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The controller output may be expressed as:
m = Kp .ep
where Kp = R1/R2 
and P = % proportional band = 100 / Kp



Realization of Electronic PID controller
(P, PI, & PD are special cases of PID)
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Circuit realization

Therefore, transfer function of PID controller becomes

rcu t r a zat on

 
  








 DDCsR

CsRR
R

sE
sM 11

   IICsRRsE 2

R
Here,

1

2

1

p
RK
R

K



1p

i I I

D D D

K
T R C

K T R C



p D D DK T R C



Circuit realization

Proportional and integral terms may be combined as:

rcu t r a zat on
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A simple PID Controller with two op-amps s mp  D ontro r w th two op amps
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The unity gain buffer amplifier is required to avoid the loading effect of y g p q g
the feedback network
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This expression of A presents the problem of interaction and hence, 
the controller developed is called an interacting controller.
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Bias may be properly adjusted for zero steady state error with P and PD 
controllers, when load is constant. Proper bias can also ensure efficient 
operation under start-up condition.
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Provision for anti-derivative kick

Derivative action may produce an unwanted kick at the controller output 
when there is a step change in the set-point. This effect may be 
eliminated if the derivative term is computed from the measured variable, p ,
instead of the error (anti-derivative kick feature).
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Provision for anti-integral wind-upro s on for ant nt gra  w n up

Integral action in PI and PID controllers may produce a large integral 
t h i t f l ti I t tierror term when a non-zero error persists for a long time. Integration 

action may be switched off to combat this situation, otherwise, a long 
time may be required to come back to normal working range.



Provision for anti-integral wind-upro s on for ant nt gra  w n up

Integral action in PI and PID controllers may produce a large integral 
t h i t f l ti I t tierror term when a non-zero error persists for a long time. Integration 

action may be switched off to combat this situation, otherwise, a long 
time may be required to come back to normal working range.

In some controllers, when the integral term is present, the integral 
amount during Ti is summed with each pass through the calculation and a ou t du g i s su ed t eac pass t oug t e ca cu at o a d
becomes the controller bias. This technique is known as automatic reset  
and this is done to avoid long duration operation of the integral action –
thus error due to drift etc. during integration may be avoided.



Output must be limited (saturation) Output must  m t  (saturat on) 

It is desirable to limit the controller output (say between 0% and 100%) so 
that control valves or other final control elements may operate safelythat control valves or other final control elements may operate safely 
within their working limits.



Provision for Auto/Manual modes of controlro s on for uto/Manua  mo s of contro

A change-over switch is normally provided for configuring the controller 
as an automatic controller (AUTO) for closed loop operation or as aas an  automatic controller (AUTO) for closed loop operation or as a 
manual controller (MAN) for open-loop operation.
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A change-over switch is normally provided for configuring the controller 
as an automatic controller (AUTO) for closed loop operation or as aas an  automatic controller (AUTO) for closed loop operation or as a 
manual controller (MAN) for open-loop operation.

Final
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Controller control
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Provision for Local/Remote modes of operationro s on for Loca / mot  mo s of op rat on

A provision is made for the set point input, such that, the set point may 
be changed either locally or from a remote linkbe changed either locally or from a remote link.
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 No transmission lag (as compared to pneumatic systems)

 Absence of dead zone due to friction or hysteresis in moving parts

 Capable of operating at low temperatures

 Compatibility with other electrical components
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Disadvantages

 Prone to electrical hazards (in inflammable atmosphere)

 Analog integrators are not very reliable

 Conversion equipments are necessary to interface pneumatic and hydraulic devices
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m: change in back pressure.
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X = X`- x and M = M` + m, X`: baffle-nozzle separation with zero error and M`: output 
pressure with zero error.
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A typical curve relating nozzle back pressure        M     to Baffle-Nozzle separation     Xyp g p p

For approximately linear working range:
M = K X + C and M` = K X` + C K being the slopeM = Kn X + C and M  = Kn X  + C, Kn being the slope
Subtracting, M - M` = Kn(X – X`), i.e., m = - Kn.x
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Relay valve or pilot valve

The output pressure from the pneumatic amplifier is not suitable for driving the final 
control element due to the presence of restriction in the air supplycontrol element due to the presence of restriction in the air supply. 

For this reason, a buffer stage, known as relay valve or pilot valve, is added at the 
output to allow sufficient air flow at pressure ‘m’.p p

A relay valve may be direct-acting (positive gain) or reverse-acting (negative gain).



Direct-acting relay valve with a Baffle-Nozzle amplifier

x Restriction

e
Relay valve (gain = 1)

Air supply (Ps)
Vent

m

Bellows
Relay

m

Relay output

m = - Kn.x

As the nozzle back pressure m increases, the relay output pressure also increases



Direct-acting relays

Bleed type relay 

In all positions of the valve except at theIn all positions of the valve, except at the 
position to shut off the air supply, air 
continues to bleed into the atmosphere.



Direct-acting relays

Bleed type relay 

In all positions of the valve except at theIn all positions of the valve, except at the 
position to shut off the air supply, air 
continues to bleed into the atmosphere.



Direct-acting relays

Bleed type relay Non-bleed type relay

The air bleed stops when the equilibriumThe air bleed stops when the equilibrium 
condition is obtained, and, therefore, there is 
no loss of pressurized air at steady-state 
operation. 



Reverse-acting relay

As the nozzle back pressure increases, the ball valve is forced towards the lower seat, thereby 
d i th t tdecreasing the output pressure
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Pneumatic Proportional Controller

Feedback bellows

a

m m (Controller
output pressure)

(3 - 15 psi)

b

e
Error

Restriction
air supply (Ps)

(20 psi)x

Error

The Baffle-Nozzle separation may be expressed as: 

a b     b
a bx e K m

a b a b
            

where Kb is the bellows stiffness factor and m is the change in output pressure.



