Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India

1

Piezoelectric Effect:

Mechanical

Deformation

Electrical Charge

Generation

 Piezoelectric Transducers employ the principle of electromechanical energy conversion, in both directions.

✓ The mechanical input/electrical output direction is the basis of many instruments used for measuring acceleration, force, and pressure.

Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India²

Piezoelectric Materials:

- Natural crystals (quartz, rochelle salt, etc.)
- Synthetic crystals (lithium sulphate, ammonium dihydrogen phosphate, etc.)

*Polarized ferroelectric ceramics (barium titanate etc.)

✓ Because of their natural asymmetric structure, the crystal materials exhibit this effect without further processing.

✓ The ferroelectric ceramics must be artificially polarized by applying a strong electric field to the material (while it is heated to a temperature above the Curie point of that material) and then slowly cooling with the field still applied.

Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India³

Different Modes of Mechanical Deformations:

- Thickness-expansion
- Transverse-expansion
- Thickness-shear
- Face-shear

The **piezoelectric effect is direction sensitive**. Here tension produces a definite voltage polarity while compression produces the opposite.

> Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India

Piezoelectric Effect under Thickness-Expansion Mode (e.g. Barium Titanate):

Axis System

Piezoelectric Transducer

✓ Mechanical deformation generates a charge and this charge appears as a voltage across the electrodes $\left(E = \frac{Q}{C}\right)$.

Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India⁵

Piezoelectric Effect under Thickness-Expansion Mode (e.g. Barium Titanate):

'g' constant:

Typical Values

 $\frac{\Delta}{g_{33}} = \frac{\text{electric field generated in direction 3}}{\text{mechanical stress applied in direction 3}}$

Voltage Output = $e = g_{33} \times \frac{1}{16} \times t = g_{33} \times \text{stress} \times \text{thickness}$

 $\sqrt{12 \times 10^{-3} (V/m)} / (N/m^2)$ for barium titanate

6

 $50 \times 10^{-3} (V/m) / (N/m^2)$ for quartz

Amitava Chatterjee

Department of Electrical Engg., Jadavpur University, Kolkata, India

Piezoelectric Effect under Thickness-Expansion Mode (e.g. Barium Titanate):

'd' constant:

charge generated in direction 3 = $\frac{Q}{F} = \frac{Q}{(lb)} \frac{1}{F_{(ll)}}$

 $\epsilon = \epsilon g_{33}$, $\epsilon =$ permittivity of the material

7

Typical Values

 Permittivity of barium titanate: 12.5 × 10⁻⁹ F/m.

 Permittivity of quartz
 : 4.06 × 10⁻¹¹ F/m.

 Amitava Chatterjee

Department of Electrical Engg., Jadavpur University, Kolkata, India

 For displacement transducers, the pertinent quantity is output voltage (or charge) per unit deflection (instead of stress or force). This is because it is really the "deflection" that causes the charge generation. Hence a knowledge of modulus of elasticity is also needed.

Typical Values

Modulus of elasticity of quartz = 8.6×10^{10} N/m² Modulus of elasticity of barium titanate = 12×10^{10} N/m²

Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India

8

 $q = K_q x_i$ $K_q = charge sensitivity (c/m)$ $x_i = displacement (m)$

9

 $T_{r} = \frac{dq}{dt} = K_q \frac{dx_i}{dt}$

 $i_{cr} = i_c + i_R$

Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India

Frequency Response

Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India

current

generator

 $i_{cr} = k_a \dot{x}_i$

For 5% basis, the frequency must exceed ω_1 given by:

The low frequency limit is set by the time constant T – higher the T, lower the ω_1 .

Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India¹²

Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India¹³

Pulse Response **Conclusion:**

✓ A large **T** is desirable for faithful reproduction of x_i .

 \checkmark If the decay and undershoot at $t = T_c$ are to be kept within 5% of the true value (i.e. the pulse height), T must be at least $20T_c$.

 $\checkmark T$ can be increased by increasing either or both **R** and **C**.

Increasing C:

By connecting an external shunt capacitor across the transducer terminals (

Increasing R:

A loss in sensitivity as

By connecting a series resistance R_s external to the amplifier.

Amitava Chatterjee 14 Department of Electrical Engg., Jadavpur University, Kolkata, India

Price Paid ??

Connecting Series Resistance External to the Amplifier

Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India¹⁵

General Description of Accelerometers

Force equation of the system:

x = displacement of the moving object (or frame) with respect to a fixed reference frame, y = displacement of the mass M with respect to accelerometer frame, a = input acceleration.

Simplified Diagram of an Accelerometer (a spring-mass-dashpot system)

For our system: $K_s x_o + B \dot{x}_o = M \ddot{x}_M = M$

 x_i and x_M are absolute displacements, and x_o is chosen zero when gravity force is acting along the *x*-axis statically.

Amitava Chatterjee

Department of Electrical Engg., Jadavpur University, Kolkata, India¹⁶

The T.F. of our system:

✓ The low frequency response of this accelerometer is limited by the piezoelectric characteristic ______.

✓ The high frequency response is limited by mechanical resonance.

Amitava Chatterjee

Department of Electrical Engg., Jadavpur University, Kolkata, India¹⁸

✓ The accurate frequency range of such accelerometers, for flat amplitude response within a specified percentage, is $\frac{3}{2} < 0 < \frac{0}{2}$.

(5% high at high frequency end and 5% low at low frequency end)

Using magnitude response of the piezoelectric transducer:

or

 \checkmark The damping ratio ζ of piezoelectric accelerometers is extremely low (almost zero for most practical purposes).

Amitava Chatterjee Department of Electrical Engg., Jadavpur University, Kolkata, India¹⁹

Department of Electrical Engg., Jadavpur University, Kolkata, India

 \checkmark Accurate low frequency response requires large τ , which is usually achieved by use of high impedance amplifiers (e.g. instrumentation amplifiers or charge amplifiers).

Use of a Buffer Amplifier Stage:

Amitava Chatterjee

Department of Electrical Engg., Jadavpur University, Kolkata, India²¹

Department of Electrical Engg., Jadavpur University, Kolkata, India

Charge Amplifier An Alternate Representation:

✓ Here, the output of the capacitive transducer is represented by an equivalent circuit, consisting of a voltage source e_t in series with a capacitance C_t .

The amplifier output: e

✓ The presence of R_f limits the lower bandwidth limit of the charge amplifier to the frequency:

Amitava Chatterjee

Department of Electrical Engg., Jadavpur University, Kolkata, India²³

#