfly = 2 

Total no. of complex multiplications =  N
NNM

2log
22



Total no. of complex additions =  NNNM 2log



Signal Flow Graph for N = 4  

Computation of each butterfly may be carried out in-place to reduce memory 
requirement as follows: 

Butterfly
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B

A

-1

W

B T WTB

BAA
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Here T is a scratch-pad variable and W is the twiddle factor. 



Signal Flow Graph for N = 4  

may be called radix-2 decimation-in-frequency in-place FFT algorithm.  

Here, N should be a power of 2. 

Similarly, radix-2 decimation-in-time in-place FFT algorithm may be derived 
with same computation load. 

The above algorithm for the computation of FFT of sequence xk, k = 0,1,2,….,(N-1) 



Comparison of computational loads of DFT and FFT 

DFT FFT 

N complex 

additions 

complex 

multiplications 

complex 

additions 

complex 

multiplications 

4 16 16 8 4 

8 64 64 24 12 

16 256 256 64 32 

32 1024 1024 160 80 



Relations (25) and (26) may be split further (i.e. decimated) into N/2-point 
DFTs as follows: 

8-point FFT 
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Relations (25) and (26) may be split further (i.e. decimated) into N/2-point 
DFTs as follows: 

8-point FFT 

In relation (25), splitting N/2-point sequence  
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g into two N/4-point sequences, 
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8-point FFT 
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for even harmonics,  

Now splitting X2p into even and odd harmonics, 

and for odd harmonics,   12  rp

rp 2 , for r = 0,1,2,…,(N/4-1) 

, for r = 0,1,2,…,(N/4-1) 



8-point FFT 
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This is an N/4-point DFT of sequence   kh

, for k = 0,1,2,…,(N/4-1) 

, for r = 0,1,2,…,(N/4-1) 

, k = 0,1,2,…,(N/4-1) 



Now, for odd harmonics, 

8-point FFT 
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This is an N/4-point DFT of sequence   /

k
h

Thus the N/2-point DFT as represented in relation (25), may be split 
into two N/4-point DFTs, as represented in relations (36) and (37).  

 for k = 0,1,2,…,(N/4-1) 

, for r = 0,1,2,…,(N/4-1) 

, k = 0,1,2,…,(N/4-1) 



Similarly, the N/2-point DFT in relation (26) may 
be split into two even and odd harmonic N/4-
point DFTs as follows: 

8-point FFT 
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For even harmonics, 
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This is an N/4-point DFT where 
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, for r = 0,1,2,…,(N/4-1) 

, for k = 0,1,2,…,(N/4-1) 
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Similarly for odd harmonics, 
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This is another N/4-point DFT where 
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, for k = 0,1,2,…,(N/4-1) 

, for r = 0,1,2,…,(N/4-1) 
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Let N = 8 (= 23) for 8-point FFT.  

In relation (25), 
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Possible values of k are k = 0,1,2,3. 
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, for k = 0,1,2,…,(N/2-1) 
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Now in relation (26), 
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, for k = 0,1,2,…,(N/2-1) 



8-point FFT 
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From relations (40) and (41), signal flow graph for computations of  

30
g and 

/

30
g may be represented as: 
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, for k = 0,1,2,…,(N/4-1) 



8-point FFT 

And from relation (37), 
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, for k = 0,1,2,…,(N/4-1) 



8-point FFT 

Now from relation (38), 
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Possible values of K are K = 0,1. 

Then, 
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, for k = 0,1,2,…,(N/4-1) 



8-point FFT 

And from relation (39), 
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Possible values of K are K = 0,1. 
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, for k = 0,1,2,…,(N/4-1) 



From relations (42), (43), (44) and (45), signal flow graph for computation of  

8-point FFT 
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,10h ,/
10h

10 
l and 

/

10 
l may be represented as: 
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8-point FFT 

Now, from relation (36), 
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And, from relation (37), 
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possible values of r are r = 0,1. 

Then, 
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, for r = 0,1,2,…,(N/4-1) 

, for r = 0,1,2,…,(N/4-1) 



8-point FFT 

From relation (38), 
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possible values of r are r = 0,1. 

Then, 
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And, from relation (39), 

possible values of r are r = 0,1. 
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Then, 
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, for r = 0,1,2,…,(N/4-1) 

, for r = 0,1,2,…,(N/4-1) 



8-point FFT 
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From relations (46), (47), (48) and (49), signal flow graph for computation of  

70
X may be represented as: 

not in natural order, hence bit-reversal 
should be carried out to bring it in 
natural order 



