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PERFORMANCE ANALYSIS OF LMS METHOD 

   

EEExxxccceeessssss   MMMeeeaaannn   SSSqqquuuaaarrreee   EEErrrrrrooorrr   

To reduce the mean square error time constant, one must choose a 

step size  as large as possible, consistent with the constraints of 

convergence. However, a higher choice of  causes higher excess 

mean square error. Hence there is a trade off between convergence 

speed and steady-state accuracy, while selecting . 

  

In LMS method, 
nnn

RE2̂ , which differs from the true value, 

 PRH
nn
 2 . Error in the estimate of the gradient of the mse 

can be modeled as an additive noise term:   
nnnn

vHξ  ˆ . 

The noise term vn causes the steady-state value of the mse to be 

larger than the theoretical minimum value and the difference is 

referred to as the excess mse. 

 

Excess mean square error:  
min
ξHξξ

nnnexcess

  

This can be shown, in terms of weight variations as, 

  
wnn

T

nn
HHVRVVξ

excess

         
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It can be approximated as: 

 Rn
MPμξξ

excess min
  

To avoid substantial computational effort required to determine the 

min, a normalized version of the excess mse is often used. 

The misadjustment factor of the LMS method: 

 R

n

f
μMP

ξ

ξ
M excess 

min

 

The normalized excess mean square error increases with , the 

filter order and average power of the input. Hence, to reduce Mf, 

we must decrease . But to reduce mse , we must increase . Hence 

there will be a trade off.  

 

Table: Performance Characteristics of an Adaptive Filter. 

Property Value 

Convergence range 

 

Learning-curve time constant 

 

Excess mean square error 

R
MP

1
0   

av

mse




4

1
 

Rn
PμMξξ

excess min
  

 

 

ANJA
N R

AKSHIT an
d A

MITAVA C
HATTERJE

E 

ELE
CTRIC

AL E
NGIN

EERIN
G D

EPARTMENT 

JA
DAVPUR U

NIV
ERSITY, K

OLK
ATA, IN

DIA



Digital Signal Processing 

 Amitava Chatterjee 

Jadavpur University, Electrical Engg. Deptt., Kolkata, India. 

 4 

 

MODIFIED LMS METHODS 

Several modifications to the basic LMS algorithm have been 

proposed to improve the performance: 

 

111...   NNNooorrrmmmaaallliiizzzeeeddd   LLLMMMSSS   MMMeeettthhhoooddd:::   

The Normalized LMS method was proposed to develop a 

version of the LMS method that has a step size () that does 

not depend on average power PR or filter order M. Here the 

learning rule is: 

   0    ,        ,2
11 1




nRRRRREμHH
Mnnnnnnnnn

,,,   

Here the difference with the basic LMS method is that the 

step size n  is no longer constant, but varies with time. 

Here 
 nR

n

PM ˆ


  

where  
ˆ
R n

P = running estimate of the average input power.  

If  
ˆ
R n

P  is replaced by the true average power RP , then, 

according to the table given before, the range of constant 

step sizes needed to ensure convergence is 0 <  < 1. In this 

sense the step size is normalized. Here a single value of  

can be used, independent of the filter size and the input 

power. 
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Usually a rectangular window or running-average filter is 

used to estimate the average input power in a simple manner. 

For an Nth order running –average filter: 

   






1

0

21 N

i
innR

R
N

P̂  

 

2. CCCooorrrrrreeelllaaatttiiiooonnn   LLLMMMSSS   MMMeeettthhhoooddd::: 

This method was proposed to avoid the trade-off required 

while selecting . Here one can choose a large step size while 

striving for convergence, and this can be followed by the 

choice of a small step size, once convergence has been 

achieved. Then the main objective is to detect when 

convergence has been achieved. Theoretically it is possible to 

use Hw or min to detect convergence, but, because of the 

computational burden involved, it is always preferable to use 

a less direct means. 

 Let us assume that Hn has converged to Hw. 

Then, we have: 

 
n

T

nnnn
RHRPRE   

      0
ww

T

nnnnnn
RHPHRRERPEREE  

               (at the optimal weight, 

   PRH
w

1 ) 
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Now, E[EnRn] gives the cross-correlation of the error with the 

reference input. 

Cross correlation of error with reference input, 

              10             0  MiiP
ER

,  

Hence, when the weight vector is optimal, the error is 

uncorrelated with the reference input. For the special case i = 

0, the scalar relationship that holds when the LMS method 

has converged is:   0
nn

REE . 

