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Discrete Fourier Transform

In time domain or sequence domain, representation of digital signals describes
the signal amplitude versus the sampling time instant or the sample number.

However, in some applications, signal frequency content is more useful than the
digital signal samples.

Hence representation of the digital signal in terms of its frequency
components in frequency domain, i.e. the signal spectrum, needs to be

developed.



15 20
Sample number k

© - .
- The corresponding signal
spectrum i.e. the frequency
domain representation

EoS

Signal Spectrum
nN

00—e—ab—=o o——6——6——6—C—6—8b—0—
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

Conclusion: The spectral plot better displays frequency information of a
digital signal.







Fourier series for a periodic signal

Let x(t) be a periodic function of time having a time period T,, then
the fundamental frequency of x(t) is

27

AY . =— (1)
\VaV/ 0
VAV To

The signal x(t) may be expressed in terms of the Fourier series as

x(t)=a +>(a cosnwt+b sinnat) .. 2)
n=l1



Fourier series for a periodic signal

x(t)=a, +>(a cosnwt+b sinnwt) .. 2)
n=l1
where 2z
a, =— | x(t)d(w,t) =— IX(f)df .the average value
27 %, 1+

— j x(t)cosnwytd(w,t) =— j x(t)cosnw,tdt
0 0 forn=1,2,3,.

— j x(¢)sinna,td(w, 1) = = j x(7) smna)otdt
O 0 forn=1,2,3, .

a,’s are known as cosine coefficients and b,’s are known as sine coefficients.



Fourier series for a periodic signal

Relation (2) may be rewritten as

sinnayt)

x(t)=a, +Z\/a +b ( \/ :—b cosna)ot—\/(a;l_?:in2

or x(t)=C, + ZCn cos(nw,t +6)) (3)
n=l1

[cos(4+B) =cosAcosB—sinAsinB]
b,
wee C=a, C=|d+f 0 ——tan'2 |+

n n

C,n=1,23,...is the amplitude and 6, n=1, 2, 3, ... is the phase
of the nth harmonic. C, is the average value.



Fourier series for a periodic signal

Expressing cosine and sine terms of relation (2) in terms of their complex
exponential values as

e +e e
x()=a,+ ) |a +b
(1) = a, nzz:,[ . 5 )+b,( 2; )]
= na,t an _.]bn — jnayt an +.]bn
or X(1)=a, +Z[e’ ( )+e " )]
n=I 2 2
or X(t) = b, + Z[Fnejmot + F_ne‘f’”’wot] ....... (4)

a,—jb, +Jb,
where E):ao, F ( 2] ) and Fn—(a 2]



Fourier series for a periodic signal

Now X(£)=Fy+ ) [Fe"™ +F e "™ . )

_]b

where FO:aO, F (

Here F_ = ﬁn , conjugate of F,.

Relation (4) may be expressed as

x(t)=F, + ZFnej”a"’t + ZF_ne_j””(’t



Fourier series for a periodic signal
Now x(l‘) — FO + Z Fnejncoot + Z F_ne—jnwot
n=l n=l

x(t)=Fy+) Fe"™ + ) Fe™"™
n=I

n=-1

Hence, we can write,  x(¢) = Z Fnejnwot ....... (5)

1=—00

Thus x(f) may be expressed in terms of Complex Fourier Series in
relation (5). Here F, is known as the Complex Fourier coefficient.



Variation of F, coefficients with n




Variation of F, coefficients with n



Fourier series for a periodic signal

The amplitudes C,’s of relation (3) may be related to F,’s as

CO — E) , the average value

and Cn =2‘E‘,forn=1,2, 3,... L (6)

the amplitude of the nth harmonic.

the phase of the nth harmonic.



Fourier series for a periodic signal

From relation (4), F,, may be expressed as
a, — ]bn)
2

Substituting expressions of a, and b,, from relation (2)

F,=(

] .
Fn = —jX(f)e_]nwotdt ....... (7)
TO 0

For aperiodic signals, the time period T, becomes infinite, and the Fourier
transform of an aperiodic signal x(f) is defined as

X(w) = Tx(t)e_j”’dt ....... (8)

—00



Fourier series for a periodic discrete sequence

Let x, be a periodic discrete sequence obtained from a periodic signal x(t)
with a time period T,,.

Let N number of samples be available in the time period T, with a sampling
interval 7. The corresponding sampling frequency = f, Hz.

TO =Nr and 7 = 1/fs N (°))

A& \ \E N=9Q -
w—Ton Ll
L

O [T at--- h\q(/‘/d > &
Sy
1k T p '
o_‘{ ?lu \ [ r"‘]L LJ j‘__\l{\

Assumption: The periodic discrete sequence is band limited to have all
harmonic frequencies less than the folding frequency (f/2) so that aliasing
does not occur.




Fourier series for a periodic discrete sequence

Using rectangular rule for integration, the Fourier coefficients may be obtained as

O
e v Nkg From relation (2)
A ]
Sl u,{_z[ E a, :ij(t)dt
| 00
i N p
1 N-1
a,=—» X, T
T() k=0
1 N-1 1 N-1
or d, = —— X, T =—Zxk ....... (10)



Fourier series for a periodic discrete sequence

Using rectangular rule for integration, the Fourier coefficients may be obtained as

Similarly,
From relation (2)
2t
a, = —J-x(t) COS nw,tdt
To 0

2 2z

(using the substitutions: @, T :ﬁ and 7,=Nr and =kt in relation (2))
0



Fourier series for a periodic discrete sequence

Using rectangular rule for integration, the Fourier coefficients may be obtained as

and
From relation (2)
2
b, = — | x(t)sin nw,d
To 0
= . 27
b, =— X, sinn| — (kr)r
N7t i Nt
2 1 ( 27kn
or h =—>» x. sm|——| . 12
n 2. X, ( v j (12)
: _ 2T 2w _ _
(using the substitutions: @, =——=——and T, =Nr and =Kkt in relation (2))

1, Nt



Fourier series for a periodic discrete sequence

Now from relations (11) and (12),

a, —jb, 1& (2721(11) .. (Zﬂknj
= x, | cos — jsin
2 N~ N N

L A7)

NS

Hence, the Fourier series coefficients for the periodic discrete sequence are:

E) =a0 and

po%mib 1§ 5
"2 NG

Since the coefficients F, are obtained from the Fourier series expansion in
the complex form, the resultant spectrum F_ will have two sides.



Fourier series for a periodic discrete sequence

Now from relations (11) and (12),

a, —jb, 1& (2721(11) .. (Zﬂknj
= x, | cos — jsin
2 N~ N N

L A7)

NS

Hence, the Fourier series coefficients for the periodic discrete sequence are:

E) =a0 and

_ N-1 2%
F = an ']bn — 1 xke ’ ( N j, n= il,iZ,i:;,“‘ ....... (12a)

: 2 NS

It can be shown that F, ., = F,.. Hence the Fourier series coefficients F, are
periodic having a periodicity of N.



