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PERFORMANCE ANALYSIS OF LMS METHOD

Excess Mean Square Error
To reduce the mean square error time constant, one must‘ehioosea

step size u as large as possible, consistent with the ‘constraints of
convergence. However, a higher choice of u causes higher excess
mean square error. Hence there is a trade off between convergence

speed and steady-state accuracy, while selecting pt.

In LMS method, V. =—2E.R", which-differs from the true value,
V_=2(RH_—P). Error,inthe estimate, of the gradient of the mse

can be modeled aséan additivenojsesterm: V[¢ (H)]=V_ =V_+v. .

The noise tern<y, causes the steady-state value of the mse to be
larger thanvthe theoretical~minimum value and the difference is

referred to as-the excess mse.

ExceSs meanfsquare error: ¢ =& (H )&,

eeeee

This can ke shown, in terms of weight variations as,

=V'RV. (V=H —H)

nexcess
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It can be approximated as:

é:n ~ luémin I\/”:)R

excess

To avoid substantial computational effort required to determingsthe
&min, @ NOrmalized version of the excess mse is often used:

The misadjustment factor of the LIMS method:

M = e ~ uMP.

f

min
The normalized excess mean square-£rrox increases. with u, the
filter order and average powertQf, the input. Henee, to reduce M,

we must decrease p. But to reduceZy., we!must increase . Hence

there will be a trade off:

Table: Performance,Characteristics of an Adaptive Filter.

Property Value

CGonvergence xahge O<p< 1
MP

R

Leakning-cxve time constant o~ 1
mse 4“}\(6“1

EXxeeSs mean square error f ~ Iqu PR

excess min
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MODIFIED LMS METHODS

Several modifications to the basic LMS algorithm have been

proposed to improve the performance:

1. Normalized LMS Method:

The Normalized LMS method was proposed .t0 “develop, a
version of the LMS method that has a-step-size-(«) that does
not depend on average power Pglor filter order\M:. Here the
learning rule is:

H.=H +24ER, . (R =[R/R.(-%R ] n>0

Here the differencel with. the. basic LMS method is that the

step size H, is no‘longer-constant, but varies with time.

Here pi.= vid
R(h)

where ISR(n) = runhing estimate of the average input power.

If |5R(n) issreplaced by the true average power Py, then,

according to the table given before, the range of constant
steptsizes needed to ensure convergence is 0 < a < 1. In this
sense the step size is normalized. Here a single value of o
can be used, independent of the filter size and the input

power.
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Usually a rectangular window or running-average filter is
used to estimate the average input power in a simple manner.

For an Nth order running —average filter:

=2

-1

M

R?.

1l
o

1
(n) N

. Correlation LMS Method:
This method was proposed to avoid the trade-off required

while selecting w. Here one can chogSe aAzxge stepstZe while
striving for convergence, andythis_can, be (followed by the
choice of a small step.SWe, Qnce” convergence has been
achieved. Then the main“oObjective- is to detect when
convergence has-een achieved: Theoretically it is possible to
use Hy,, or &nin tosdetect convergence, but, because of the
computationalburden involved, it is always preferable to use
a less.direct, means:
Let usiassume'that H,, has converged to Hy,.
Then, we_have:

ER =[P -R'HR

~E[ER ]=E[PR]-E[RR'H,=P-RH, =0

(at the optimal weight,
H,=R'P)
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Now, E[E.R,] gives the cross-correlation of the error with the
reference input.
.. Cross correlation of error with reference input,

P.(i)=0, 0<i<(M-1)
Hence, when the weight vector is optimal, Ahé. erron Is
uncorrelated with the reference input. For thé.speciakcase i =
0, the scalar relationship that holds when‘the AMS method
has converged is: E[E R ]=0.
The basic idea behind the correlation<l-MS“method is to
choose a step size that~s\direCtly progertional to the

magnitude of E[E Rg],-where both E, and R, present the

scalar quantities at-the currént nth instant. This way the step
size will become .small when the LMS method has
convergedsbut wilNee largesduring the convergence process.
One «can~estimate the\expected value by using a running-

average filter withninput E R . However this is a computation

heaVy. procedure because it requires storage of previous

Sampleg OTE,..

+Leaky LMS Method:
When an input with poor spectral content is used, the LMS

method can diverge with one or more elements of the weight

vector growing without bound. An elegant way to guard
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against this possibility is to introduce a second term in the
objective function. Here we calculate an augmented mean
square error as:
Augmented mse: & (H,)=E[E?]+ yH'H, , y>0

—

penalty function term

The penalty function term tends to penalize;the minimization
process if we select a H, for which“H, Hy s lafge: A
simplified formulation of the \learning rule>for this
method is:

H,., =vH +2uE R
where v=1-2uy is.called.the teakage-factor. When 5 = 1,

leaky LMS method redQees £ the basic LMS method. If
R, = 0, then "H,(“leaks>*t0 zero at the rate H_=y"H,.