The basic idea behind the correlation LMS method is to 

choose a step size that is directly proportional to the 

magnitude of  
nn

REE , where both En and Rn present the 

scalar quantities at the current nth instant. This way the step 

size will become small when the LMS method has 

converged, but will be larger during the convergence process. 

One can estimate the expected value by using a running-

average filter with input 
nn

RE . However this is a computation 

heavy procedure because it requires storage of previous 

samples of En. 

 

3. LLLeeeaaakkkyyy   LLLMMMSSS   MMMeeettthhhoooddd::: 

When an input with poor spectral content is used, the LMS 

method can diverge with one or more elements of the weight 

vector growing without bound. An elegant way to guard 
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against this possibility is to introduce a second term in the 

objective function. Here we calculate an augmented mean 

square error as: 

Augmented mse:     0   

 termfunction  penalty    

2 


,
 n

T

nnn
HHEEH  

           

The penalty function term tends to penalize the minimization 

process if we select a Hn for which Hn
T
Hn is large. A 

simplified formulation of the learning rule for this 

method is: 

nnnn
RμEνHH 2

1



 

where μγν 21  is called the leakage factor. When  = 1, 

leaky LMS method reduces to the basic LMS method. If 

Rn = 0, then Hn “leaks” to zero at the rate 
0

HγH n

n
 . 

Typically, the leakage factor is 10  , with 1 . The 

inclusion of the leakage factor enhances the stability of the 

algorithm for a variety of inputs. However, it also increases 

the excess mse due to the inclusion of the penalty term. 
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THE RECURSIVE LEAST SQUARES (RLS) 

METHOD 

RLS is an efficient alternative to the LMS method, which typically 

converges much faster than the LMS method, but at a cost of more 

computational effort per iteration. This method uses the more 

general time-varying performance criterion, 

   1   
1

tion termregulariza

2  


 kHHEH
n

i

Tn

i

in

n
,  

 = forgetting factor (an exponential weighting factor ) , 0 <   1 

 = regularization parameter (  > 0) 

The regularization term is very similar to the penalty function term 

of leaky LMS method. When  < 1, it has the effect of reducing the 

contributions from errors in the remote past. When  = 1 and  = 0, 

the performance criterion becomes proportional to mse at iteration 

n. The solution for the optimal weight at iteration n can be 

obtained as: 

    nnn
PRH 1  

Unlike the LMS method, which asymptotically approaches the 

optimal weight vector using a gradient based search, the RLS 

method attempts to find the optimal weight at each iteration. 
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TTThhheee   RRReeecccuuurrrsssiiivvveee   LLLeeeaaasssttt   SSSqqquuuaaarrreeesss   (((RRRLLLSSS)))   AAAlllgggooorrriiittthhhmmm   

Although the LMS algorithm has its strength in its computational 

simplicity, its weakness lies in slow convergence. The basic LMS 

algorithm has only a single adjustable parameter, the step size 

parameter . To obtain faster convergence, it is necessary to devise 

more complex algorithms, which involve additional parameters. 

Typically, we can attempt to make use of an algorithm that 

involves M parameters, one for each of the eigenvalues 

0 1 2 1, , ,......, M      of the correlation matrix R. An efficient 

alternative to the LMS method is called the recursive least 

squares or RLS method. The RLS method typically converges 

much faster than the LMS method, but at the cost of more 

computational effort per iteration. RLS algorithm is used in 

adaptive filters to find the filter coefficients that recursively 

produce the least squares (minimum of the sum of the absolute 

squared) of the error signal (difference between the desired and the 

actual signal). This is in contrast to the LMS and many other 

steepest descent based algorithms that operate on the statistical 

approach based on the mse criterion. In RLS method, we deal 

directly with the data sequence and obtain estimates of correlations 

from the data. 

 

ANJA
N R

AKSHIT an
d A

MITAVA C
HATTERJE

E 

ELE
CTRIC

AL E
NGIN

EERIN
G D

EPARTMENT 

JA
DAVPUR U

NIV
ERSITY, K

OLK
ATA, IN

DIA



Digital Signal Processing 

 Amitava Chatterjee 

Jadavpur University, Electrical Engg. Deptt., Kolkata, India. 

 10 

For a recursive algorithm, it is necessary to introduce a time 

index in the filter-coefficients or weight vector and the error 

sequence.  