Fourier series for a periodic discrete sequence

DC component kfy=0xf,=0 Hz
1st harmonic kfy=1xfy=1; Hz

F

n ‘

Other harmonics ... Other harmonics ...
\:- ------ l ..... //_: @
o ® [ ] [ ]
8 ‘

fS/2 fS_ fo fsf8+ fo f

0 fo
/ fS=NfO HZ
< P

2nd harmonic kfy=2xf,=2f, Hz

Amplitude spectrum of a representative periodic signal

For the kth harmonic, the frequency is f=kf,. The frequency spacing between
the consecutive spectral lines, called the frequency resolution, is f;, Hz.

As F,_ ., = F,, the two-sided line amplitude spectrum | F, | is periodic.



Fourier series for a periodic discrete sequence

DC component kfy=0xfy=0 Hz
1st harmonic kfy=1xfy=1y Hz

Other harmonics ...
F ‘ / // ®

n

fiZANe

Other harmonics ...

D%

_f /fo' f/2 fs—fo | ffe+fy f

2nd harmonic kfy=2xfy=2f, Hz

OBSERVATIONS:

« Only the line spectral portion between the frequency —f/2 and frequency
f/2 (folding frequency) represents the frequency information of the
periodic signal.

* The spectral portion from f/2 to f, is a copy of the spectrum in the
negative frequency range from —f/2 to 0 Hz due to the spectrum being
periodic for every Nf, Hz.




Fourier series for a periodic discrete sequence

DC component kfy=0xfy=0 Hz
1st harmonic kfy=1xfy=1y Hz

Other harmonics ...
F ‘ / e

n /
®

Other harmonics ...

e
/f/{/ J ‘T

_f /fo' f/2 fs—fo | ffe+fy f

2nd harmonic kfy=2xfy=2f, Hz

OBSERVATIONS:

* For convenience, we compute the spectrum over the range from 0 to f_ Hz
with nonnegative indices, i.e.,

F=—) x.e , n=0123,--- N-1

« If negative indexed spectral values are needed, those can be obtained
using the relation: F ., = F,.



Fourier series for a periodic discrete sequence
Problem 1

Let us consider a periodic signal x(t) = sin(2x=t), sampled using a sampling rate of f, = 4 Hz.
(/) Compute the Fourier coefficients or spectrum F, using the samples in one period.
(if) Plot the two-sided amplitude spectrum | Fn| over the range from -2 to 2 Hz.

Solution

From the analog signal, we get fundamental frequency o, = 2r rad/s.
Hence f, = (o,/2n) = 1 Hz and fundamental time period 7,= 1 s.
Sampling interval 7= 1/f, = 0.25 s.

Hence sampled signal = x, = x(k7) = sin(2rkz) = sin(0.57k)

Xk
X

1 L
Xo | - X2 First eight samples of the

& @ . 4 g 4 n . . . . .

5 l : l p periodic digital signal

X3
> -




Fourier series for a periodic discrete sequence
Problem 1

Let us consider a periodic signal x(t) = sin(2=t), sampled using a sampling rate of f, = 4 Hz.
(/) Compute the Fourier coefficients or spectrum F, using the samples in one perlod
(i) Plot the two-sided amplitude spectrum |F | over the range from -2 to 2 Hz.

Solution (contd.)

For a duration of one period, N = 4. The sample values are: x,=0, x,=1, x,=0, x5=-1.
From the expression of F, in relation (12a), we can compute:

Zxk (x0+xl+x2+x3) i(0+1+0—1)20

1 2 — 2 x|k 1 -z ; i3
:szke e =—(x0 +x,e Z +x,e " +x,e A)
k=0

4

1 : : 1 . ; :
:_(xo B +]x3):Z(O_J1_O+J(_1)):_]0'5



Fourier series for a periodic discrete sequence
Problem 1

Let us consider a periodic signal x(t) = sin(2=t), sampled using a sampling rate of f, = 4 Hz.
(/) Compute the Fourier coefficients or spectrum F, using the samples in one period.
(i) Plot the two-sided amplitude spectrum |Fn| over the range from -2 to 2 Hz.

Solution (contd.)

Similarly we get:

Using periodicity, it follows that:

F_1:F;:]05 and F2:}72:O



Fourier series for a periodic discrete sequence
Problem 1

Let us consider a periodic signal x(t) = sin(2x=t), sampled using a sampling rate of f, = 4 Hz.
(/) Compute the Fourier coefficients or spectrum F, using the samples in one period.
(if) Plot the two-sided amplitude spectrum | Fn| over the range from -2 to 2 Hz.

Solution (contd.)

Fl’l
0.5 0.5 ros=[T05™1 05 0.5
A A i 4 A 1 A n
l !
----- : : Two sided amplitude
j| é 4 spectrum |F,,| for the
: ' : f Hz periodic digital signal
5 -4 -3-2-1 |01 3 5
f/2=2
<




Fourier series for a periodic discrete sequence

Now, from relation (12a), we can write,
2 7k
N N S ‘J”’(VJ
A (an _]bn): Zxke
2

N
Substituting  Na, = X, and (zj(an —jbn) =X ,forn=41,+2,+3, ...

N
Xn :NF;; :Zxke forn=0,+1,+2, ... ... (13)
k=0



Fourier series for a periodic discrete sequence

N—-1 _]n(%j
From relation (13) Xn :NE1 :Zxke N forn=0, +1, +2, ...
k=0

Now, let us considern= N+ m, form=0, 1, £2, ...

m+N
k:
g A
or X :Zxke =X, . (14)
k:

Conclusion: X, is periodic with a period N.




Fourier series for a periodic discrete sequence

Then, within one period (i.e. forn=20, 1, 2, ..., N-1),

_]n(Zﬂkj
X, Zxk ,forn=0,1,2,..... N1 o (15)

Conclusion: Relation (15) is known as the Discrete Fourier Transform
(DFT) of a finite sequence x,, k=0,1, 2, ..., N-1.

The X, constitutes the DFT coefficients.



Fourier series for a periodic discrete sequence

Relation (14) represents the periodicity property of DFT.

X, repeats at the Nth harmonic.

The frequency corresponding to the Nth harmonic is:

N N 1 :
Nf, =—= =—=f , the sampling frequency.

T, Nr ¢

Conclusion: X, repeats at the sampling frequency f..