Typically, the leakagefactor is O0<v<1, with v=1. The
inclusion.of\the leakage factor enhances the stability of the
algorithm for,a variety of inputs. However, it also increases

the excess.mse due to the inclusion of the penalty term.
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THE RECURSIVE LEAST SQUARES (RLYS)

METHOD
RLS is an efficient alternative to the LMS method, whieh/typically

converges much faster than the LMS method, but ata cost @f-more
computational effort per iteration. This methad-uses the more

general time-varying performance criterion,

£ (H)=3y"E’+6y'H™H| k=1
i1 — N
reqularizztion term
v = forgetting factor (an exponential weighting factor ), 0<y<1
d = regularization parameter ( 3 S0)
The regularization termis very similar to the penalty function term
of leaky LMS method. When y<. 171t has the effect of reducing the
contributians_from erers in the remote past. Wheny=1and 6 =0,
the performanceseriterionbecomes proportional to mse at iteration
n. “The selution for the optimal weight at iteration n can be
obtained-as:
H, SR
Unlike the LMS method, which asymptotically approaches the
optimal weight vector using a gradient based search, the RLS

method attempts to find the optimal weight at each iteration.
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The Recursive Least Squares (RLS) Algorithm

Although the LMS algorithm has its strength in its computational
simplicity, its weakness lies in slow convergence. The basic/LAMS
algorithm has only a single adjustable parameter, the<step size
parameter u. To obtain faster convergence, it is necessary to«devise
more complex algorithms, which involve additional” parameters.
Typically, we can attempt to make use‘of an ‘atgorithm"that
involves M parameters, one for _kach_«Qf ‘theAelgenvalues
Qs Ay A iy, OF - the correlation paatrvx R.S An efficient
alternative to the LMS method is*called the' recursive least
squares or RLS metho@\ThezL'S methed typically converges
much faster than .the »>LMS- method, but at the cost of more
computational _effert per)iteration. RLS algorithm is used in
adaptive filters to{find thed filter coefficients that recursively
produce, the least.squares.(minimum of the sum of the absolute
squared) of\the’errar signal (difference between the desired and the
actual “signal).~This is in contrast to the LMS and many other
steGp@st destent based algorithms that operate on the statistical
approgch *based on the mse criterion. In RLS method, we deal
directly with the data sequence and obtain estimates of correlations

from the data.
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For a recursive algorithm, it is necessary to introduce a time
index in the filter-coefficients or weight vector and the error

sequence.

(M = order of the filter).

Similarly, the reference vector, i.e. the signal input-to the\filter:is
R =[Rn,Rn_1,Rn_2, ...... ,R(n_M+1)]. Now the RLS proklem <an" be

formulated on the basis of the perforgt@ncecriterign:

&(H,)=27"E{ n>1 (1)
k=1
or on the basis of the morefgeneral time-varying performance
criterion:
E(H) =S B4 "HiH ) n>1 (2)
k=1
where E =R —N, =R <FR, (3)

Is the ‘difference between the desired i.e., the primary signal and
the-filter‘qutput signal, at the kth instant. The objective of the RLS
filter.is to minimize the performance function (also termed as a
“cost funetion™) by appropriately selecting the filter coefficients,
i.e., Weights H,, updating the filter coefficients as new data arrive.

The exponential weighting factor, 0 < y < 1, is called the

forgetting factor. The purpose of this factor is to weight most

10
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recent data samples more heavily and, when y < 1, it reduces the
contributions from errors in remote past. This allows the filter
coefficients to adapt to time-varying statistical characteristics,of
the data. This is accomplished by the concept of expenential
weighting. In equation (2), o is called the regularization
parameter (o > 0). The second term in equation (2)is simifarto the
penalty function term in the leaky LMS method. Fhis tends to

prevent solutions for which H,H, grows_arbitrarilyTarge. This has

the effect of improving the stability.of the RkS-algorithm. When y
= 1 (no exponential weighting).and 6.= 0)(nao_regularization), the
performance criterion in equationA2)\is propettional to the mean
square error at timen- Now,~ considering the generalized

performance critefiof,
( (H)=S9" [PH R sy H
Sy
=5 [F-2HRR ]+ 2y H'R[RTH ]+ 8y H™H

P2S2PH'R +(H'R )\ |+8yH™H

o ynkRZ—zHTaRthTLiy”kRkR;+8y“|}4

Let usdintroduce the following expressions for generalized versions
of the auto-correlation matrix and cross-correlation vector, at time

instant n.

