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What is Variable Structure Control? 

 Variable Structure Control (VSC) is a viable high-speed switching 

feedback control where the gains in each feedback path switch 

between two values according to some rule. 

 This variable structure control law provides an effective and robust 

means of controlling nonlinear plants. 

 VSC utilizes a high-speed switching control law to drive the 

nonlinear plant’s state trajectory onto a specified and user-chosen 

surface in the state space (called the sliding or switching surface), 

and to maintain the plant’s state trajectory on this surface for all 
subsequent time. 



What is Variable Structure Control? 
(contd…)  

 This surface is called the switching surface because if the state 

trajectory of the plant is “above” the surface a control path has one 
gain and a different gain if the trajectory drops ”below” the surface. 

 The plant dynamics restricted to this surface represent the controlled 

system’s behavior. 

 VSC has a great ability to result in very robust control systems, 

which means it can provide such a control system which is insensitive 

to parametric uncertainty and external disturbances. 



VSC – Example 1  

A plant with two accessible states and one control input, 

controlled by a relay: 
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VSC – Example 1  

A plant with two accessible states and one control input, 

controlled by a relay: 
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VSC – Example 1 (contd…)  
A plant with two accessible states and one control input, 

controlled by a relay: 
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VSC – Example 1 (contd…)  
A plant with two accessible states and one control input, 

controlled by a relay: 
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VSC – Example 2  
A plant with two accessible states and one control input, 

controlled by a partial state feedback controller: 
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VSC – Example 2 (contd…)  
A plant with two accessible states and one control input, 

controlled by a partial state feedback controller: 

When switch is in upper position 
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VSC – Example 2 (contd…)  
A plant with two accessible states and one control input, 

controlled by a partial state feedback controller: 
When switch is in lower position 
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VSC – Example 2 (contd…)  
A plant with two accessible states and one control input, 

controlled by a partial state feedback controller: 
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not a random phenomenon. It occurs 
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VSC – Example 2 (contd…)  
A plant with two accessible states and one control input, 

controlled by a partial state feedback controller: 
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VSC – Example 2 (contd…)  
A plant with two accessible states and one control 

input, controlled by a partial state feedback controller: 
Case I: Switching Surface with s1 > 1 

State trajectory of the controlled system when perturbed slightly below the asymptote 



VSC – Example 2 (contd…)  
A plant with two accessible states and one control input, 

controlled by a partial state feedback controller: 
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Case II: Switching Surface with s1 < 1 
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a sliding mode exists on the switching surface 



VSC – Example 2 (contd…)  
A plant with two accessible states and one control input, 

controlled by a partial state feedback controller: 
Case II: Switching Surface with s1 < 1 

Phase plane plot of the controlled system when a sliding mode 
exists on the switching surface 



Variable Structure Control  

Conclusions from Example 1 and Example 2 

 Different choices of switching surface produce radically different 

system responses. 

 Case II of Example 2 illustrates an important notion that once a state 

trajectory intercepts the switching surface, it remains on the surface 

for all subsequent time. 

 This property of remaining on the switching surface once intercepted 

is called a sliding mode.  



Variable Structure Control  

When will a sliding mode exist? 

 A sliding mode will exist for a system, if, in the vicinity of the 

switching surface, the state velocity vector is directed towards the 

surface. 

 This is because the system utilized a partial state feedback control law. 

 Use a full-state feedback control law.  

Why was there lack of a sliding mode in case I of example 2? 

Any Solution ??? 
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 With appropriate choice of gains, the original system can always be 

forced to have a sliding mode on an arbitrary surface  = s1x1 + x2 = 0.  



Key Aspects of VSC Design  

Phase 1 … 

 The construction of a suitable switching surface,  so that the original 

plant restricted to the surface responds in a desired manner.   

 The development of a suitable switching control law that satisfies a set 

of sufficient conditions for the existence and reachability of a sliding 

mode. 

Phase 2 … 



The System Model  

where … 

 For subsequent discussions, we consider a class of systems where the 

state model is nonlinear in the state vector x(·) and linear in the 

control vector u(·).  
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        



 



0   with   

0   with   

xxtu

xxtu
xtu

i

i

i

i

i

,

,
, mi ,,1

 i(x) = 0 is the ith switching surface associated with the switching 

surface:        0
1

 T

m
xxx ,,

… (1) 



Design of Sliding Surface  
The Method of Equivalent Control 

 Let us assume that at t0, the state trajectory of the plant intercepts the 

switching surface and a sliding mode exists for t   t0.   