Discrete Fourier Transform

The Discrete Fourier Transform (DFT) of a finite sequence
X, k=0,1,2, ..., N-1is defined as

_]n(Zﬂkj
X, Zxk forn=0,1,2, ... N1 = (15)

Amplitude C,, (c.f. relation (3)) is related to X, as

, the average value

2
and Cn:—‘Xn‘ forn=1,2,3,... . (16)
N



x(t)

e

This portion of the signal is used for
DFT and spectrum calculation

Xk
X4 ki Xy Xn=NFn
\I i k=0,1,-,N -1 n=0,1,--,N—1
: ? ——» DFT —»
X, IT Xna  t=kr f= nAf
5 vk Af = /N




Inverse Discrete Fourier Transform

Relation (15):

1 ]n(z_”lj N-1 _jn[272k
By multiplying — " \ ¥ X, =Yxe " -0t w1
N k=0
on both sides of relation (15) and summing up fromn=0to N-1 with0</< N
1 N-1 Jn 2—7[1 1 N-1 N-1 —jn ﬁ jn 2—7[1
— Xne(Nj:— X.e (Nj.e(Nj
N n=0 N n=0 k=0
1 N-1 N-1 ]n(l—k)%
- Z Z X, €
N =0 k=0
Now, changing the order of summation,
1 N-1 ]n(%ﬂ) N-1 0 1 e Jn27r(l—k)_
ZXne =Zxk —Ze |, (17)
N n=0 k=0 _N = /|




Inverse Discrete Fourier Transform

_ 27z(l k)
Now, in Ze , when ([-k)=pN
N-1
where p is a positive integer, the expression becomes Z e’ A
n=0
N-1 N-1
As np is another integer, it becomes Zeﬂ”(”’p) =Yy 1=N
n=0 n=0

In the present case, as / and k are limited within 0 and (N — 1), the possible
value of p is zero, i.e. when (I - k) = 0 or I = k, the summation becomes N.



Inverse Discrete Fourier Transform

_ 27z(l k)
Now, mZe , let M:Q

N-1 Jn27f(l—k)
Then the summation becomes Ze N
n=0

N -1

7
2. €’
n=0

It may be expressed as

jné —1
Ze —Ze , where m=n + 1

m=l

N
me _—jo
.]m .e .]

e

m=1



Inverse Discrete Fourier Transform

N-1 N
or Ze’”g = Zejmg.e_j‘g
n=0 m=1 5
. N
=e’| > (cosmO+ jsinm)

- m=1

sin Y0 sin Y0
7 9 N+1 , 7 . (N+1
=e 5 cos( > 6’)+] 5 sm( > 0

SINn— SIN—




Inverse Discrete Fourier Transform

sin il
N-1 N+l
: . j——0
or Zén‘g:eﬂ 2
— . 0
= sin —
i 2 |
. N6
sin ——  N-1
2 it
= e
.0
sin —
2
N0 NG
e 2 —e 2
Ne |
2j e? e’ —1




Inverse Discrete Fourier Transform

-1 ‘NG

< 5 eJ —1
2=

n=0 e —1

Putting the value of 6,

N-1 ]nzﬁz —k) é‘Zz(l—k) _1

Ze — (%
N

Now for I # k, the summation is zero.

And for I = k, it becomes indeterminate (%j form.



Inverse Discrete Fourier Transform

N-1 k)

Thus, Ze N forl <k

=0,for/ #k

considering 0=/, k<N

Thus all terms on the right hand side of relation (17) vanishes except
when | = k.

)—A

| Nl n(”] Nol [ N ek

ﬁz X ﬁzem R (17)




Inverse Discrete Fourier Transform
)

N-1

Thus, Ze N forl <k

=0,for/ #k

considering 0=/, k<N

Thus all terms on the right hand side of relation (17) vanishes except

when [ = k.
1 N (2”’j N-I i N-1 o 2m(k)
Therefore, ﬁZX - Yk

k=0

jn| == N
— > X e (Nj = xl(—j =x,, for[=0,1,2,...N-1



Inverse Discrete Fourier Transform

_ (2
%NZ:X,&] ) = x,(%j = x,, for 1 =0,1,2,...N-I

Now, changing the suffix / to k,

1 Nl jn(%j
X, = NZX e " fork=012..N1 (18
n=0

Relation (18) is known as the Inverse Discrete Fourier Transform (IDFT).

Relations (15) and (18) are called N-point DFT pair.



N-point DFT pair

N-point DFT:
2tk

X = Ni xke_jn( N j forn=0,1,2,..., N-1
k=0

N-point IDFT:
1 Nl | 27

x,=— Y X,e ( N ) fork=0,1,2,... N-I
Nn:O

2
£
Replacing the expression ¢
by the term W,, the DFT pair takes the form

N-1
X, =Y x Wy, forn=012,.., N-I
k=0

1 N-1

x,=— Y X W™, fork=0,12,...,N-1
N
n=0



N-point DFT pair

N-1
X =N xw™, forn=012,.., NI ..
k=0
1 N-1
X, —NZX,IW];”", fork=0,12.. N1 -
n=0

%)
%
where IV, =e by

a complex operator (twiddle factor), which rotates any vector through

(—2%\[ ) Radians.

0 g
r _'j‘ [ N -—-7‘- . & ....T‘-
Wy = e/*™N =cos| == | —jsin| =

Here, n = harmonic number and k = sample number.




X = fft(x) % Calculate DFT coefficients
x = 1fft(X) % Inverse DFT

X = Input vector

X = DFT coefficient vector

MATLAB FFT functions



DFT and IDFT
Problem 2

A sequence x,, for k =0,1,2,3, is given as: x, = 1, x, =2, X, = 3, and x; = 4.
Evaluate its DFT X...

Solution _j(z_” ) -J(Zj
Here N=4.Hence W, =W, =e 4) _, \2

3 3
_ nk _ 5
Therefore, X = E x W, = E X.e
k=0 k=0

3
Forn=0, X, = Z:xke_’O =x,e "’ +xe’’ +x,e7’"
k=0
=X, +x, +x,+x,=1+2+3+4=10

3 7T 3z

-j= o - iy =

Forn=1, XI:Zxke 2 =x,e " +xe *+xe’ +xe “
k=0

=X, — jX, =X, + jx; =1-j2-3+ j4=-2+j2



DFT and IDFT
Problem 2

A sequence x,, for k =0,1,2,3, is given as: x, = 1, x, =2, X, = 3, and x; = 4.
Evaluate its DFT X...

Solution (contd.) '(2”) m
Here N=4. Hence W, =W, =e 4) _p \2

3 3
Y
Therefore, X = Z ka4nk _ Z e 2

27tk
_]_ . .

=X, =X, +x,—x;,=1-2+3-4=-2
3k 3z

O
_]— _i0 = j— _3 —j==



> X = fft([1 2 3 4])
X = 10.0000 —2.0000 +2.0000i —2.0000 — 2.0000 — 2.0000i



DFT and IDFT
Problem 3

Using the DFT coefficients X, for n = 0,1,2,3, computed in the previous problem,
evaluate its inverse DFT to determine the time domain sequence x,.