11
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RR(n)é; YRR +8Y

P A1 PR,
Substitution of these quantities gives,

&, (H)=2y"P’=2H'P,, + H'R,H
Hence by obtaining the gradient vector of-partial derivatives of
& (H) with respect to the elements of-H,

vlg,(H)]=2R, H-2P,;

Hence, the optimal weight at time instant n is-obtained from:
V[an(H )]:O or RR(n)H . PPR(n) or Hn - RF:(Ln)PPR(n)

Choice of y

Smaller the\value of vy,.smaller the contribution of the previous
samples. This makes the filter more sensitive to recent samples,
which causes more fluctuations in the filter coefficients. When y =

1, the case is referred to as the growing window RLS algorithm.

Recursive Formulation
Although we can obtain the optimal weight vector H, by

minimizing & (H,), the computational burden required to find H, is

12
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enormous. This computational effort increases with increasing n.
The required computation can be made more economical if the
solution can be reformulated in a recursive manner. Here we
start with the solution at (n—1)th iteration and add a cokrection
factor to obtain the solution at nth iteration, i.e.

H =H_,+AH_,
To achieve this recursive formulation, we first need to express

Rr In terms on Rgg.p).

YRR+ 5"

e
i
<
-

=~
Ll

=}

=y > " “'RR] 57"l [+ R R’

=1

=~

= 7Re(ny + R (n>0)

Hence the exponentially welghted:and regularized auto-correlation
matrix can be-computed=recursively.

An initial value .of Rg().1s required to start the recursion process.
One,_can set Rg) = 0l (assuming R, as causal). Similarly, the
generalized-cross-correlation vector can be obtained in a recursive

manner.
Byf=2v"RR =Xy"RR +'PR,
—yP,.,+PR,  nx1

PR(n-1

13
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These two equations are called the time-update equations for
Rrm and Pprm). The recursive formulation for Ppg(yy requires an
initial value. This initial value is set as Ppg(g) = 0.

The time update equations greatly simplify computations 0f Rg(,

and Ppgr(y). However we still need to compute the inverse of Rg

to solve the equation: Rq,H, =Fx,. This is another-computation

heavy procedure. However, it is also possible to eompute R;(ln)

recursively by utilizing the matrix invetsion lewima given-as:
(A+BCD) " =A" - A'B(DABFC ) DA’

We utilize this result to obtain "Ry, from"Rei(y)"

Let A=yRy, ,,B=R,,C=1 andD=R;].

- R

oy = (7Rego e Ry LR )_1

a
~R
:—1_R‘1 ]_ RN

v RTlR‘(l)R+1

R RRIRL
R R(n-1) R(n-1)

n-1)
") 7/+ RrT RR(ln—l)Rn

1.
'Rn'Rn ; RR(n—l)

Hence. it is possible to compute R y from the knowledge of

R—l

R(n-1) *

14
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Now let us denote:
AR R,
c,Av+RT,
From the original definite of R (), it is a symmetric matrix:

Now,

i =(ReyR) =R (Rt

R(n-1)" 'n R(n-1)

-1 T -1
=R7 (Ray) ((X ) =(x7) )
=R Reg) ("~ Ry is a symmetric.matrix )
I rrl

RR(ln) = ;|:RRELn1) e } (n 21)

n

This equation shows that\we n€ed not! compute any matrix

inversion explicitly. To start the‘procedure, an initial value for the

inverse of the autescortelatien mairx is required. It can be set as,

Reo) =9 | (asstimingRyas eausal).

The initiakestimate, of theninverse of the auto-correlation matrix is

not «likely to pe accurate. However the exponential weighting

associated with < 1 tends to minimize the effects of any initial

ercornn the ‘estimate after a sufficient number of iterations. Let us

introduce the notation Q for Ry'.

15
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Then the RLS algorithm can be given as:

ALGORITHM 1: RLS Algorithm

1. BEGIN
2. Specify the following parameters:

M = filter order (M > 0)

y = exponential weighting factor (0 < y< 1)
o = regularization parameter (o> 0)

N = number of iterations ( N > 1)

3. Initialization:

I
Ho - O’PPR(O) = O’Q(o) - g
(H, and P, are(MxL)and @, is (MxM))
4. Computation: FOR'n ="_te'N

h
R, =| Ro@N, RN |
rn R Q(n—l) Rn’
0=y R

PPR(n) = YPPR(n—l) + P Rn’

n

Hn - Q(n)PPR(n);
ENDFOR
5. END

16
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The RLS method in Algorithm — 1 is an algorithm of order O(M?).
The much simpler LMS algorithm is an algorithm of order O(M)
with the computational effort proportional to m. There are faster
variations of the RLS algorithm later proposed, which-exploit
recursive formulations of r, and H,.