In matrix notation,         1 2 1
, , ,......,T

n o n n n M n
H h h h h


 
    

                                (M = order of the filter). 

Similarly, the reference vector, i.e. the signal input to the filter is 

 1 2 1
, , ,......,T

n n n n n M
R R R R R   

 
  . Now the RLS problem can be 

formulated on the basis of the performance criterion: 

  2

1

,     1
n

n k

n n k

k

H E n  



       (1) 

or on the basis of the more general time-varying performance 

criterion: 

   2

1

,     1
n

n k n T

n n k n n

k

H E H H n  



      (2) 

where  ˆ T

k k k k k kE P N P H R         (3) 

is the difference between the desired i.e., the primary signal and 

the filter output signal, at the kth instant. The objective of the RLS 

filter is to minimize the performance function (also termed as a 

“cost function”) by appropriately selecting the filter coefficients, 

i.e., weights Hn, updating the filter coefficients as new data arrive. 

The exponential weighting factor, 0 <   1, is called the 

forgetting factor. The purpose of this factor is to weight most 
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recent data samples more heavily and, when  < 1, it reduces the 

contributions from errors in remote past. This allows the filter 

coefficients to adapt to time-varying statistical characteristics of 

the data. This is accomplished by the concept of exponential 

weighting. In equation (2),  is called the regularization 

parameter ( > 0). The second term in equation (2) is similar to the 

penalty function term in the leaky LMS method. This tends to 

prevent solutions for which 
T

n nH H  grows arbitrarily large. This has 

the effect of improving the stability of the RLS algorithm. When  

= 1 (no exponential weighting) and  = 0 (no regularization), the 

performance criterion in equation (2) is proportional to the mean 

square error at time n. Now, considering the generalized 

performance criterion, 

   

  

   

   HIRRHRPHP

HHHRRHRPHP

HHRHRHPP

HHRHPH

n

k

n

k

nT

kk

knT

kk

T

k

kn

n

k

Tn
n

k

T

kk

Tkn

kk

T

k

kn

n

k

Tn

k

T

k

T

kk

kn

n

k

Tn

k

T

k

kn

n

 

 





 



 



















1 1

2

1 1

2

1

22

1

2

2            

2            

2            

 

Let us introduce the following expressions for generalized versions 

of the auto-correlation matrix and cross-correlation vector, at time 

instant n. 
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   IRRR n
n

k

T

kk

kn

nR






1

 

   



n

k
kk

kn

nPR
RPP

1
 

Substitution of these quantities gives, 

      


 
n

k
nR

T

nPR

T

k

kn

n
HRHPHPH

1

2 2  

Hence by obtaining the gradient vector of partial derivatives of 

 H
n
  with respect to the elements of H,  

       nPRnRn
PHRH 22   

Hence, the optimal weight at time instant n is obtained from: 

    0 H
n

 or    nPRnR
PHR   or    nPRnRn

PRH 1  

 

Choice of  

Smaller the value of , smaller the contribution of the previous 

samples. This makes the filter more sensitive to recent samples, 

which causes more fluctuations in the filter coefficients. When  = 

1, the case is referred to as the growing window RLS algorithm. 

 

RRReeecccuuurrrsssiiivvveee   FFFooorrrmmmuuulllaaatttiiiooonnn   

Although we can obtain the optimal weight vector Hn by 

minimizing  n nH , the computational burden required to find Hn is 
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enormous. This computational effort increases with increasing n. 

The required computation can be made more economical if the 

solution can be reformulated in a recursive manner. Here we 

start with the solution at (n–1)th iteration and add a correction 

factor to obtain the solution at nth iteration, i.e. 

 1 1n n nH H H     

To achieve this recursive formulation, we first need to express 

RR(n) in terms on RR(n-1). 

 

 

   

1 1

1

1
1 1

1

1

       

                       1

n
n k T n

k kR n
k

n
n k T n T

k k n n

k

T

n nR n

R R R I

R R I R R

R R R n

  

  



  




  





 
  

 

 
   

 

  



  

Hence the exponentially weighted and regularized auto-correlation 

matrix can be computed recursively. 

An initial value of RR(0) is required to start the recursion process. 

One can set RR(0) = I (assuming Rn as causal). Similarly, the 

generalized cross-correlation vector can be obtained in a recursive 

manner. 