Solution (27:) m
{Z
Here N= 4. Hence W1\7 W —e \?
3 1 3 Jﬂn_k
Therefore, x X W, X, e *?
For k=0,
X, = —Z X e’ =—(Xoefo + X, e/’ + X, e’ +X3e’0)

4= 4

:%(XO+X1+X2+X3)

:%(10+(—2+j2)—2+(—2—j2)):1



DFT and IDFT
Problem 3

Using the DFT coefficients X, for n = 0,1,2,3, computed in the previous problem,
evaluate its inverse DFT to determine the time domain sequence x,.

(3}

Solution (contd.) J(z_ﬂ)
=e

Here N= 4. Hence W; :VK_l —e*

| < 1 e
Therefore, X, :ZZ X W= ZZX e 2
n=0 n=0

For k=1,

[ 2] . z - =
xl:ZZXnejz :Z(XOeJO+XIejz+Xze”+X3e 2)
n=0

| . .
:Z(XO+JX1_X2_JX3)

:%(10+j(—2+j2)+2—j(—2—j2)):2



DFT and IDFT
Problem 3

Using the DFT coefficients X, for n = 0,1,2,3, computed in the previous problem,
evaluate its inverse DFT to determine the time domain sequence x,.

Solution (contd.) ,(27,) m
= =
Here N= 4. Hence W;:I/K_lze Y= \?
Therefore, x —liX W = liX ejmTk
’ k 4 — n"" 4 4 — n
For k=2,
1 : nw 1 0 T 27 3
X, = ZZ X e’ =Z(Xoe] + X e+ X, e/ + X,e’ )
n=0
1
:Z(Xo - X, + X, _X3)

:%(IO—(—2+]’2)+(—2)—(—2—j2))=3



DFT and IDFT
Problem 3

Using the DFT coefficients X, for n = 0,1,2,3, computed in the previous problem,
evaluate its inverse DFT to determine the time domain sequence x,.

(3}

Solution (contd.) J(z_ﬂ)
=e

Here N= 4. Hence W; :VK_l —e*

= [ s
Therefore, X, :ZZ X W= ZZX e 2
n=0 n=0

For k= 3,

1 3 3nrx 1 . 37 . Or
X, :ZZXne] 2 :Z[Xoe’0+Xle]2 + X, e+ Xe ?
n=0

| : .
:Z(Xo_]Xl_X2+]X3)

= %(10 - j(=2+j2)-(-2)+j(-2-j2))=4



DFT and IDFT
Problem 3

Using the DFT coefficients X, for n = 0,1,2,3, computed in the previous problem,
evaluate its inverse DFT to determine the time domain sequence Xx,.

Solution (contd.)

This result can be verified in MATLAB® as:

> x =ifft((10 =242/ —2 —2-2/))

X =1 2 3 4.



Important Properties of DFT

Periodicity

From relation (19),

N-1 (2
X, = ZkaA’,“", forn=10,12,..., N-1, where W, =¢ "(Nj
k=0

Then, !
X e = S xR for p = 0,41,22, .
k=0
N -1
=3 x W, asw M =w N0 =
k=0
- X
l.e. Xn+pN = Xn for p = O,il,iZ, A (21)

Thus X, is periodic with a period N, i.e. the pNth harmonic or at the p times
sampling frequency, the DFT repeats.



Important Properties of DFT

Linearity

DFT DFT
If X, € > X and x,, < > X
1k N 1n 2k N 2n

then for any real-valued or complex-valued constants a, and a,,

DET
A Xy T a,X,, < N >a, X, +a,X,,

This property follows immediately from the definition of DFT given in (19).



Important Properties of DFT

Circular symmetries of a sequence

The N-point DFT of a finite duration sequence x, of length L < N, is equivalent to the

N-point DFT of a periodic sequence x,, of period N, which is obtained by periodically
extending x, i.e.

o0
)Cpk = Zxk_,N ....... (21a)

/=—00
Let us assume that the periodic sequence x,, is shifted by m units to the right. Thus
we obtain another periodic sequence, given as:

00
r __ —
ka — xp(k—m) - Z xk_m_lN ....... (Zlb)

[=—00

The finite duration sequence
Yk = : (21¢)
0, otherwise o
Is related to the original sequence x, by a circular shift.



Important Properties of DFT

Circular symmetries of a sequence

In general, the circular shift of the sequence can be represented as the index modulo
N. Thus we can write,

’ —
Xe = X(k-m,modulo N) = X(k-m)y . (21d)

For example, let us assume m =2 and N = 4. Then we have,

, —
e = Mi-2),
This implies that

' — —

/ — —

Hence xl'c is simply x, shifted circularly by two units in time, where counterclockwise
direction has been arbitrarily selected as the positive direction.



Important Properties of DFT

Circular symmetries of a sequence

Hence we can conclude that a circular shift of an N-point sequence is equivalent
to a linear shift of its periodic extension, and vice versa.

The inherent periodicity resulting from the arrangement of the N-point sequence on
the circumference of a circle dictates a different definition of even and odd symmetry,
and time reversal of a sequence.

An N-point sequence is called circularly even if it is symmetric about the point
zero on the circle i.e.

Xy ,=Xx, I1<k<N-1 (21e)

An N-point sequence is called circularly odd if it is antisymmetric about the point
zero on the circle i.e.

Xy, =—-Xx, I<ks<N-1 . (21f)

The time reversal of an N-point sequence is attained by reversing its samples
about the point zero on the circle i.e.

.X(_k)N = x(N—k) I1<k<N-1 (21g)



Important Properties of DFT

Circular symmetries of a sequence

This time reversal is equivalent to plotting x, in a clockwise direction on a circle.

An equivalent definition of even and odd sequences for the associated periodic
sequence X, is given as:

cven . )Cpk = ’xp(—k) = xp(N—k)

0dd 2 X = =Xp(4) = = Xp(w-s)
If the periodic sequence is complex valued, then:
conjugate even : X, =X (y_y)

conjugate odd : x, = —x;(N_k) ....... (21i)






Important Properties of DFT

Symmetry

From relation (19),

N-1 (2
X, =) x Wy, forn=0.12,.., N-1, where W, =e ](Nj
k=

Then, N1
Zx WjépN_”)k for p =0,z1,£2, ....

=0
-1

=N x W, asw M = Nk —

= X, , conjugate of X, if x, is a real sequence.

wvn =X, for p=0£1£2, .. ... (22)

Forp=0, X , =X, andforp=1, Xy, =X,






Multiplication of two DFTs and Circular Convolution

Let us assume that we have two finite duration sequences of length N, x,, and x,.
Their respective N-point DFTs are:

N-1 - 2 7wkn

Xln:leke N, mn=0L---,N-1 . (22a)
k=0
N-1 - 2 7tkn

in:szke N mn=0l1---,N-1 . (22b)
k=0

If these two DFTs are multiplied together, the resultant will be a DFT X,
of a sequence Xx;, of length N.

