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Time-Delay Systems
Example 1

Temperature Measurement of Heat-Exchanger Outputp f g p
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Time-Delay Systems
Example 2

Thickness Measurement of Rolled Steel Platef
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gauge
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Time delay between 
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Difference Between Time-Lag and Time-Delay
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In case (c), transfer function of the block =                               ,         
T = time lag, Tl = delay
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Problem due to Presence of Time-Delay Problem due to Presence of Time Delay 
in a Process Control Loop

 Due to the presence of time-delay, any corrective action from 
the controller cannot be immediately applied to the process. 
Thus during that time, process may buildup a deviation, 
sometimes quite large, due to any load disturbance or change q g , y g
in set-point.



Transfer Function of Time-Delay Element

x(t) Time-Delay 
Element

y(t) = x(t - Tl)

Taking Laplace Transform:
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Effect of Time-Delay on Process Loop Response

   T.F. of a Process with Time-Delay:     lsTesGsG 
where G/(s) is the transfer function of the delay free part of the ( ) y p
process. 

Case Study: Proportional Control of a First-Order Process 
with Time-Delay
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Kp = Proportional Gain of the Controller

T = Process Time Constant 



Case Study: Proportional Control of a First-Order Process 
with Time-Delay (contd …)
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Case Study: Proportional Control of a First-Order Process 
with Time-Delay (contd …)
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 Conclusion: Time-delay may cause instability even in 

first-order system for large values of Kp.



Case Study: Proportional Control of a First-Order Process 
with Time-Delay (contd …)

process R t L  Pl t
+ Kp 1

lsTe
sT




C(s)R(s)

+
_

controller
process

Loop T.F. of the C. L. System:
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Case Study: Proportional Control of a First-Order Process 
with Time-Delay (contd …)
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Case Study: Proportional Control of a First-Order Process 
with Time-Delay (contd …)
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Bode Plot
Case I: First Order System without Time-Delay

Open Loop Transfer Function:

Case I: First Order System without Time Delay
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 Conclusion: The phase plot never crosses – 180 line, hence the system is always stable.



Bode Plot
Case II: First Order System with Time-DelayCase II: First Order System with Time Delay

Open Loop Transfer Function:      sGsGe
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Bode Plot
Case II: First Order System with Time-DelayCase II: First Order System with Time Delay

Open Loop Transfer Function:      sGsGe
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Smith’s Principle for Control of 
Time-Delay Systemsy y

Process with 
time-delay:     lsTG s G s e G(s) is the T.F. of the delay free part 

of the process and Tl is the time-delay.
y(t)y( )

1 y(t) represents the unit step response of  G(s) in 
a unity feedback closed loop system.

0
t

y p y
y(t-Tl)

Smith’s Principle:

The unit step response desired 
from the closed loop system 

ith th d l i t d d i

Tl

t
0

If response y(t) satisfies the design criteria 
for the dela free case then the response towith the delay introduced in 

series with G(s) is y (t – Tl).
for the delay-free case, then the response to 
be designed for the system with time-delay is 
the same response but delayed by Tl.



Smith’s Method
 Let the controller in the delay free case be G (s) Let the controller in the delay free case be Gc (s).
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Smith’s Method

 Let the same response (i.e. y (t – Tl)) be available from  a controller Gc(s) and 
the process with time-delay G(s) in a unity feedback closed loop system.

process with

+ Gc(s) G(s) C(s)R(s)

p
time-delay

+

controller

_
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Smith’s Method
The Realization of the Controller G (s)The Realization of the Controller Gc(s)

Gc(s)

+ G'c(s) M(s)
Controller

output

E(s)
Error +

_

1- e-sTG'(s)

p

l

 For the above realization of Gc(s), knowledge of G(s) and Tl is required.
 In practice, model estimates of G(s) and Tl are used.

Model Estimates:
, model of G (s) Ĝ s

Model Estimates:
, model of Tll̂T



Smith’s Method
The Realization of the Controller G (s)The Realization of the Controller Gc(s)

Gc(s)

+ G'C(s) M(s)E(s)
+ _

 Ĝ s ˆ1 lsTe

Th C t ll f D l F P G( ) G  : The Controller for Delay-Free Process G(s) cG s



Realisation of the Closed Loop System with Gc(s)f p y Gc( )
Scheme I:

Controller 
(designed for G'(s)) Process with 

time-delay
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Realisation of the Closed Loop System with Gc(s)f p y Gc( )
Scheme II:

+ G'C(s)R(s)

Controller

G(s) C(s)

(Process with time delay)

Model of process
with time-delay

+

+
_

 Ĝ s l̂sTe +

Model of delay free 
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_
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Realisation of the Closed Loop System with Gc(s)f p y Gc( )
Scheme III:

+ + G'C(s) G(s)R(s) C(s)

Controller Process

+ _+

 Ĝ s+ l̂sTe

_

_

Model delay Model of delay 
free process

+

 Smith’s method assumes that models are exact, i.e.            = and             .  Ĝ s  G s l̂ lT T
 In practice, there is always some mismatch between the model and the actual 
parameters, therefore, the closed-loop response may differ depending upon the p , , p p y p g p
degree of mismatch. 



Realisation of the Closed Loop System with Gc(s)f p y Gc( )
Scheme III:

+ + G'C(s) G(s)R(s) C(s)

Controller Process

+ _+

 Ĝ s+ l̂sTe

_

_

Model delay Model of delay 
free process

+

 The model of delay free process provides an estimate of output from delay free 
process for the controller. The estimate is, in fact, the prediction of the process 
output. Thus the term Smith’s Predictor is used for such controllers. 