 
 

  1                                          
1

0

1

1

1















 

nRPP

RPRPRPP

nnnPR

nn

n

k

n

k
kk

kn

kk

kn

nPR

,
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These two equations are called the time-update equations for 

RR(n) and PPR(n). The recursive formulation for PPR(n) requires an 

initial value. This initial value is set as PPR(0) = 0. 

The time update equations greatly simplify computations of RR(n) 

and PPR(n). However we still need to compute the inverse of RR(n) 

to solve the equation:    nR n PR n
R H P . This is another computation 

heavy procedure. However, it is also possible to compute  
1

R n
R

 

recursively by utilizing the matrix inversion lemma given as: 

   
11 1 1 1 1 1A BCD A A B DA B C DA
          

We utilize this result to obtain  
1

R n
R  from  

1

1R n
R

 . 

Let  1 , , 1,   and  T

n nR n
A R B R C D R


    . 

    

 

   

 

 

   

 

1
1

1

1 1

1 1
1

1
1

1

1 1

1 11

1 1

1

.1.

1 1
. .

1
          

1
. . . 1

1
          

T

n nR n R n

T

n nR n R n

R n
T

n nR n

T

n nR n R n

R n T

n nR n

R R R R

R R R R

R

R R R

R R R R
R

R R R



 





 






 

 







 

 

 



  

 
 

    
 

 
  

 
  

  

 

Hence it is possible to compute  
1

R n
R

 from the knowledge of 

 
1

1R n
R

 .  
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Now let us denote: 

 

n

T

nn

nnRn

rRc

RRr



 



 

 

 

1

1 

 

From the original definite of RR (n), it is a symmetric matrix. 

Now, 

     

       
   

     

1 1

1 1

1 1
1

1

1

1

1 1

1

        

            is a symmetric matrix

1
    1

T T
T T

n n nR n R n

T
T T T

n R n

T

n RR n

T

n n

R n R n

n

r R R R R

R R X X

R R R

r r
R R n

c

 

 

 








 



 

 



 
   

 



  

This equation shows that we need not compute any matrix 

inversion explicitly. To start the procedure, an initial value for the 

inverse of the auto-correlation matrix is required. It can be set as, 

 
1 1

0R
R I   (assuming Rn as causal). 

The initial estimate of the inverse of the auto-correlation matrix is 

not likely to be accurate. However the exponential weighting 

associated with  < 1 tends to minimize the effects of any initial 

error in the estimate after a sufficient number of iterations. Let us 

introduce the notation Q for 
1

RR
.  
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Then the RRRLLLSSS   aaalllgggooorrriiittthhhmmm can be given as: 

ALGORITHM 1: RLS Algorithm 

1. BEGIN 

2. Specify the following parameters: 

M = filter order ( M  0) 

 = exponential weighting factor (0 <   1) 

 = regularization parameter ( > 0) 

N = number of iterations ( N  1) 

3. Initialization: 

   

           is   and 1 are  and  

00

000

000

MMQMPH

δ

I
,Q,PH

PR

PR




 

4. Computation: FOR n = 1 to N 

 

 

1 2 1

1

, , ,..... ;

;

;

T

n n n n n M

n nn

T

n n n

R R R R R

r Q R

c R r

   



 
 



 

 

   

   

   ;

;

;

nPRnn

n

T

nn

nn

nnnPRnPR

PQH

c

rr
QQ

RPPP






















1

1

1
 

ENDFOR 

5. END 
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The RLS method in Algorithm – 1 is an algorithm of order O(M
2
). 

The much simpler LMS algorithm is an algorithm of order O(M) 

with the computational effort proportional to m. There are faster 

variations of the RLS algorithm later proposed, which exploit 

recursive formulations of rn and Hn. 

Now we demonstrate the development of the RRRLLLSSS   aaalllgggooorrriiittthhhmmm in 

another form, where the adaptation in weights is shown in the 

11 


nnn
HHH  form. Let us go back to the relation, 

    

   

 

1 1

1 11 1

1 1

1

1
T

n nR n R n

R n R n T

n nR n

R R R R
R R

R R R 

 

  

 



 
  

  
 

We have already defined earlier  

1
nRn

HQ . We can write, 

        1 1

1 T

nn n n n
Q Q K R Q

  
  
   

where K(n) is a gain vector, defined as 

  

 

 

 

 

1 1

1

n nn n

n T

n nn n

Q R Q R
K

R Q R  

 



 
   