Now our objective is to determine the relationship between x;, and sequences x,, and x,,

Now, we have:

X, =X, X,, n=01--N-1 (22¢)
The IDFT of {X;} is:
| Nl jomm 4N j2mmm
X;, =—) X;e " =—ZXMX2ne N (22d)

" N n=0 N n=0



Multiplication of two DFTs and Circular Convolution
Substituting X, and X,, in (22d) using the DFTs in (22a) and (22b), we get:

1 N-=1| N=1 —]27mk —j2mnl j2mnm
- N N
Xym = N Z X1 € Z Xy,€
n=0

k=0
| NI N N-1 j2m(m—k-1)
=— Y X X Z e N
1% 21 22
N ‘= i — e (22¢e)

N-1 i N, Cl=1
a"=:1-a"
e T axl (22f)




Multiplication of two DFTs and Circular Convolution

We observe that a = 1, when m-k-/ is a multiple of N.
On the other hand, aV = 1, for any value of a = 0. Hence (22f) gets reduced to:

>

n=0

¥ {N, I=m—k+pN=(m-k),
a =
0,

otherwise

If we substitute this result in (22e), we obtain the desired expression of x;,, as:

N-1
Xy, = Z X1k X2 (k) 2 m=0,1,---,N-1 ... (22i)
k=0

The expression in (22i) has the form of a convolution sum.

However it is not the ordinary linear convolution. Instead, the convolution sum in (22i)
Involves the index (m-k), and is called circular convolution.

Conclusion: The multiplication of the DFTs of two sequences is equivalent to the
circular convolution of the two sequences in the time domain.




where x,, (N )x2 . denotes the circular convolution of the sequences xy, and xy,.



Computation of DFT

From relation (19),

N-I _ (
; J
X, = Z XkWNk, forn=0,1,2,.., N-1,where W, =e
k=0
It may be represented in matrix form as
nk
[Xn]: [WN IXk]

where [)(;] and [)(;{] are /Nx] column matrices and

[WA’;" ] isan Nx /N square matrix.

[ 27

N



Computation of DFT

X, X,
X 4
Here, [Xn]: , [Xk]:
| Xy | | AN ]
Wy Wy Wy
wo  w) p (V=)
and [W]\’,/lk = WA? Wz\? W]\%(N—l)
_Wz\? WA([N—I) W]\([N—l)(N—l)_




Computation of DFT

[Xn]: [ngk IXk] ....... (23)
For N = 4, relation (23) becomes

X, %OWAPMOMOXO
X | \wy Wy Wy W]

e
x| wowowe o x

(Frequency) (Time)



Computation of DFT

[Xn]: [ngk IXk] ....... (23)
For N = 4, relation (23) becomes

®] [
X\ \wy e wy ||

e
x| wpowoweowy|lx

(Frequency) (Time)

Hence, computation of X, requires 4 complex multiplications and 4 complex
additions.



Computation of DFT

(X, ]= [Wﬁk IXk ] o (23)

For N = 4, relation (23) becomes

Xo| (w5 Wy wy WX
X, W40 W: W42 W43 X

w, wp W, W;|x
X | \wowyowy W x

(Frequency) (Time)

Hence, computation of X, requires 4 complex multiplications and 4 complex
additions.

In general, execution of relation (23) requires N> complex multiplications
and N? complex additions. Thus computational load increases rapidly
with increasing N. Fast Fourier Transform (FFT) algorithms allow
computation of DFT with reduced computational burden.



Fast Fourier Transform (FFT)
From relation (19),
N-1
X, =2 xW, forn=0,12,.., N-I
k=0

Assuming N to be a power of 2, N-point data sequence x, in relation (19)
may be split into two N/2 point data sequences as follows:

N
Pl k e k
n n
X =>xW"+ x W,
k=0 A
N, N,
, 1 Jn ’ 1 7
e Zxk N + Z.X N ' N
k=0 k=0 k+5
N N
5—1 nN 7—1

)
- ”}”k ”7 2 Ilfnk
o xk N + N Z.X N' TN

k=0 k=0 k+5



Fast Fourier Transform (FFT)

N N

T nN 51
o X, =Sx W+ WiYx W
k=0 k=0 k-
= _Jn(%jg —jnr n
Now, 72 =e =" =(-1)
ﬁ—l_
2
Then, Xn — Z kaNnk + (_ 1)” Xk NWNnk:|
k=0 B +3
N
2 n nk
of anz xk+(_1)x N:|WN
k=0 e




Fast Fourier Transform (FFT)

o
o X = :Z; x, +(=1) Xy wr (24)
- 2

Now, splitting (or decimating) X,, into even and odd harmonics,

for even harmonics, n = 2p, for p = 0,1,2,...,(N/2-1) and

for odd harmonics, n = 2p+1, for p = 0,1,2,...,(N/2-1).

For even harmonics,

N N
A A
2 2
— 2pk pk
X, =>|x+x W= =>|x+x ,|W,;
k=0 k+? k=0 k+— =

as Wsz" =W



This is an N/2 point DFT sequence g,, k = 0,1,2,....(N/2 - 1)



Fast Fourier Transform (FFT)

Now, for odd harmonics [c.f. relation (24)],

Ny
2
_ (2p+)k
X2p+1 — Z|:xk —X N:| WN
k=0 o
N

|l
Mt\)
=
|
R

k 2 pk
Wy

2
_ Wkka 2k k
_Z X, =X NN =k ”Np :”;

| 2 2 2

Let, g;i :(xk _xk+NjVV; for k=0,1,2,...,(N/2-1)



Fast Fourier Transform (FFT)

N
=

2
/ k
Then, X, ., = ;) gw, oenn(26)

2
This is an N/2 point DFT sequence g’,, k=0,1,2,....(N/2 - 1)

Thus an N-point DFT may be split into two N/2-point DFTs.

This process of splitting may be continued up to 2-point transforms as N is
a power of 2.



4-point FFT

Let N = 4. Then from relation (25),

2p N
N, >
2
X, =2gW. forp=012,..,(N2-1)
k=0 B

Where, o =x +Xx , fork=0,1,2,...,(N/2-1)

k+5
or, sz = lengzpk for p=0,1

and, &, =X, +X,,,for k=01 . (27)



4-point FFT
Now, X, = lengzpk for p=0,1

and, &, =X, T X,,,for k=01

Thenfor p =0,

X, =§ng2“ =§gk =g,+g
and for p =1,

X, = ZgW =g W, +gW,

=g, +(-1)g, =g,-¢g



4-point FFT

Now from relation (26), X, =2 gW) -6

N
2

2
X, =28W) forp=012,..(N/2-1)
k=0 Y

2

2

where g;ﬁ — (xk — xk+N jW;, for k=0,1,2,...,(N/2-1)

o, X, = Zglg/Vzpk for p=0,1

2 p+l1
k=0

and, & =(x, —x W/}, tor k=01 .. (30)



k=0

and for p =1,
X =2gW =g +gW,
k=0

— g(/) —gl/ ....... (32)



