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Image Segmentation Algorithms

v The principal objective of image segmentatlo[{ ﬁggalvide
an image Into its constituent regions o evel of
detail to which the subdivision is c ga?ends on the
problem under consideration. &3

Image Segmentatlon
Algorithms

AG0E TN

Discontinuity based Approach Similarity based Approach

P -
Partition/segmeft an(jmage into Partition/segment an image into
regions basedn’abrupt changes regions that are similar

in‘intensity according to a set of predefined
criteria



Image Segmentation Algorithms
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Image Segmentation Algorithms
Fundamental Concepts
Let R represent the entire spatial region occupied by anitmage,

Problem in Hand ...

Partition/segment R into n subregions R, R5; . <, R such that:

n \ .

(i): JR =R - Segmentation.must be complete.
N R isaconnected sét, -‘ Points in a region must
ii):

(1) ‘ =12 be connected.

— A
(iii): ‘ KO% =] - Region must be disjoint.

foralliand j,i# 4

. R )=TRWEfor \ Al vixels in R. have the
(|v):~ Q(_l)z .y Pr .q{’

same intensity level.

(R R =FALSE for \  Two adjacent regions R,

V 0
W adjacent regions R and R, | and R; must be different.




Image Segmentation Algorithms
Fundamental Concepts (contde)

A Basic Example . ..

An Original Boundary of the Segmented Image
Image Containing Inner Region employing
a Region of obtained from Thresholding
Constant Intensity

Intensiy Discontinuities



Image Segmentation Algorithms
Fundamental Concepts (contdsy)

asic Example contd ...

Same Original Processed image Segmented Image
Image Containin obtained from employing Region
a Noisy (textured Edge Splitting and

Region Computations Merging



Discontinuity based Algorithms
Point, Line and Edge Detection

What is the Primary Objective ??

To detect sharp, local changes in intensity.

Three Types of Image Features ynder Consideration ...

Isolated points, lines and edges.
What are Edge Pixels anidl Edges 2%

Edge pixels are those pixels where the intensity of an image function
changes abruptly. Edges (or€dge:segments) are sets of connected edge
pixels.

What are Edge Betectors ??

Edge detectorsiare lacal image processing methods utilized to detect
edge pixels.



Discontinuity based Algorithms
Point, Line and Edge Detection (gantd...)

How to Detect Local Changes in Intensity 22

By using Derivatives.

Why Derivatives are Prime Canididdateés for this Operation ??

We know Averaging, which is@nalqgdls te-integration, smoothes an
Image. Hence the operation-ef differéntiation should logically be effective
to detect abrupt, local changesydinténsity.

Both First and Sgfend-Order Derivatives are well suited for this
PUrpose.



Discontinuity based Algorithms
Point, Line and Edge Detection (gantd...)

Constraints of using an _Approximation, for I*Derivative. ..

v Must be zero in areas of constant iQtersity.

v Must be non-zero at the onsetofRanAntensity step or ramp.

v Must be non-zero along ramps.
Constraints of using aw-ApproXiniation for 2 Derivative. ..
v Must be zero in afeas.of- tonsiant intensity.

v' Must be non-zerg-at the_onset and end of an intensity step or
ramp.

v' Must be zérp alghg ramps of constant slope.



Discontinuity based Algorithms
Point, Line and Edge Detection (gantd...)

Implementing a 1°* Derivative. ..

ofifilii f< df W é‘{ﬁ is a function
azf(x):f(ﬁl)_f(x) ox e Qf-only one variable.

Implementing a 2 Derivative..’

21 = )2 -

)

f(x
fx+2)- flx+1)- f(x+1)+ f(x)
fx+2)-2f(x+1)+ f(x)




Discontinuity based Algorithms
Point, Line and Edge Detection (gantd...)

Comparison of 1°* and 2" Derivatives Illustrated. ..

Same image with a horizontal line ~ Horizontal intensity

Original image ; _ _ :
through theisolated noise point profile
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Discontinuity based Algorithms

Point, Line and Edge Detection (gantd...)
Comparison of 1% and 2™ Derivatives Illustrated (coutd. -
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Conclusions. ..
First order derivatives producentick 8dges and second order derivatives

produce finer edges.
For both ramp and step,edges-second derivative produce double-edge
effect.

The sign of theiseeona~order derivative is used to determine whether an
edge iIs a transitiod from light to dark or dark to light.



Discontinuity based Algorithms

Point, Line and Edge Detection (gantd...)
Comparison of 1% and 2™ Derivatives Illustrated (coutd. -

Salient Points to be Remembered. ..

First order derivatives generally producéthicKer edges in an image.

Second order derivatives have astropger response to fine detail e.g. thin
lines, isolated point and noise:

Second order derivatives prgduce-a double-edge response at ramp and
step transitions of intensity:

The sign of the second o¥der derivative can be used to determine whether
an edge is a transitton from light to dark or dark to light.



