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 In conventional filtering technique, a signal can be separated 

from unwanted noise when the signal and the noise spectra do not 

overlap (shown in Fig.1). 
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Fig. 1. Conventional filtering. 
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But when the signal and the noise spectra overlap, 

conventional filtering technique fails to separate the signal and the 

additive noise (shown in Fig.2). 
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Fig. 2. Signal and noise having overlapping amplitude spectra. 

 

 When both the signal s(t) and the additive noise n(t) are 

stochastic and stationary processes, the signal s(t) can be estimated 

optimally with WWWiiieeennneeerrr   fffiiilllttteeerrriiinnnggg   ttteeeccchhhnnniiiqqquuueee, so that the noise part is 

reduced as much as possible when the spectral densities of the 

signal and the noise are known quantities. Filtering is possible with 

overlapping or non-overlapping signal and noise spectra. 

 Fig. 3 illustrates the principle of operation of WWWiiieeennneeerrr   fffiiilllttteeerrr. 

An optimal filter estimates the signal  tŝ  so that the mean square 

error   2teE  is a minimum. 
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Fig. 3.  Wiener filter model  

s(t): Signal d(t): Desired output 

n(t): Noise e(t): Error 

x(t): Filter input      tstdte ˆ

 tŝ : Filter output x(t) = s(t) + n(t) 

 

 If a filter can be designed that has minimum mean square 

error, the filter is then called the OOOppptttiiimmmaaalll   fffiiilllttteeerrr in the mean 

square error sense. It is also known as the WWWiiieeennneeerrr   fffiiilllttteeerrr. 

 When the filter is causal with a finite duration impulse 

response it is called a constrained Wiener FIR filter. 

 Let a Wiener FIR filter H(z) contain N number of taps, i.e. 

(N-1) number of delay stages. Then, at the nth instant, the input-

output relation can be expressed as, 
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where hm,  m = 0, 1, …… N – 1, is the finite impulse response of 

the causal FIR filter. In matrix form, relation (1) can be rewritten 

as 

 n
T

n XHS ˆ        (2) 

where  

  11 ......,..........,  No
T hhhH  

 

and    
11

...,.........., 
Nnnn

T

n
xxxX  

 

The problem is, for a given sn and xn, design hm, m=0, 1, …… N-1, 

such that the mean square error     22 ˆnnn sdEeE   is a 

minimum. 

Fig. 4 shows the DDDiiissscccrrreeettteee   WWWiiieeennneeerrr   FFFiiilllttteeerrr in its schematic form. 
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Fig.4: Discrete Wiener Filter

 

The mean square error can be expressed as 
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  Note:   
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 kR
xx

: Auto-correlation of the input sequence xn 

 

 kRxd : Cross-correlation between the input sequence xn and 

the desired output sequence dn 
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Now, for a minimum mean square error, 
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   j = 0, 1, ………………, N – 1  

    Note: 

Let us consider the quantity, 
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Now for each j, say j = 2, there is one term of m = 2 in the first 

summation, and one term of k = 2 in the second summation. Thus, 

the above quantity becomes, 
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   ,     as lkRklR xxxx    an even function. 

 

When xn is stationary, Rxx(n) = Rxx(–n),  and  relation  (4) can be 

expressed in matrix form as 
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or,     R H = P       (6) 

where, 
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 , the data correlation 

matrix, 

     
11 

No

T hhhH        

and          10  NRRP
xdxd

T         

These relations (4), (5) or (6) are the finite causal form of DDDiiissscccrrreeettteee   

WWWiiieeennneeerrr–––HHHooopppfff   EEEqqquuuaaatttiiiooonnn. This set of linear equations specifies the 

optimal filter. 
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From relations (4), (5) or (6), the optimal impulse response hm, 

m=0, 1,…, N – 1 of the filter H(z) can be obtained when 

correlation functions Rxx (m-j) and Rxd (j) are known quantities 

{c.f. relation (4)}. 

 The mean square error with optimal hm can be obtained as 

(from relation (3)), 
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When sn and nn are statistically independent and nn has a zero 

mean, then 
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as     0  knnknn snEnsE      

Now, relation (4) can be expressed in terms of ccoonnvvoolluuttiioonn  

ooppeerraattiioonn as  

 hj* Rxx(j) = Rxd(j)        (10) 

      j = 0, 1, …., N – 1  

The uuunnncccooonnnssstttrrraaaiiinnneeeddd   WWWiiieeennneeerrr   fffiiilllttteeerrriiinnnggg   ooopppeeerrraaatttiiiooonnn can be expressed as 

 hj * Rxx(j) = Rxd(j)      (11) 

      j = – ….. to + 

where * represents convolution operation. 

Taking z-transform of relation (11) and by WWWiiieeennneeerrr   –––   KKKhhhiiinnntttccchhhiiinnneee   

ttthhheeeooorrreeemmm, 

 H(z) Sxx(z) = Sxd(z)      (12) 

 

where H(z) is the optimal system function of the unconstrained 

Wiener filter, Sxx(z) is the discrete power spectral density of the 

filter input, and Sxd(z) is the discrete cross spectral density between 

the filter input and the desired output. 

Thus the optimal system function of the filter is (from relation 

(12)), 

    
 zS

zS
zH

xx

xd        (13) 

Now,  
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 Sxx(z) = Sss(z) + Snn(z)      (14) 

 

when sn and nn are statistically independent. 

 

Normally, for filtering problems, the desired output is the signal 

itself, dn = sn. Furthermore sn and nn are uncorrelated random 

sequences as is usually the case in practice. 

  From relation (8), 

 

 Rxd(k) = Rss(k) + Rns(k) = Rss(k)      (15) 

        

Now, taking z-transform,  

 

 Sxd(z) =Sss(z)       (16) 

 

Therefore the optimal system function becomes (when dn = sn), 
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      (17) 

 

To obtain the frequency response of the filter, in the frequency 

domain, we substitute 
 fjj eez 2 , where  is the sampling 

interval. Then the oooppptttiiimmmaaalll   fffiiilllttteeerrr   gggaaaiiinnn is 
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      (18) 

 

It can be seen from relation (18), that H() is a frequency 

dependent scalar quantity. Therefore the oooppptttiiimmmaaalll   eeessstttiiimmmaaattteee   ooofff   sssiiigggnnnaaalll   

ooouuutttpppuuuttt is  

 

        HXFts 1ˆ        (19) 

 

where F-1[] represents the inverse Fourier transform operation and 

X() is the Fourier transform of the filter input x(t). Therefore, 

 

     txFX         (20) 

 

where F[] is the Fourier transform operation. 

 

 The Wiener filter weights the spectral components in X(f) in 

accordance with the relation (18), as shown in Fig. 5. In region 

where there is no signal power, the spectral components are 

entirely suppressed, and if there is no noise power, the components 

are entirely passed. In the overlapping region, the filter not only 

affects the noise components, but the signal components as well.  
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Therefore, the smaller the spectral overlap between the signal and 

the noise, the more effective the Wiener filter is. 
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Fig.5:  Relation between optimal filter gain and
power spectral densities  
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