4-point FFT

Now from relations (27) and (30), for kK = 0,1

gO :xo +x2

g =X TX

I 0o . )
g _(xo _xz)VV:t =X, =X, =X, +x2VV:1

;o 1 I 1 I 3
g, _('x1 —)C3)VV; _x1VV4 —X3VV4 _x1VV4 +X3VV4

Then in matrix form,

Eo
g

/

Eo

/

&

1 0 1 0
0 1 0 1
1 0 W: o0

0o w0 w




4-point FFT

From relations (28), (29), (31) and (32),

X, =g,+8,
X2=g0—g1
X =g +g
X3:g(/)_g1/
Then in matrix form,
_XO_ 1 1
)(2 B I -1
X | [0 o0
X, |0 O

Eo
&
Eo

L8 _




4-point FFT

From relations (33) and (34),

Frequency

Eo
g

/

Eo

/

g

1
0
1

0

4;gop—ao

1

— 1

1
1
0 O
0 O

Bit reversed order

OA§O'_‘

Time
history



since,

.

in terms of binary bits



Signal Flow Graph for N =4

From relations (33) and (34),

¢l 1 0o 1 o0T7x X1t 1 0 07g,
gl 1o 1 0 1|x X,| [1 =10 0]g
gl (1 o w o|x x| 1o o 1 1]|g
g | |0 W, 0 W x| X, [0 0 1 -1]g |

IS&? ;tevc\k; on 2w c\ '.Levgtoh

-+ X
Tiwme
l{.gto"]
o G
N— e Bl'—'fev.e-vs‘m\
4 ~ Po'\kk FET o\:e'mf?\o”‘—

Number of iterations = M, where M = log,N [as N = 2M], here N =4 and M = 2



Signal Flow Graph for N =4

Ik itevc\k;oh 2nd '.Levghon

Time X3 Fre
'{.gtb“’f XQ_ 1
%y
> WA AR % T X3 4 i
. + g S sz o 52 BIC —vevers i\

4= peink Pt

o kemt ‘o

Each iteration involves N/2 number of butterfly computations.
Computation of g, and g,/ may be represented as:

computation
w,! I . butterfly g/
X3 > g/ — 1




Signal Flow Graph for N =4

ISE itevc\hoh 2w c‘, "Lev;‘t,h

Time X s
"\.l $t°ﬂ'7 x 9 (1
%y
AL g A '3
o + 4 | B0 e = e Bk TR g
4 ~ "’u'\kt‘ FET oke-mt’io"‘—

Each iteration involves N/2 number of butterfly computations.
Computation of g, and g,/ may be represented as:

X1 > 81 X1 > — 8| J
w,?
" —> y
¢ 1
/ w .
X > 4 / |
3 81 X3 > > 81 !

W43 — -W41 _'1
This involves two complex additions and one complex multiplication.
This is true for all butterflies.




Signal Flow Graph for N =4

ISE itevc\k;m\ th‘. ""e“‘t,h

xo > —® XO
J/ x.‘L X.‘L L
Tiwme s
k‘st'ﬂ? '!(1 92 C‘v
s NEEaRY, N 2 X
\ 3 S l /J mm\
4~ "’u'\kt‘ FET oke--ro-&'io"‘—

The procedure can be summarized as,

No. of iterations = M =log, N

M
Total no. of butterflies = N2 = N10g2 N

2
No. of complex multiplications per butterfly = 1

No. of complex additions per butterfly = 2

M
N :%logzN
Total no. of complex additions = NM = N log, N

Total no. of complex multiplications =




Signal Flow Graph for N =4

Ik itevc\k;oh 2nd '.Levc‘hon

Time X A
"\.l $t°"7 XL 1
Xy
> NS*—/\JL 3/ -4 x:;, = X?’
& + 4 | e s el BC —vevers o)
4 — T’u‘\b\t_ FET oke-mf‘o"\-

Computation of each butterfly may be carried out in-place to reduce memory
requirement as follows:

! I'=A-B

Butterfly ‘ A=A+B

Here T is a scratch-pad variable and W is the twiddle factor.



Signal Flow Graph for N =4

Ik ikevc\k;oh 2nd 'sLch‘te\\

X —> - > . > * X
? jo 4 [+ -

Jf xi. e > X.‘L l
Tiwme X Eve
"\‘l&tnvr 'I(,_ xz_ 1

%y
b A T - Y TR R i
TR g |1 S L e
4 — Pn'\k\? FET oke-vﬁ.‘k.\o"‘

The above algorithm for the computation of FFT of sequence x,, k =0,1,2,
may be called radix-2 decimation-in-frequency in-place FFT algorithm.

Here, N should be a power of 2.

o oy(N-1)

Similarly, radix-2 decimation-in-time in-place FFT algorithm may be derived

with same computation load.



Comparison of computational loads of DFT and FFT

DFT FFT
N complex complex complex complex
additions multiplications additions multiplications
4 16 16 8 4
8 64 64 24 12
16 256 256 64 32
32 1024 1024 160 80
if\}\; ;%\u \ \b\ic;_}t oNS







8-point FFT

Relations (25) and (26) may be split further (i.e. decimated) into N/2-point

DFTs as follows:

In relation (25), splitting N/2-point sequence

g, into two N/4-point sequences,

N N_
4 2
— pk pk
sz_zngN —I_ngWN
= Bl k= Bl
4
7_1 E_ N
4 4 p(k-k)

k=0 ol k=0 TR

= 2 = 4 2

o pN
—_ pk pk 4
_ngWN +Zg NWN WN

= R

N
2

— 14
Zg My
k=0 2



8-point FFT

Al Al e
Now, sz = ngWJ\Z;k + Zg NW]\]/)kWN4
o jan A
k=0 2 k=0 4 2 2
Al
Here, W,* =(-1)
2
LA
— R p pk
Therefore, X, => | g, + (—1) g W,
k=0 s 5

Now splitting X, into even and odd harmonics,

for even harmonics, p = 27, forr=0,1,2,...,(N/4-1)

and for odd harmonics, p:(2r+1) ,forr=0,1,2,...,(N/4-1)



8-point FFT

Now, for even harmonics,

Nor =

3 21k
X4r — Z gk + N WN

k=0 A P

N

- rk

=28 +t8g W,
k=0 o e

Let /i, =8, +8 ,  fork=0,12,..,(N/4-1)
4

N
— 1

4
rk
Then, X, = ;)thN forr=01,2,... (N/4-1)
- 4

This is an N/4-point DFT of sequence /4, k=0,1,2,...,(N/4-1)



8-point FFT

Now, for odd harmonics,

b
Il
(=)

=
4
— (2r+1)k
X,.=28 8 N}WN

k+
4 2

|=
|

Il
MA

k+—
4 4

bR
Il
S

g, — 8 N:|WNZkW]\:k

Let héztgk—g NJW]\?k’ fork=0,1,2,...,(N/4-1)

k+—
4
v
4
/ rk
Then, X, =2 AW, forr=012..(Na-1) o

4

This is an N/4-point DFT of sequence h}i , k=0,1,2,...,(N/4-1)

Thus the N/2-point DFT as represented in relation (25), may be split
into two N/4-point DFTs, as represented in relations (36) and (37).