 Substitution of this ueq into eq. (1) describes the behavior of the system 

restricted to the switching surface (provided the initial condition x(t0) 

satisfies (x(t0)) = 0).  

Chain Rule … 

Initial Assumption 

The Implication 

 The existence of a sliding mode implies i)                  and ii)                 , 

for all t   t0.   
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Design of Sliding Surface (contd…)  
The Method of Equivalent Control (contd…) 

How to compute ueq?? 

The Implication 
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 Note: Eq. (2) in conjunction with the constraint (x) = 0 determines 

the system motion on the switching surface. 



The Method of Equivalent Control (contd…) 
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The method of equivalent control produces the following equivalent  system: 

provided (x(t0)) = 0 for some t0  



The Method of Equivalent Control (contd…) 
Example contd… 
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The Method of Equivalent Control (contd…) 
Example contd… 

Hence, 
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The Method of Equivalent Control (contd…) 
Example contd… 

The reduced order 

equivalent LTI system 
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How to Accomplish the Control Design ?? 

Let us assume that a design constraint requires the 

spectrum of the equivalent system be {1, 2, 3}. 
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The Method of Equivalent Control (contd…) 
Example contd… 

Equating co-efficients 
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Design of the Controller  

What is our Goal ?? 

Any Presumption ?? 

 To determine switched feedback gains which will drive the plant state 

trajectory to the switching surface and maintain a sliding mode 

condition.   

 Yes, the presumption is that the sliding surface has already been 

designed. 

What will be the control structure ?? 

The control is an m-vector u(t): 
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Design of the Controller (contd…)  

The first Step … 

 We construct a new control vector u*, from the original control u, 

employing a nonsingular transformation:   

Q(t, x) is an arbitrary m  m diagonal matrix with elements qi(t, x) 

(i = 1, …, m) such that  infqi(t, x)> 0 for all t  0 and all x. 
where 

Diagonalization Method 

   xtB
x

xtQ ,, 




1

result of the 

transformation 

       tuxtBx
x

xtQtu ,,)( 




  1

What is the practical implication of this transformation ?? 

 The diagonal entries of Q-1(t, x) allow flexibility in the design. This 

makes it possible to weight various channels of u*.   



Design of the Controller (contd…)  

The New State Dynamics in terms of u* … 

Diagonalization Method (contd…) 

           tuxtQxtBx
x

xtBxtftx









 ,,,,)(

1

The New Control Structure looks more complicated … 

 Agreed, but the structure of               permits us to independently 

choose the m-entries of u* to satisfy the sufficient conditions for the 

existence and the reachability of a sliding mode.  

  0 x

 Note: Once u* is known, we can obtain the desired u by inverting the 

transformation. 



Design of the Controller (contd…)  

What is the Condition to be Satisfied for Existence and 

Reachability of a Sliding Mode ??  

Diagonalization Method (contd…) 

    0 xx
T

How will this Relation Translate in terms of u* ??  

         tuxtQxtfx
x

x


 ,,



Design of the Controller (contd…)  

How can the Sufficient Conditions for Existence and 

Reachability be Satisfied ??  

Diagonalization Method (contd…) 

     
    0en           wh                  

1







xxtfs

xtfxuxtq

i

n

j
jij

iii

,

,,

 By suitable choices of the entries ui*
+ and ui*

- satisfying the relations: 

     
    0en           wh                  

1







xxtfs

xtfxuxtq

i

n

j
jij

iii

,

,,

sij: the jth entry of i(x) i.e. the jth row of (/x) where 

 Note: The above conditions force each term in the summation of           

to be negative definite.  

T

… (4) 



Design of the Controller (contd…)  

What Next ??  

Diagonalization Method (contd…) 

 The last step will be to calculate the actual control signal u. 

    )(,,)( tuxtQxtB
x

tu











1



Diagonalization Method (contd…) 
An Example…        tButxxtAtx  ,

Let us consider the system, utilized in 

the previous example: 

           
         
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The switching surface (x) = Sx = 0 was previously designed as: 



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Diagonalization Method (contd…) 
Example contd… 

What is the Objective ??  

 To demonstrate Phase 2 of the VSC controller design utilizing 

Diagonalization Method.  

How to Proceed ??  

 The control u is transformed according to the relation:  

       tuxtBx
x

xtQtu ,,)( 




  1

Q(t, x) is a nonsingular 

diagonal matrix such that  

infqi(t, x)> 0. 

where 





20

01
QLet us choose: 

How to Simplify the Design ?? 





