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Time-Delay Systems
Example 1

Temperature Measurement of Heat-Exchanger Output
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Time-Delay Systems

Example 2

Thickness Measurement of Rolled Steel Plate
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Difference Between Time-Lag and Time-Delay

in out

in first order out
1 — time lag .
Time constamt =T

° (@)

in out

&
: in Time}delﬂlr uut. 1 1 ..... I

¥
.t s
L

| (b) 0

i out

first-order time-lag

1 in out T 1. ... ...
—»{ withtime constamt T —» i
and time-delay T, ot

1
ol | T T+T|

’ (c) ’

—sT,

€

v'In case (c), transfer function of the block = G(S) = ,
T =time lag, T, = delay 1+sT



Problem due to Presence of Time-Delay
in a Process Control Loop

v" Due to the presence of time-delay, any corrective action from
the controller cannot be immediately applied to the process.
Thus during that time, process may buildup a deviation,
sometimes quite large, due to any load disturbance or change

In set-point.



Transfer Function of Time-Delay Element

Time-Delay = x(t -
O M) Tgeree WY v0=xt-T)

Taking Laplace Transform: j|> )Y(((S)) —p
S

Transfer Function of a Time-Delay Element
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Effect of Time-Delay on Process Loop Response

> G(s)=G'(s)e™

where G/(s) is the transfer function of the delay free part of the

T.F. of a Process with Time-Delay:

ProcCess.

Case Study: Proportional Control of a First-Order Process

with Time-Delay
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K, = Proportional Gain of the Controller

T = Process Time Constant
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Case Study: Proportional Control of a First-Order Process
with Time-Delay (contd ...)
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Case Study: Proportional Control of a First-Order Process
with Time-Delay (contd ...)

process
controller
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v Time-delay may cause instability even in

» C(s)

The damping ratio becomes zero when:

first-order system for large values of K.



Case Study: Proportional Control of a First-Order Process

with Time-Delay (contd ...)
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Case Study: Proportional Control of a First-Order Process

with Time-Delay (contd ...)
controter P Root Locus Plot
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Case Study: Proportional Control of a First-Order Process
with Time-Delay (contd ...)
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Critical gain K_

v The Critical gain falls with increasing T,.



Bode Plot
Case |: First Order System without Time-Delay
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Open Loop Transfer Function: G(S) = 14|—<spT > G(j(o) :
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v The phase plot never crosses — 180° line, hence the system is always stable.



Bode Plot
Case Il: First Order System with Time-Delay
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Bode Plot
Case Il: First Order System with Time-Delay
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Smith's Principle for Control of
Time-Delay Systems

Process with G (S) _ G’(S)e_ST' G'(s) is the T.F. of the delay free part
time-delay: N of the process and T, is the time-delay.

y(t)

A
i YA 4 — y(t) represents the unit step response of G'(s) in

a unity feedback closed loop system.
y(t'T|)

0 < t

Smith’s Principle: . |77
p L

The unit step response desired 0 T,
from the closed loop system If response y(t) satisfies the design criteria
with the delay introduced in for the delay-free case, then the response to
series with G'(s) isy (t—T,). be designed for the system with time-delay is

the same response but delayed by T,.



Smith's Method

v Let the controller in the delay free case be G/'(s). ‘

process without
controller time-delay
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The closed loop transfer function: | > GC (S)G (S) with time response y(t).

1+ G.(s)G/(s)

The time response from a system with closed loop transfer function :
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e”" willbey (t-T).



Smith's Method

v Let the same response (i.e. y (t —T)) be available from a controller G (s) and
the process with time-delay G(s) in a unity feedback closed loop system.

process with
controller time-delay
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G, (s)G(s)

14G ( ) ( ) with time response y (t—T)).

According to Smith’s Method :> 1+G(c ()S((;() ) 1+(SG)G(S()29(ST)'

Substituting G(S):G’(s)e‘ST' |:> G, (s)= G,(s)
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The closed loop transfer function: I:>

GC(S) . T.F. of the required controller for the process with time-delay



Smith’'s Method
The Realization of the Controller G (s)

> M(s)
| Controller
output

v For the above realization of G (s), knowledge of G'(s) and T, is required.
v In practice, model estimates of G'(s) and T, are used.
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Smith’'s Method
The Realization of the Controller G (s)

G(s)

G'.(s) > M(s)

G, (s) : The Controller for Delay-Free Process G {s)



Realisation of the Closed Loop System with G (s)
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Realisation of the Closed Loop System with G (s)

Scheme Il

Controller (Process with time delay)
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Realisation of the Closed Loop System with G (s)

Scheme I11:
Controller Process
R(s) G'c(s) > G(s) » C(s)
e_s-fl ) é'(S) —
Model delay Model of delay
free process

v" Smith’s method assumes that models are exact, i.e. é'(S) = G'(s) and '|:| =T,.

v" In practice, there is always some mismatch between the model and the actual
parameters, therefore, the closed-loop response may differ depending upon the
degree of mismatch.



Realisation of the Closed Loop System with G (s)

Scheme I11:
Controller Process
R(s) G'c(s) > G(s) » C(s)
e_s-fl ) é'(S) ¢
Model delay Model of delay
free process

v The model of delay free process provides an estimate of output from delay free
process for the controller. The estimate is, in fact, the prediction of the process
output. Thus the term Smith’s Predictoris used for such controllers.