8-point FFT

Similarly, the N/2-point DFT in relation (26) may N

be split into two even and odd harmonic N/4- & ok

point DFTs as follows: X2p+l = ngWN ------- (26)
k=0 )

For even harmonics,

N
~
4
X, =AW’ forr=01.2,..(N41) . (38)
k=0 —

4

This is an N/4-point DFT where [, =g +& . fork=0,12,...,(N/4-1)
k+—



[ = (gk ~-g NjW;k for k=0,1,2,...,(N/4-1)



g, =X, tx,

gl :x1+x5

g, =X, T Xg

g, =X, +x7)



Now in relation (26),

;o k _
g —(xk —xk{jVVN ,fork=0,1,2,...,(N/2-1)

Possible values of k are k=0,1,2,3.

8-point FFT

Ny
<
_ p
X2p+l = ngWN :
k=0 2



8-point FFT

A /
g, = Xx, + x, g0=(xo—x4)W8
/ 1
g, = X, + X, glz(xl_xS)WS
P e (40) / I S (41)
g, = X, +t X, gz:(xz_xs)Wg
N _ 3
g,=x,+ x, g3—(x3 x7)W8

From relations (40) and (41), signal flow graph for computations of

/
&,; and &, ; may be represented as:

X0 > r—>—

R®, 5'

X, 32
X 3 33
e 3
25- 3’1
Xy



















8-point FFT

Now, from relation (36), vy

possible values of rare r=0,1. X =2 thffk 0= 02 () (560
Then,

X =hW'+hW'=h +h »
X, =hW'+hW, =h —h

And, from relation (37), N

] / rk _
X, , = kz:othN,forr-o,1,2,...,(N/4-1) ....... (37)

4

possible values of rare r = 0,1.

Then,
X, =hW'+hW'=h'+h
X =hW' +h'W' =h —h



8-point FFT

From relation (38),
possible values of rare r=0,1.

Then,
X1 :loszo +11VV20 :Io +I1
Xs :loszo +11VV21 :lo _ll

And, from relation (39),
possible values of rare r = 0,1.

Then,
XS :léVV;O +ZI/W;O :l(; +ll/
X, =LW, + LW, =1, -1,

X =

| =

-1

[\ljb

4r+1

bl
Il

0

L

X4r+3 — 421

/
k

l pif}k

k N

4

,forr=0,1,2,...,(N/4-1) ...

Wk forr=0,12,.. (N/4-1) ...
N

4

(38)

(39)



Xo :hoszo +h1VV20 :ho +h1
X4 :hoszo _|_h1VV21 :ho _hl

X =IW' +IW' =1 +1
X, =IW'+Iw' =1 -1

8-point FFT

} X, =hW'+hW'=h +h
(46)

X, =Iw' +1w) =1 +1)

e
X6 = hél/Vzo +h1/VV21 = h(i _hl/,

>
} ....... (48) X7 _ léWzo " ll/Wzl _ lé _ll/,

From relations (46), (47), (48) and (49), signal flow graph for computation of

X, , may be represented as:
X
L. - EP—— o
% e 5 ~
X = !

>—a X >
e, % = natural order
0 ——— e O

not in natural order, hence bit-reversal
should be carried out to bring it in



ik vevevsal
Xooo WY, xo

xoo\ —_— Xﬂ.

ik veverse L evder



Frequency




FORTRAN subroutine to compute radix-2 FFT

C ***Subroutine to compute radix-2 FFT***
C Decimation-in-frequency in-place algorithm
SUBROUTINE FFT(A,N,INV)
C N: Dimension of Array (must be a power of 2)
C A: Complex array containing data sequence
C DFT coefficients are returned in the array
C INV = 0 for forward FFT
C INV =1 for inverse FFT
DIMENSION A(N)
COMPLEX T,W,A
IF (INV.EQ.0) GO TO 8
C Divide sequence by N for inverse FFT

DO 7 I=1,N
7 A()=A(1)/CMPLX(FLOAT(N),0.0)
8 S=-1.0

IF (INV.EQ.1) S=1.0



FORTRAN subroutine to compute radix-2 FFT

C Calculate number of iterations
C M: Number of iterations (log(N) to the base 2)
M=1
K=N
2 K=K/2
IF (K.EQ.1) GO TO 1
M=M+1
GO TO 2
C Compute for each iteration
C NP: Number of points in each partition
1 NB=N
DO 3 1=1,M
NP=NB
NB=NP/2
PHI=3.14159265/FLOAT(NB)



FORTRAN subroutine to compute radix-2 FFT

C Compute for each iteration
C NP: Number of points in each partition
1 NB=N
m=) DO 3I=1,M
NP=NB
NB=NP/2
PHI=3.14159265/FLOAT(NB)
C Calculate the twiddle factor W for each butterfly
C NB: Number of butterflies for each partition
m=) DO 3 J=1,NB
ARG=FLOAT(J-1)*PHI

W=CMPLX(COS(ARG),S*SIN(ARG)) Nested DO loop
C Compute butterfly for each partition T =1, M
==) DO 3 K=NP,N,NP L
J1=K-NP+J .
J2=J1+NB

T=A(J1)-A(J2)
A(J1)=AJ1)+AJ2)
A(J2)=T*W

3 CONTINUE



FORTRAN subroutine to compute radix-2 FFT

C Bit reversal operation
N2=N/2
N1=N-1
J=1
DO 4 [=1,N1
IF (.GE.J) GO TO 5
T=A(J)
A(J)=A(l)
A(D=T
K=N2
IF (K.GE.J) GO TO 4
J=J-K
K=K/2
GO TO®G6
4 J=J+K
RETURN
END

o O

During the bit-reversal operation, N/2 DFT coefficients remain unchanged and
the remaining N/2 coefficients are exchanged in place as required.



Applications of FFT

Computation of amplitude spectrum of a finite real data sequence

Real N-point Form
data complex Compute

sequence x,, array of amplitudes

k=0,1, ..., length N C,n=0,1,
(N-1) from x,, k=0, vy (N/2)-1)
1, ..., (N-1)
(N must be a
power of 2)
C, Z—‘XO , the average value

,forn=1,2,...,(N/2-1), the nth harmonic amplitude.

and :E‘X
N



Applications of FFT

Computation of amplitude spectrum of a finite real data sequence

A\m\f\'\#k‘{c
A\»—k\;kwie_ A

N - so\\»-%\es SO [ PR

(O\\no\\7 s\s
wih&ow

The range of frequency may be expressed as /2 where f is the sampling
frequency (: Lj.