Bit Reversal procedure 

8-point FFT 



Complete Signal Flow Graph 

8-point FFT 

Time 
history 

Frequency 



C ***Subroutine to compute radix-2 FFT*** 
C Decimation-in-frequency in-place algorithm 
 SUBROUTINE FFT(A,N,INV) 
C N: Dimension of Array (must be a power of 2) 
C A: Complex array containing data sequence 
C DFT coefficients are returned in the array 
C INV = 0 for forward FFT 
C INV = 1 for inverse FFT 
 DIMENSION A(N) 
 COMPLEX T,W,A 
 IF (INV.EQ.0) GO TO 8 
C Divide sequence by N for inverse FFT 
 DO 7 I=1,N 
7 A(I)=A(I)/CMPLX(FLOAT(N),0.0) 
8 S=-1.0 
 IF (INV.EQ.1) S=1.0 

FORTRAN subroutine to compute radix-2 FFT 



C Calculate number of iterations 
C M: Number of iterations (log(N) to the base 2) 
 M=1 
 K=N 
2  K=K/2 
 IF (K.EQ.1) GO TO 1 
 M=M+1 
 GO TO 2 
C Compute for each iteration 
C NP: Number of points in each partition 
1  NB=N 
 DO 3 I=1,M 
 NP=NB 
 NB=NP/2 
 PHI=3.14159265/FLOAT(NB) 

FORTRAN subroutine to compute radix-2 FFT 



C Compute for each iteration 
C NP: Number of points in each partition 
1  NB=N 
 DO 3 I=1,M 
 NP=NB 
 NB=NP/2 
 PHI=3.14159265/FLOAT(NB) 
C Calculate the twiddle factor W for each butterfly 
C NB: Number of butterflies for each partition 
 DO 3 J=1,NB 
 ARG=FLOAT(J-1)*PHI 
 W=CMPLX(COS(ARG),S*SIN(ARG)) 
C Compute butterfly for each partition 
 DO 3 K=NP,N,NP 
 J1=K-NP+J 
 J2=J1+NB 
 T=A(J1)-A(J2) 
 A(J1)=A(J1)+A(J2) 
 A(J2)=T*W 
3  CONTINUE 

Nested DO loop 

FORTRAN subroutine to compute radix-2 FFT 



C Bit reversal operation 
 N2=N/2 
 N1=N-1 
 J=1 
 DO 4 I=1,N1 
 IF (I.GE.J) GO TO 5 
 T=A(J) 
 A(J)=A(I) 
 A(I)=T 
5  K=N2 
6  IF (K.GE.J) GO TO 4 
 J=J-K 
 K=K/2 
 GO TO 6 
4  J=J+K 
 RETURN 
 END 

During the bit-reversal operation, N/2 DFT coefficients remain unchanged and 
the remaining N/2 coefficients are exchanged in place as required. 

FORTRAN subroutine to compute radix-2 FFT 



Applications of FFT 

Computation of amplitude spectrum of a finite real data sequence 
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2
and , for n = 1,2,…,(N/2-1), the nth harmonic amplitude. 



Applications of FFT 

Computation of amplitude spectrum of a finite real data sequence 

The range of frequency may be expressed as fs/2 where fs is the sampling 
frequency          . 












1

The frequency resolution may be estimated as f0 where f0 is the fundamental 
frequency (=1/T0 ), where T0 is the time period of fundamental frequency and also 
the width of the analysis window. 



Applications of FFT 

FORTRAN program for computation of amplitude spectrum 

C ***Amplitude spectrum analysis program using FFT*** 
 DIMENSION A(1024),B(1024),C(512),PHASE(512) 
 COMPLEX A 
 CHARACTER*64 FNAME 
 WRITE(*,10) 
10  FORMAT(1X,'Enter file name - '\) 
 READ(*,20)FNAME 
20  FORMAT(A) 
 OPEN(2,FILE=FNAME) 
 READ(2,*,END=100)(B(I),I=1,1024) 
100   N=I-1 
 CLOSE(2) 
 WRITE(*,200)N 
200  FORMAT(1X,'Data points = ',I4) 



Applications of FFT 

FORTRAN program for computation of amplitude spectrum 

 DO 15 I=1,10 
 IF(N-2**I)24,25,15 
15  CONTINUE 
24  WRITE(*,5) 
5  FORMAT(1X,'Incorrect size - it must be a power of 2') 
 STOP 
25  DO 30 I=1,N 
30  A(I)=CMPLX(B(I),0.0)/CMPLX(FLOAT(N),0.0) 
 WRITE(*,300) 
300  FORMAT(1X,'FFT analysis in progress') 
 CALL FFT(A,N,0) 



Applications of FFT 

FORTRAN program for computation of amplitude spectrum 

 NA=N/2 
 C(1)=CABS(A(1)) 
 DO 40 I=2,NA 
40  C(I)=CABS(A(I))*2.0 
 D=180.0/3.141592654 
 DO 80 I=2,NA 
 R=REAL(A(I)) 
 X=AIMAG(A(I)) 
 ALPHA=ATAN2(X,R) 
80  PHASE(I)=D*ALPHA 



