INTRODUCTION TO IMAGE PROCESSING

Prof. Anjan Rakshit and Prof. Amitava Chatterjee Electrical Measurement and Instrumentation Laboratory, Electrical Engineering Department, Jadavpur University, Kolkata, India.

Let the gray level at a particular position [x,y] of an image be f(x,y), a continuous function of position as shown below:

The digital or discrete version of the image f(x,y) may be obtained as:

$$f^{*}(x, y) = f(x, y).s(x, y)$$
(1)

where s(x,y) is a 2-dimensional sampling function (sampling lattice) defined as,

$$s(x,y) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x - m\Delta x, y - n\Delta y) \qquad \dots (2)$$

where Δx and Δy are the spacing of the samples along x-axis and y-axis respectively.

$$f^*(x,y) = f(x,y).s(x,y)$$
$$s(x,y) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x - m\Delta x, y - n\Delta y)$$

Thus,
$$f^{*}(x, y) = f(x, y) \sum_{m=-\alpha}^{\alpha} \sum_{n=-\alpha}^{\alpha} \delta(x - m\Delta x, y - n\Delta y)$$

$$= \sum_{m=-\alpha}^{\alpha} \sum_{n=-\alpha}^{\alpha} f(x, y) \delta(x - m\Delta x, y - n\Delta y)$$

$$= \sum_{m=-\alpha}^{\alpha} \sum_{n=-\alpha}^{\alpha} f_{m,n} \delta(x - m\Delta x, y - n\Delta y) \qquad \dots (3)$$

where $f_{m,n}$ is a 2-D sampled sequence m = 0,±1, ±2,.., n = 0, ±1, ±2,...

For a finite size image let the size be $M \times N$ pixels (pixel stands for picture elements or samples) then $f_{m,n}$ becomes a 2-dimensional finite sequence with m = 0, 1, 2, ..., (M-1) and n = 0, 1, 2, ..., (N-1).

The image may be expressed as $x_{max} \times y_{max}$ where $x_{max} = (M-1)\Delta x$ and $y_{max} = (N-1)\Delta y$.

Image Filtering – A Two-Dimensional Filtering Problem

Image filtering may be done in spatial domain or in frequency domain (considering a 2-D Fourier transform of the image).

In spatial domain filtering, 2-dimensional convolution operation may be performed between the 2-dimensional image sequence and a finite tap 2-dimensional FIR filter impulse sequence.

Type of Filters:

Low-pass, to remove high frequency noise.

Band-pass, to enhance some spatial frequency range.

>High-pass, to sharpen the image by enhancing high spatial frequencies.

Low-pass Filter

FIR Image Filters

Let a $(p \times p)$ tap FIR filter be employed to filter the 2-dimensional pixel sequence $f_{m,n}$, m = 0, 1, 2, ..., (M-1), n = 0, 1, 2, ..., (N-1).

If $h_{k,l}$, k,l = -(p-1)/2,...,0,...,(p-1)/2, be the 2-dimensional impulse sequence of the filter then the filtered output pixel sequence may be represented as (local or neighborhood operation):

$$f'_{m,n} = \sum_{k=-\frac{p-1}{2}}^{\frac{p-1}{2}} \sum_{l=-\frac{p-1}{2}}^{\frac{p-1}{2}} h_{k,l} \quad f_{m-k,n-l} \qquad \dots (4)$$

for m = (p-1)/2, ..., (M-1)-((p-1)/2) and n = (p-1)/2, ..., (N-1)-((p-1)/2)

The finite 2-dimensional sequence $h_{k,l}$ is called the **convolution mask**.

FIR Image Filters

Low-pass (3×3) masks

FIR Image Filters

High-pass (3×3) masks

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

Low-pass FIR Image Filter

Original image

Convolution mask

Filtered image

Low-pass FIR Image Filter

Noisy image

$\frac{1}{6} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

Convolution mask

Filtered image

High-pass FIR Image Filter

Original image

Convolution mask

Filtered image

Let the variable '*a*' represent the gray level of the pixels in the image to be enhanced.

Let the gray level be quantized from 0,1,2,...,D-1, where D is the maximum number of gray levels (e.g. for 8-bit quantization, D = 256).

