Capacitive Transducers

Capacitive Transducers

 Capacitive transducers operate on the principle of variation of capacitance with the variation of the physical variable under measurement.

Parallel Plate Capacitors

- ✓ For parallel plate capacitors, employing rectangular plates, capacitance is given by $C = \frac{\epsilon A}{d}$. Here, change in capacitance is caused by:
 - change in overlapping area A,
 - change in the distance between the plates *d*,
 - change in dielectric constant.

Amitava Chatterjee

2

Transducers using Change in Overlapping Area Measurement of Linear Displacement

Capacitors employing rectangular plates

Department of Electrical Engg., Jadavpur University, Kolkata, India

3

Transducers using Change in Overlapping Area (contd... **Capacitors employing rectangular plates** $C = \frac{\varepsilon A}{d} = \frac{\varepsilon l w}{d}$ w = width of the overlapping part of the plates, l = length of the overlapping part of the plates. Sensitivity of the transducer, $S = \frac{\Delta C}{\Delta C} = \frac{\mathcal{E}W}{\mathcal{E}W}$. 11 **Amitava Chatterjee** 4 **Department of Electrical Engg.**, Jadavpur University, Kolkata, India

Transducers using Change in Overlapping Area (contd...)

Capacitors employing cylindrical electrodes

Transducers using Change in Overlapping Area (contd...) **Capacitors employing cylindrical electrodes** $= \frac{2\pi\varepsilon l}{\log_e \left(\frac{D_2}{D_1}\right)} l = \text{length of the overlapping part of the cylinders,}$ $\frac{1}{\log_e \left(\frac{D_2}{D_1}\right)} D_2 = \text{inner diameter of the outer cylindrical electrode,}$ Sensitivity of the transducer, $S = \frac{\partial C}{\partial l} = \frac{2\pi\varepsilon}{\log_e \left(\frac{D_2}{D}\right)}$. **Amitava Chatterjee** 6 Department of Electrical Engg., Jadavpur University, Kolkata, India

Transducers using Change in Overlapping Area (contd...) Measurement of Angular Displacement θ = angular displacement of the movable plate $C=\frac{\varepsilon r^2}{2d}\theta$ (in radian), r = radius of the smaller plate, d = distance between the plates. Sensitivity of the transducer, Λ 2d**Amitava Chatterjee Department of Electrical Engg.**, Jadavpur University, Kolkata, India

8

Transducers using Change in Distance between the Plates

Measurement by moving one of the parallel plates

Transducers using Change in Distance between the Plates (contd...) Measurement by differential arrangement

✓ Works on the principle of variation of capacitance with the variation of dielectric constant, caused by a corresponding change in liquid level.

The capacitance can be measured by a suitable capacitive Wheatstone bridge.
Amitava Chatterjee 12

Capacitive Level Gauge (contd...)

Features

- ✓ For non-conducting liquids, a bare probe arrangement may be satisfactory.
- ✓ For conducting liquids, probe plates are insulated.
- ✓ Capacitive level gauges are popular because they are relatively inexpensive, versatile, reliable, and require minimum maintenance.
- ✓ Can be used for measuring levels from a few cm. to more than 100 m.

Amitava Chatterjee 13 Department of Electrical Engg., Jadavpur University, Kolkata, India

Capacitive Transducer with Solid Dielectric and Variable Air Gap between Parallel Plates (contd...)

Capacitor Microphones:

an application of a displacement transducer using change in distance between the plates

Basic Theory

Department of Electrical Engg., Jadavpur University, Kolkata, India

24

Bridge Circuits employed in connection with Capacitive Transducers

Null Method

C₁ t balance, $\boldsymbol{C}_{1} = \boldsymbol{C}_{2} \frac{\boldsymbol{K}_{4}}{\boldsymbol{R}_{4}}$ D R, The balance can be achieved by varying either R_4 or R_3 . **Amitava Chatterjee** 26

Bridge Circuits employed in connection with Capacitive Transducers (contd...)

Direct Readout Method

Measurement of Capacitance by Transformer Ratio Bridges

Why Transformer Ratio Bridge?

✓ It is a popular alternative to conventional a.c. bridges, because of the versatility and accuracy that the *ratio transformers* can offer.

Measurement of Capacitance by Transformer Ratio Bridges (contd...)

✓ Ratio transformers, when employed in ratio bridges, are very similar in operation to conventional a.c. bridges.

Transformer Double Ratio Bridges (contd...)