Applications of FFT 

FORTRAN program for computation of amplitude spectrum 

 WRITE(*,60) 
60  FORMAT('0','Harmonic no.',7X,'Amplitude',12X,'Phase (deg)') 
 WRITE(*,70) 
70  FORMAT(1X,'------------',7X,'---------',12X,'-----------'//) 
 NB=0 
 WRITE(*,75)NB,C(1) 
75  FORMAT(5X,I3,9X,1P,E13.6) 
 DO 85 I=2,NA 
 NB=I-1 
85  WRITE(*,90)NB,C(I),PHASE(I) 
90  FORMAT(5X,I3,9X,1P,E13.6,9X,E13.6) 
 END 



FFT-based digital filtering of a finite real data sequence 

Applications of FFT 

Digital

Filter
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yk = hk * xk, hk is the impulse sequence of the digital filter 



FFT-based digital filtering of a finite real data sequence 

Applications of FFT 

Digital

Filter
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yk = hk * xk 

Hn
xk yk

FFT

multiplication

Xn Yn
IFFT

Yn = Hn . Xn, Hn is the complex gain of the digital filter 



FFT-based digital filtering of a finite real data sequence 

Applications of FFT 
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FFT-based digital filtering of a finite real data sequence 

Applications of FFT 
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Applications of FFT 

FORTRAN program for FFT-based digital filtering 

C ***FFT based digital filter program*** 
 DIMENSION X(1024),A(513),PH(513) 
 COMPLEX H(1024),CX(1024) 
 CHARACTER*64 FNAME1,FNAME2 
 WRITE(*,20) 
20  FORMAT(1X,'Enter input file name - '\) 
 READ(*,30)FNAME1 
30  FORMAT(A) 
 WRITE(*,40) 
40  FORMAT(1X,'Enter output file name - '\) 
 READ(*,30)FNAME2 



Applications of FFT 

FORTRAN program for FFT-based digital filtering 

 OPEN(1,FILE=FNAME1) 
 READ(1,*,END=50)(X(I),I=1,1024) 
 GOTO 60 
50  I=I-1 
60  N=I 
 WRITE(*,70)N 
70  FORMAT(1X,'Data points = ',I4) 
 DO 375 I=1,10 
 IF(N-2**I)380,390,375 
375  CONTINUE 
380  WRITE(*,400) 
400  FORMAT(1X,'Incorrect size of data') 
 STOP 



Applications of FFT 

FORTRAN program for FFT-based digital filtering 

390  WRITE(*,100)N/2+1 
100  FORMAT(1X,'Enter filter gain (',I3,' points)') 
 READ(*,*)(A(I),I=1,N/2+1) 
 PH(1)=0.0 
 WRITE(*,110)N/2 
110  FORMAT(1X,'Enter filter phase (',I3,' points)') 
 READ(*,*)(PH(I),I=2,N/2+1) 
C Form complex filter gain array 
 H(1)=CMPLX(A(1)*N,0.0) 
 DO 200 I=2,N/2+1 
200  H(I)=CMPLX(A(I)*N*COS(PH(I))/2.0,A(I)*N*SIN(PH(I))/2.0) 

H n

nN / 2



H n

nN / 2 N - 1

Applications of FFT 

FORTRAN program for FFT-based digital filtering 

390  WRITE(*,100)N/2+1 
100  FORMAT(1X,'Enter filter gain (',I3,' points)') 
 READ(*,*)(A(I),I=1,N/2+1) 
 PH(1)=0.0 
 WRITE(*,110)N/2 
110  FORMAT(1X,'Enter filter phase (',I3,' points)') 
 READ(*,*)(PH(I),I=2,N/2+1) 
C Form complex filter gain array 
 H(1)=CMPLX(A(1)*N,0.0) 
 DO 200 I=2,N/2+1 
200  H(I)=CMPLX(A(I)*N*COS(PH(I))/2.0,A(I)*N*SIN(PH(I))/2.0) 
C Form rest of the gain array by complex conjugate 
 DO 340 I=2,N/2 
 J=N+2-I 
340  H(J)=CONJG(H(I)) 



Applications of FFT 

FORTRAN program for FFT-based digital filtering 

C Form complex input data array 
 DO 350 I=1,N 
350  CX(I)=CMPLX(X(I),0.0) 
C Compute FFT 
 CALL FFT(CX,N,0) 
C Perform filtering in frequency domain 
 DO 360 I=1,N 
360  CX(I)=CX(I)*H(I) 
C Back to time 
 CALL FFT(CX,N,1) 
 DO 370 I=1,N 
370  X(I)=REAL(CX(I)) 

                                               

Multiplication 

xk           Xn                  Hn               Yn          yk    
 

FFT IFFT 



Applications of FFT 

FORTRAN program for FFT-based digital filtering 

C Save output 
 IF(FNAME1.EQ.FNAME2)CLOSE(1) 
 OPEN(2,FILE=FNAME2,STATUS='NEW') 
 WRITE(2,*)(X(I),I=1,N) 
 END 