500

01
1

.
Q



Diagonalization Method (contd…) 
Example contd… 

The State Dynamics driven by u* … 

Next, Compute the Feedback Gains, meeting the existence 

conditions … 

         tuxtQtxxtSAtxSt
 ,,)(

Since Q(t,x) is 

diagonal, from Eq. (4), 

sufficient conditions 

for sliding mode are: 

            tuxtQxtSBxtBtxxtAtx
 ,,,,)(

1

         21  0   if                             

51

,,

,,,,




ix

txxtAssuxtq

i

iiii

         21  0   if                             

51

,,

,,,,




ix

txxtAssuxtq

i

iiii

… (5) 



Diagonalization Method (contd…) 
Example contd… 

For the First Switching Surface … 

Recall the assumption: 

       txStxssx
115111

 ,,

            
5251542414

32313222212121111

622                         
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
 .,

  51  1,2,  , ,,, maxmin  jiaxtaa
ijijij

and the control law:   
ij

kKKxu      where,



Diagonalization Method (contd…) 
Example contd… 

In accordance 

with Eq. (5),   

k1j must satisfy: 

  



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,
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maxmax

… (6) 



Diagonalization Method (contd…) 
Example contd… 

For the Second Switching Surface … 

       txStxssx
225212

 ,,

            
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Let us determine the control law: xKu
22





Diagonalization Method (contd…) 
Example contd… 

In accordance 

with Eq. (5),   

k2j must satisfy: 

 
 



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Diagonalization Method (contd…) 
Example contd… 

Achievement, so far … 

 We obtained the control law, u*(t) = Kx(t) where the co-efficients of the 

K matrix i.e. k1js and k2js are obtained from Eq. (6) and Eq. (7).  

Finally we obtain the Original Control u from u*, 

Inverting the Transformation … 

  ),()( xtQuSBtu
 1

We know: 

  



tu

tu
tu

2

1

)(


























 



5

4

3

2

1

2524232221

1514131211

41

21

x

x

x

x

x

kkkkk

kkkkk
















2

1

41

21

2

1

u

u

u

u



The Phenomenon of Chattering 
What is Chattering?? 

 The design of VSC control systems is based on the assumption that the 

control can be switched from one value to another at will, infinitely 

fast, that will ensure an ideal sliding mode i.e. the state trajectory x(t) 

of the controlled plant satisfies (x(t)) = 0, at every t   t0 for some t0.  

In Practice, there is a Problem … 

 In reality, it is impossible to achieve this very high frequency switching 

control.  

Possible Reasons … 

 The presence of finite time delays for control computation. 

 The limitation of the physical actuators. 

Result ?? 

 Hence, in the sliding and steady state-modes, the representative point 

oscillates within the neighborhood of  the switching surface. This 

oscillation is called chattering.  



The Phenomenon of Chattering 

How to Overcome Chattering?? 

What is its Essence ?? 

 Here a Boundary Layer around the switching surface is introduced.  

 One popular mechanism employs The Continuation Approach. 

 Within the boundary layer, the control is chosen to be a continuous 

approximation of the switching function. The robustness of the system 

becomes a function of the width of the boundary layer.  

What is its Effect ?? 



The Phenomenon of Chattering 
Demonstration of the effect of Continuation Approach … 

The System and the Switching Surface considered … 

 We demonstrate utilizing four common types of switching 

characteristics.  

 skuxxx We consider a simple 

second order system: 

cxxs and an associated 

switching surface: 



The Phenomenon of Chattering 
Switching Characteristic – Type I: 

The Ideal Relay Control 

The Control Law: 

   
0     when  1                        

0     when  1



s

sssu sgn

Switching Function 

Phase Portrait in Sliding 
and Quasi-Sliding Modes 



The Phenomenon of Chattering 
Switching Characteristic – Type II: 

The Ideal Saturation Control 

The Control Law: 

   

Ls

Ls
L

s

Lsssatsu






     when  1                        

         when                       

     when  1

Switching Function 

Phase Portrait in Sliding 
and Quasi-Sliding Modes 



The Phenomenon of Chattering 
Switching Characteristic – Type III: 

The Practical Relay Control 

The Control Law: 

   







ss

s

ss

sshyssu

   and  0n         whe                    

or       when  1                        

   and  0n         whe                    

or       when  1

,

,

Phase Portrait in Sliding 
and Quasi-Sliding Modes 

Switching Function 



The Phenomenon of Chattering 
Switching Characteristic – Type IV: 

The Practical Saturation Control 

Switching Function 

Phase Portrait in Sliding 
and Quasi-Sliding Modes 



Variable Structure Control 
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