Simple Process Control Loop

Prof. Anjan Rakshit and Prof. Amitava Chatterjee
Electrical Measurement and Instrumentation Laboratory,
Electrical Engineering Department,
Jadavpur University, Kolkata, India.

Simple process control loop (with negative feedback)

- Independent variables:
 - set point 'r'
 - load 'u'
- Manipulated variable: actuating signal 'v'
- Controlled variable: output 'c'
- Feed back variable: measured output 'cm'

Servo problem

It is the ability of output tracking the given set point changes

Regulatory problem

It is the ability to control the output at the desired level in the face of disturbances entering the process

Measuring element

- Electrical output signal range:
 - Voltage: 0-1V, 0-5V, 0-10V, 1-5V
 - Current: 0-1mA, 0-5mA, 0-10mA, 0-20mA, 4-20mA
- Pneumatic output signal range: 3-15psi

Transmitter gain

$$K_t = \frac{100\%}{\text{span of the transducer}}$$

Example: If a temperature transducer produces a full scale change in output for a change in temperature from 20°C to 150°C, the gain of the transmitter is

$$K_t = 100\%/(150^{\circ}\text{C} - 20^{\circ}\text{C}) = 100\%/130^{\circ}\text{C} = 0.77\%/^{\circ}\text{C}$$

For a 4-20mA output, 0% means 4 mA and 100% means 20 mA.

Temperature transmitters

Non-indicating (blind) transmitters

Indicating transmitter

Controller

Depending on construction controllers may be classified as

- Electronic
- Pneumatic

Depending on operation controllers may be classified as

- Analog
- Digital

Different types of Controllers

- Proportional (P) controllers
- Proportional-integral (PI) controllers
- Proportional-derivative (PD) controllers
- Proportional-integral-derivative (PID) controllers
- On/Off controllers

P-control

PI-control

PD-control

PID-control

Controller symbol

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$
 \square

$$\Rightarrow$$
 \bigwedge

Controller gain

Change in controller output

 $K_c =$

Error

PID temperature controller

On/Off controllers

Two state with or without hysteresis:

Without hysteresis

With hysteresis

On/Off controllers

Two state with or without hysteresis:

Without hysteresis

With hysteresis

Three state with or without hysteresis:

Without hysteresis With hysteresis

Proportional time using PWM:

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Motorized rotary actuator

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Motorized linear actuator

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Solenoid operated actuator

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Pneumatic actuator

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Pneumatic actuator

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Hydraulic piston actuator

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Diaphragm control valve

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Diaphragm control valve

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Direction control valve

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Direction control valve

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Oil fired burner

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Centrifugal pump

It is the mechanism which alters the value of the manipulated variable in response to the output signal from the controller

- Electric actuators
 - Motorized rotary or linear
 - Solenoid operated
- Pneumatic actuators
- Electro-pneumatic actuators
- Hydraulic actuators
 - Piston
 - Diaphragm
- Control valves
- Heaters
- Burners
- Pumps

Centrifugal pump

Gain of the final control element

$$K_{\nu} = \frac{\text{span of the final control element}}{100\%}$$

Process

A process may be characterized by its input-output relationship

Process

A process may be characterized by its natural form of feedback

Self-regulation type processes

Heated oil bath

Liquid level in a tank

Self-regulation type processes

Heated oil bath

Liquid level in a tank

Non-self regulation type processes

Metering Pump

Out

Different types of processes

- Electrical
- Mechanical
- Thermal
- Liquid
- Gas
- In combination of above types

Process parameters

Steady state gain of a process

$$\frac{\mathrm{K_p}}{\mathrm{K_p}} = \frac{\Delta c}{\mathrm{Change\ in\ actuating\ signal}} = \frac{\Delta c}{\Delta v}$$

Loop gain

The product (K_t.K_v.K_p) is a dimension less parameter. It is related to the gain of the controller which is again dimensionless.

In a temperature control system (0-100°C), 10 KW:

$$K_{t} = \frac{100\%}{100^{\circ} C} \rightarrow \text{dimension } \frac{\%}{{}^{\circ} C}$$

$$K_{v} = \frac{10KW}{100\%} \rightarrow \frac{W}{\%}$$

$$K_{p} = \frac{\Delta C}{\Delta V} = \frac{100^{\circ} C}{10KW} \rightarrow \frac{{}^{\circ} C}{W}$$

Process Examples

Boiler drum level control (inverse response)

Thermostat for water heating

Pneumatic control signal

Capillary control signal

Electrical control signal

→ Gas / liquid pipeline

or **Restriction**

Manual valve

Control valve

On-Off or solenoid type valve

(xc) Locally mounted controller

X: pH

X: S - speed

X: T - temperature

X: L - level

X: P - pressure

X: F - flow

Board mounted controller, X: pH, S, T, L, P, F

Transmitter, X: pH, T, L, P, F, S

(XS) Switch, X: pH, T, L, P, F, S

(DP) Differential pressure transmitter

Recorder controller, X: pH, T, L, P, F, S

Check valve

Relief valve

——|—— Orifice

Nozzle or venturi

Magnetic flow meter

Turbine type flow meter

Controlled damper

Oil-burner

Sensor / transducer

Motor stirrer

Pump

+ Summer

X Multiplier

Square-root extractor Square-root extractor

< Low selector

> High selector

• Divider

Voltage-to-current or current-to-voltage converters

Voltage isolator

Current isolator

Liquid level control with a local pneumatic level controller

Flow control system with electronic flow controller

Flow control with a turbine flow meter

Temperature controlled stirred tank

References

- 1. Process Control Systems by Shinskey
- 2. Automatic Process Control by Eckman
- 3. Principles of Process Control by Patranabis
- 4. Process Control by Harriott
- 5. Process Systems Analysis and Control by Coughanowr and Koppel
- **6. Process Control** by Pollard
- 7. Chemical Process Control by Stephanopoulos
- 8. Modern Control Engineering by Ogata
- 9. Applied Process Control by Chidambaram