K(n) is called the KKKaaalllmmmaaannn   gggaaaiiinnn   vvveeeccctttooorrr. 
 n

  is a scalar quantity and is 

given as 

    1

T

n nn n
R Q R


  

Now, postmultiplying by Rn, 
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       

        

 

     

1 1

1

1
         

         

T

n n n nn n n n

n n n n

n

n n n

Q R Q R K R Q R

K K

K
K



  


  


 
  
 

   
 

    
 

 

Hence, the KKaallmmaann  ggaaiinn  vveeccttoorr may also be defined as, 

     nn n
K Q R  

Now, 

 

       

   

     

          

         

   

 

1

1

1 1 1

1 1 1 1

1 1

1

 and 

       

1
       

       

       

       

n n nn PR n PR n PR n

n n PR n

n nn PR n n

T

n nn n n PR n n

T

n nn PR n n n PR n

T

n n nn n

n nn

H Q P P P P R

H Q P

Q P P Q R

Q K R Q P P K

Q P K P R Q P

H K P R H

H K














  

   

 



  

 

 

 
   

 

   
 

   
 

 

 

Here  1
T

n n
R H

  is the output of the adaptive filter at time 

instant n utilizing the filter coefficients at time instant (n – 1). 

Here 1

T

n n n nP R H    is called the a priori error. The error 

calculated after updating the filter is  
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T

n n n ne P R H   

This is called a posteriori error. 

Hence the correction factor in each iteration is  

  1n nn
H K    

This correction factor is directly proportional to both the a priori 

error and the KKKaaalllmmmaaannn   gggaaaiiinnn   vvveeeccctttooorrr. 
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ALGORITHM 2: RLS Algorithm 

1. BEGIN 

2. Specify the following parameters: 

M = filter order (M  0) 

 = exponential weighting factor ( 0 <   1) 

 = regularization parameter ( > 0) 

N = number of iterations (N  1) 

3. Initiatization: 

   

           is   and 1 are  and  

00

000

000

MMQMPH

δ

I
,Q,PH

PR

PR




 

4. Computation: FOR n = 1 to N 

 

 

 

1 2 1

1

1

1

, , ,....., ;

;

;

T

n n n n n M

T

n n n n

nn

n T

n nn

R R R R R

P R H

Q R
K

R Q R





   







 
 

 




 

       

 

1 1

1

1
;

;

T

nn n n n

n n nn

Q Q K R Q

H H K





 



  
 

 
 

ENDFOR 

5. END 
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The recursion used for calculating Q(n) follows a RRRiiiccccccaaatttiii   eeeqqquuuaaatttiiiooonnn 

and thus draws parallels to the KKKaaalllmmmaaannn   fffiiilllttteeerrr. 

 

CCChhhoooiiiccceee   ooofff   RRRLLLSSS   fffiiilllttteeerrr   pppaaarrraaammmeeettteeerrrsss   

There are three important filter parameters associated with the RLS 

method: ,  and M. The suitable filter order M varies with the 

application and is often found empirically. It has also been shown 

that  = (1 – ) plays a role similar to the step size in the LMS 

algorithm. Hence  should be chosen close to unity so that  is 

kept small. 
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CCCooommmpppaaarrriiisssooonnn   ooofff   LLLMMMSSS   aaannnddd   RRRLLLSSS   aaalllgggooorrriiittthhhmmmsss   

A major advantage of the direct-form RLS algorithms over the 

LMS algorithm is their faster convergence rate. The figure below 

shows a comparison of their convergence rates for an adaptive FIR 

channel equalizer problem.  

 

 

 

 

 

 

 

 

 

 

 

Fig. Learning curves for RLS and LMS algorithms for 

adaptive equalizer of length M = 11. The eigenvalue 

spread of the channel is 11




min

max . 

 

For its superior convergence rate, RLS algorithm is more suitable 

for those applications where the signal statistics vary rapidly with 
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time. For example, for the channel equalization problem, LMS 

algorithm is slow to adapt to the new channel characteristics. But 

RLS algorithm can adapt sufficiently fast to track such rapid 

variations. 

However, the RLS algorithms for FIR adaptive filtering have two 

important disadvantages. One is their increased computational 

complexity per iteration. Secondly, RLS algorithms are sensitive to 

round-off errors that accumulate as a result of the recursive 

computations. In some cases, the round-off errors cause these 

algorithms to become unstable. 
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