Thus the range of *a* is $0 \le a \le D-1$.

Let each pixel of the input image be modified by the following point operation:

 $b(x,y) = f[a(x,y)] \tag{5}$

where b(x,y) is the output pixel level at (x,y), a(x,y) is the input pixel level at (x,y) and f[a(x,y)] is the gray scale transformation function.

Relation (5) may be expressed as b = f(a)(6)

....(7)

The histogram of an image is

 H_u = number of pixels with gray level 'u' for $0 \le u \le (D-1)$

The area of the image (in term of pixels) may be expressed as

$$A = \sum_{u=0}^{D-1} H_u$$
....(8)

The cumulative histogram is defined as

$$A_p = \sum_{u=0}^{p} H_u$$
, the area enclosing gray levels from 0 to 'p'(9)

Now, the histogram of the input image is H_a for $0 \le a \le (D-1)$.

And the area of the input image is

$$A = \sum_{a=0}^{D-1} H_a$$

Histogram of the Input Image

Histogram of normal input image

Histogram of the Input Image: An Example

Normal input image

Histogram

Histogram of the Input Image

Histogram of over exposed input image

Histogram of the Input Image: An Example

Histogram of the Input Image: An Example

Over exposed input image

Histogram

Histogram of the Input Image

Histogram of under exposed input image

Histogram of the Input Image: An Example

Histogram of the Input Image: An Example

Under exposed input image

Histogram

The input and output histograms may be related as

The number of output pixels having gray level between qand $q+\Delta b$ equals the number of input pixels with gray level between p and $p + \Delta a$ as transformation is performed on point basis.

Thus,

$$\Delta a H p = \Delta b H q$$
....(10)

if Δa and Δb are small.

To improve contrast, the histogram of the output image may be assigned a flat shape as

Here,

$$\sum_{b=0}^{D-1} H_b = \sum_{b=0}^{D-1} \frac{A}{D} = \frac{A}{D} \cdot D = A, \text{ the area of the image.}$$

Now from relation (10)

$$\frac{\Delta b}{\Delta a} = \frac{H_p}{H_q}$$

$$\Delta aHp = \Delta bHq$$
(10)

$$\frac{\Delta b}{\Delta a} = \frac{H_p}{H_q}$$

Now,
$$\Delta b = \Delta f(a)$$

Thus,

$$\frac{\Delta f(a)}{\Delta(a)} = \frac{H_p}{\left(\frac{A}{D}\right)}, \text{ as } H_q = A/D, \text{ for flat histogram}$$

$$\frac{\Delta b}{\Delta a} = \frac{H_p}{H_q}$$

Now,
$$\Delta b = \Delta f(a)$$

Thus,

$$\frac{\Delta f(a)}{\Delta(a)} = \frac{H_p}{\left(\frac{A}{D}\right)}, \text{ as } H_q = A/D, \text{ for flat histogram}$$

or, $\Delta f(a) = \left(\frac{D}{A}\right) H_p \cdot \Delta(a)$

....(11)

$$\Delta f(a) = \left(\frac{D}{A}\right) H_p \cdot \Delta(a)$$

....(11)

Now, $\Delta a = a - (a-1)$, considering quantization of gray level.

= 1And, $\Delta f(a) = f(a) - f(a-1)$

Then, $f(a) - f(a-1) = (D/A)H_p$

Now, summing from 0 to a,

$$\sum_{u=0}^{a} f(u) - f(u-1) = \frac{D}{A} \sum_{u=0}^{a} H_{u}$$

or, $f(a) - f(-1) = \frac{D}{A} A_{a}$

$$f(a) - f(-1) = \frac{D}{A}A_a$$

Now, f(-1) = 0 and A_a is the cumulative histogram.

Thus,

$$f(a) = \frac{D}{A}A_a \qquad \dots (12)$$

Thus from relation (12), the output pixel gray level of a point (x,y) b = f(a), may be obtained by calculating A_a of the input histogram for the input gray level 'a' of the point (x,y) of the input image.

Original image

Histogram equalized

Histogram

Histogram

Original image

Histogram

Reference: **Digital Image Processing** by Gonzalez & Woods.