Now we demonstrate the development of the RLS algorithm in
another form, where the adaptation in weights/is shown i the
H =H_  +AH_. form. Let us go back to the relation,

R, -2 R, - AR By
y KRR LR,

We have already defined earlierQ = H. .. *.We can write,

R(n)
_L K R
Q(n)‘;[Qm—l)‘ (n) nQ<n—1>}

where Ky IS @ gain vector, defined as
Q(n—l) Rn . Q(n—l) Rn

K(“): RT R
TP Qg 7+ 4

Kyis Called\the Kalman gain vector. ,  is a scalar quantity and is

given‘as

T
lu(n) o Rn Q(n—l) Rn

Now, postmultiplying by Ry,

17
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_ . T
Q(n) Rn - |:Q(n—1) I:en K(n)Rn Q(n—l) Rn:|

= _[{7 + iy Koy = K(n)”(n)}

-

~ =

- $[7 a0 “(nJ =K

Hence, the Kalman gain vector may also be defined-as,

Ky =QnRs

Now,
H, = Q) Per(ny aNd Pogy = ¥R+ RiR
< Hy = Q) Poriny

= 7/Q(n)PPR(n—1) * P”Q(“)Rn
1
= 7/{;{Q(nl) ] K(n)R;Q(nl)}:| PPR(”_l) +F K(”)

J Q(n—l) PPR(n—l) o K(n) |:Pn - RJ Q(n—l) PPR(n—l):|
Lo, K, [ P —RTH . |
=H 5+ K(n)an

% i : i i
Here R; H(n_l) Is the output of the adaptive filter at time

instant n utilizing the filter coefficients at time instant (n — 1).

T . L
Here @, =B, =R H_ is called the a priori error. The error

calculated after updating the filter is

18
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en:F)n_RrTHn

This is called a posteriori error.

Hence the correction factor in each iteration is Q/

AH_ = K(n)an g?,
This correction factor is directly proportional to e

> &
error and the Kalman gain vector. ?“ &@{v
K&

IR

19
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ALGORITHM 2: RLS Algorithm
1. BEGIN

2. Specify the following parameters:
M = filter order (M > 0)
y = exponential weighting factor (0 < y< 1)
o = regularization parameter (o > 0)
N = number of iterations (N > 1)

3. Initiatization:

|
Ho - O’PPR(O) = O’Q(o) - g
(H, and P, are(MxL)and @, is (MxM))

4. Computation: FOR™ = 4.1to'N

.
R, =| R GNR AAR, T
a, = IDn - R;Hn—l;
L QR
n T
, ¢ + Rn Q(n—l) Rn

1 T .
Q= ;[Q(n—l) ~ KR Qg ]

Hy s H, +K 2,

ENDFOR
5. END

20
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The recursion used for calculating Q) follows a Riccati equation
and thus draws parallels to the Kalran filter.

Choice of RLS filter parameters

There are three important filter parameters associated with the RLS
method: y, d and M. The suitable filter order M(varies with the
application and is often found empirically. It has also’been shown
that A = (1 — vy) plays a role similar to the.step.size in the. LMS
algorithm. Hence y should be chosen.close.t@ unity~so that A is

kept small.

21
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Comparison of LMS and RLS algorithms
A major advantage of the direct-form RLS algorithms over the

LMS algorithm is their faster convergence rate. The figure below
shows a comparison of their convergence rates for an adaptive FIR

channel equalizer problem.

100
| .
@)
=
)
010=
C = LMS algorithm
> * 8002
(Vp] —
C —
©
% T RLS-algarithm

v =/0:999
103 —F i

T
.0 100,200 300 400 500 600 700
Ntumber of iterations

Fig.nLearning eurves for RLS and LMS algorithms for
adaptive " equalizer of length M = 11. The eigenvalue

spread of+the channel is ;t—”‘ax =11.

min

For its superior convergence rate, RLS algorithm is more suitable

for those applications where the signal statistics vary rapidly with
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time. For example, for the channel equalization problem, LMS
algorithm is slow to adapt to the new channel characteristics. But
RLS algorithm can adapt sufficiently fast to track such rapid
variations.

However, the RLS algorithms for FIR adaptive filtering<have twe
important disadvantages. One is their increased computational
complexity per iteration. Secondly, RLS algorithms are sensitive 10
round-off errors that accumulate as a fesult ofthe reebrsive
computations. In some cases, the round-off errors{ cdause these

algorithms to become unstable.
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