T
The frequency resolution may be estimated as f, where f, is the fundamental

frequency (=1/T,), where T,is the time period of fundamental frequency and also
the width of the analysis window.



Applications of FFT

FORTRAN program for computation of amplitude spectrum

C ***Amplitude spectrum analysis program using FFT***

10

20

100

200

DIMENSION A(1024),B(1024),C(512),PHASE(512)
COMPLEX A

CHARACTER*64 FNAME
WRITE(*,10)

FORMAT(1X,'Enter file name - \)
READ(*,20)FNAME

FORMAT(A)
OPEN(2,FILE=FNAME)
READ(2,*,END=100)(B(l),1I=1,1024)
N=I-1

CLOSE(2)

WRITE(*,200)N

FORMAT(1X,'Data points =',14)



Applications of FFT

FORTRAN program for computation of amplitude spectrum

15
24

25
30

300

DO 151=1,10

IF(N-2**1)24,25,15

CONTINUE

WRITE(*,5)

FORMAT(1X,'Incorrect size - it must be a power of 2')
STOP

DO 30 I=1,N
A(l)=CMPLX(B(I),0.0)/CMPLX(FLOAT(N),0.0)
WRITE(*,300)

FORMAT(1X,'FFT analysis in progress')
CALL FFT(A,N,0)



Applications of FFT

FORTRAN program for computation of amplitude spectrum

NA=N/2
C(1)=CABS(A(1))
DO 40 1=2,NA
40 C()=CABS(A(1))*2.0
D=180.0/3.141592654
DO 80 1=2,NA
R=REAL(A(1))
X=AIMAG(A(I))
ALPHA=ATAN2(X,R)
80 PHASE()=D*ALPHA



Applications of FFT

FORTRAN program for computation of amplitude spectrum

WRITE(*,60)

60 FORMAT('0','Harmonic no.',7X,'Amplitude’',12X,'Phase (deg)’)
WRITE(*,70)

70 FORMAT(1X,'------------ B ' 12X, - 'I1)
NB=0
WRITE(*,75)NB,C(1)

75 FORMAT(5X,13,9X,1P,E13.6)
DO 85 [=2,NA
NB=I-1

85 WRITE(*,90)NB,C(l),PHASE(I)

90 FORMAT(5X,13,9X,1P,E13.6,9X,E13.6)

END



Applications of FFT

FFT-based digital filtering of a finite real data sequence

convolution
X Digital Yi
S
input . output
sequence Filter sequence

v, = h,.* x,, h, is the impulse sequence of the digital filter



Applications of FFT

FFT-based digital filtering of a finite real data sequence

convolution
X, Digital Vi
input Filter output Yk = hk . X
sequence sequence
multiplication
FFT IFFT
xk—>Xn—> Hn > Yn » Vi

Y,=H_,.X, H_ is the complex gain of the digital filter



Applications of FFT

FFT-based digital filtering of a finite real data sequence

m ultiplication

FFT

N-point Real Form N-point Compute
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X k=0, 1, ..., complex N- point
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i | output
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k=0, 1,...,
IFFT ~N-1)
((N/2)+1)-point Form complex
) array (H,) of
gain and phase E—»| length N using
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conjugates
Filter specification Frequency

(upto folding frequency)

response
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FFT-based digital filtering of a finite real data sequence
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Applications of FFT

FORTRAN program for FFT-based digital filtering

C ***FFT based digital filter program™**
DIMENSION X(1024),A(513),PH(513)
COMPLEX H(1024),CX(1024)
CHARACTER*64 FNAME1,FNAME2

WRITE(*,20)

20 FORMAT(1X,'Enter input file name - '\)
READ(*,30)FNAME1

30 FORMAT(A)
WRITE(*,40)

40 FORMAT(1X,'Enter output file name - ")

READ(*,30)FNAME2



50
60

70

375

380
400

Applications of FFT

FORTRAN program for FFT-based digital filtering

OPEN(1,FILE=FNAME1)
READ(1,*,END=50)(X(l),1I=1,1024)
GOTO 60

|=1-1

N=I

WRITE(*,70)N

FORMAT(1X,'Data points =',14)
DO 375 1=1,10
IF(N-2**1)380,390,375
CONTINUE

WRITE(*,400)
FORMAT(1X,'Incorrect size of data')
STOP



Applications of FFT

FORTRAN program for FFT-based digital filtering

390 WRITE(*,100)N/2+1

100 FORMAT(1X,'Enter filter gain (',13," points)")
READ(*,*)(A(),1=1,N/2+1)
PH(1)=0.0
WRITE(*,110)N/2

110 FORMAT(1X,'Enter filter phase (',13,' points)')
READ(*,*)(PH(I),1=2,N/2+1)

C Form complex filter gain array
H(1)=CMPLX(A(1)*N,0.0)
DO 200 1=2,N/2+1

200 H(1)=CMPLX(A(I)*N*COS(PH(I))/2.0,A(1)*N*SIN(PH(1))/2.0)

H ,
'

[,

N /2

>



Applications of FFT

FORTRAN program for FFT-based digital filtering

390 WRITE(*,100)N/2+1

100 FORMAT(1X,'Enter filter gain (',13," points)")
READ(*,*)(A(l),1I=1,N/2+1)
PH(1)=0.0
WRITE(*,110)N/2

110 FORMAT(1X,'Enter filter phase (',13,' points)')
READ(*,*)(PH(I),1I=2,N/2+1)

C Form complex filter gain array
H(1)=CMPLX(A(1)*N,0.0)
DO 200 1=2,N/2+1

200 H(1)=CMPLX(A(I)*N*COS(PH(I))/2.0,A(1)*N*SIN(PH(1))/2.0)

C Form rest of the gain array by complex conjugate
DO 340 1=2,N/2
J=N+2-I

340 H(J)=CONJG(H(I))

H

|"\"\m|'\'\"l”‘l‘"r--E.;;.f.-»~]-'~"|""\"'\"\'|'H |




Applications of FFT

FORTRAN program for FFT-based digital filtering

C Form complex input data array
DO 350 I=1,N
350 CX(1)=CMPLX(X(1),0.0)
C Compute FFT
CALL FFT(CX,N,0)
C Perform filtering in frequency domain
DO 360 I=1,N
360 CX(H=CX()*H(I)
C Back to time
CALL FFT(CX,N,1)
DO 370 I=1,N
370 X(1)=REAL(CX(I))

Multiplication
IFFT ‘

FFT

xk Xn Hn :Yn :yk




Applications of FFT

FORTRAN program for FFT-based digital filtering

C Save output
IF(FNAME1.EQ.FNAME2)CLOSE(1)

OPEN(2,FILE=FNAME2,STATUS='NEW")
WRITE(2,*)(X(1),I=1,N)
END