Pneumatic Proportional Controller

Feedback bellows

m m (Controller
output pressure)   b

a bx e K m
b b

            
a
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air supply (Ps)

(20 psi)

(3 - 15 psi)

x

Now m =  – Kn .x, where Kn is the nozzle 
gain.

 
a b a b       

e
Error



Pneumatic Proportional Controller

Feedback bellows

m m (Controller
output pressure)   b

a bx e K m
b b
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b Restriction
air supply (Ps)

(20 psi)

(3 - 15 psi)

x

Now m =  – Kn .x, where Kn is the nozzle 
gain.

 
a b a b       

e
Error

Bl k di f th t llBlock diagram of the controller

a + -X(s)
E(s) a

a+b ++ Kn M(s)

Kb
-

X(s)

Kba+b
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Feedback bellows
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Now m =  – Kn .x, where Kn is the nozzle 
gain.
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Thus, a bm K   
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a bm e K mK a b a b
           



Pneumatic Proportional Controller

Feedback bellows
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output pressure)   b

a bx e K m
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Now m =  – Kn .x, where Kn is the nozzle 
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Pneumatic Proportional Controller

Feedback bellows

m m (Controller
output pressure)   b

a bx e K m
b b
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b Restriction
air supply (Ps)
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x

 
a b a b       

Now m =  – Kn .x, where Kn is the nozzle 
gain.

e
Error

Thus, a bm K   
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a bm e K mK a b a b
           

1 b a    
or

1
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b am K e
K a b a b
              

1
if Kn is very high, then

1 0 ,
nK




Pneumatic Proportional Controller

Feedback bellows

m m (Controller
output pressure)
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Error

This gives a 

.p
b

a
aa bm e e K e

b bKK
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bK
a b

     
a

where Kp = proportional gain = 

bbK



Pneumatic Proportional Controller

Feedback bellows

m m (Controller
output pressure)

a
aa b

 
    

a

b Restriction
air supply (Ps)

(20 psi)

(3 - 15 psi)

x

.p
b

b

aa bm e e K e
b bKK

a b

          
e

Error where Kp = proportional gain = 
b

a
b K

Simplified block diagram of the controller

E(s) Kp M(s)



Pneumatic proportional controller with a direct-acting relay

m
Controller output

(3 1 i)
m

Feedback bellows

a
m

(3 - 15 psi)

Relay valve (gain = 1)

xb Restriction
Air supply (Ps)

(20 psi)

y (g )

Error

xb (20 psi)
e
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Pneumatic Proportional-Derivative Controller

C

Derivative time
   Restriction  RD (Needle valve)

m

Feedback bellows

a Baffle

         Nozzle

CD m

Restriction (orifice)

(output pressure)

b x
e

Error

air supply (Ps)
R

The Baffle-Nozzle separation may be expressed as: 

     bKa bX s E s M s
            (assuming RD >> R)     
1 D

X s E s M s
a b a b sT          

( g D )

where Kb = Bellows stiffness factor,
TD = Derivative timeTD   Derivative time

= RDCD, (assuming RD >> R),
CD = Capacity of the bellows.



Pneumatic Proportional-Derivative Controller
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bKa bX s E s M s
b b T
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         Nozzle
air supply (Ps)

R

Restriction (orifice)

(output pressure)      
1 Da b a b sT          

   sXKsM n Now

where K is the nozzle gaine
Error

where Kn is the nozzle gain.



Pneumatic Proportional-Derivative Controller
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Derivative time
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Feedback bellows
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1 Da b a b sT          

   sXKsM n Now

where K is the nozzle gaine
Error

where Kn is the nozzle gain.

Thus      
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1n DK a b a b sT          



Pneumatic Proportional-Derivative Controller
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Derivative time
   Restriction  RD (Needle valve)

m
(output pressure)
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where K is the nozzle gaine
Error

where Kn is the nozzle gain.
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Pneumatic Proportional-Derivative Controller
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where K is the nozzle gaine
Error

where Kn is the nozzle gain.

Thus      
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1n DK a b a b sT          
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1n DK a b sT a b            
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Feedback bellows
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air supply (Ps)
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Restriction (orifice)

(output pressure)      
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   sXKsM n Now

where K is the nozzle gaine
Error

where Kn is the nozzle gain.

Thus      
1

bM s Ka bE s M s
K b b T

          
    

   
1n DK a b a b sT          
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  where Kp = proportional gain = 
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Pneumatic Proportional-Integral Controller
Integral time
Restriction  (Needle valve)
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Integral
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feedback
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negative
feedback

air supply (Ps)
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Error

The Baffle-Nozzle separation may be expressed as: 

      

(assuming RI >> R and
same stiffness for both bellows)

       
1

b
b

i

Ka b bX s E s K M s M s
a b a b a b sT

                         

where Ti  = Integral time
= RICI

and CI = Capacity of integral bellows
Kb = Bellows stiffness factor.



Pneumatic Proportional-Integral Controller
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Pneumatic Proportional-Integral Controller
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Pneumatic Proportional-Integral Controller
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Thus, assuming Kn >> 1,  i.e. 1 0,
K
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Pneumatic Proportional-Integral Controller
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Pneumatic Proportional-Integral-Derivative Controller
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The Baffle-Nozzle separation may be expressed as: 
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The controller gain becomes infinite when Ti = TD, if derivative time 
restriction is placed in position (1).
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