Discontinuity based Algorithms
Point, Line and Edge Detection (gantd...)

How to Compute 1** and 2" Derivatives at Every PixelLotation ??
By using Spatial Filters.

vy
i Z ) I3 av [llitkel Ya
<yl 28 ZQ&? Wa llliMeilll We
<
A 3 x 3 image section A 3 x 3 spatial filter
under consideration mask employed for

this image section

Response of the mask :
at the center point of q R—wz t Wz -tz — Nz

the region= R =



Isolated Point Detection

This should be based on computation of second derivative:

Apply the Laplacian.

The Laplacian of an image ‘ W‘ @\J{) s f X, )/ 5 J (X y YV )

function flx, y) of two variables? oy”

@zf(‘%)y‘):f(x+1,y)+f(x—1,y)—2f(x’J’)

Common digital ‘ o lex
approximations of the \ Y
second derivatives: L f()z’y) = f(x,y+D)+ f(x,y-1)-2f(x,y)

1 oy

V(%)= fGEEL) + f(x=13)+ f(x,y+D)+ f(x,y=1) =4 (x, )



Isolated Point Detection

The masks for 2"d derivative operators of stze 3 x 3:

0| 110 1 | UQL

1| -4 1 R«® | 1

gl 1 | 0 >f Q}‘"‘V 1|1
Mask 1 Mask 2

. B

Mask employing Laplaciafi
considering conventional
horizontal and vertical directions

. =

Mask employing Laplacian
considering four directions: (a)
horizontal, (b) vertical, (c) +45° and
(c) -45° directions

A e A ‘R(x,y)‘ZT
E’ g(x’y)_{o otherwise

T: a non-negative threshold

A point is said to.be detected
at point (x, y), onwhich the
mask is centered, if |R(x,y)| at
that point exceeds a threshold.



Isolated Point Detection

An Example ...
&I M

%Céc; Oﬂ,‘}‘ 1

SN

A Laplacian Mask \

X-Ray Image f Turbine Bladewith-a
Porosity (contains a single black pixel)

N3
Result of Result of
Thresholding the Convolution

Response (single
point detected
shown enlarged)




Line Detection

Second derivatives should produce stronger response and<thinner lines
than first derivatives.

We can utilize the Laplacian masks.as.we-did in-gase of point detection.

An Important Note...

The double-line effect of the second derivative has to be handled
properly.



(a) Original-Image of

a wire-bond mask
R,

(b) Laplacian Image
considering the mask in
the previous example

(c) Absolute value of the
Laplacian

(d) Positive values of the
Laplacian




Line Detection

An Important Observation ...

The Laplacian detector used in the previous example-gives a.response
which is independent of direction.

If we are Interested in Detecting Linesr Spectfied Directions,
what should we do 2??

We have to utilize Special Line DstectignNVasks.

<
’“
AT (e [ ] 2 [ [-2]-1] 2

2 2|2 )2 | 1| [2|2]1]]-1]2]|

1ltleafet]al2||al2]a]||2]1]1

Horizontal +45° Vertical -45°



Line Detection
Previous Example Revisited . ..

N

(b)

(d)

(a) Original Image of the same
wiresbond\mask

N

(b) Processed Image utilizing
the 95° (life detection mask

(c)}-Zoomed view of the top
left region of (b)

(d) Zoomed view of the
bottom right region of (b)

(e) Image in (b) with All negative
values set to zero

(f) Resulting of Thresholding
operation on the Image in (e)



Edge Detection

Edge Detection is the most frequently used technique forsegmenting
Images based on abrupt (local) changes in intensity.

Edge Models

They are classified according to theirinteqsity profiles.

/\

(a) (c)

Ideal représentations and corresponding intensity profiles of
(a) step edge, (b) ramp edge, and (c) roof edge.



Edge Detection

.

Horizongaldntcnsity

profile

-

First
derivative

Second
derivative

A
Zero crossing —/  *

(a) (b)

(a) Two regions-oficonstant intensity separated by an ideal vertical
ramp edge.(b) Detail near the edge with first and second derivatives.



Edge Detection

Conclusion ..

The magnitude of theAjrst dégvative can
be utilized te detect e presence of an

edge at a-point in‘the image.
Thesigrof the firgt-tlerivative can be
utilized te determine whether an edge pixel

ties ofpthe dark or light side of the edge.

Important Points to be-Considered . ..

The second derivatiwesprodacestwo values for every edge in the image,
which is an undesirable‘feature:

The zero-crossing,of thetsecond derivative can be used to locate the
centers of thick-€dges:



Edge Detection
A Comparative Study of 1°* and 2" Derivatives of %Q%@) Edge
N

B B R O
/ ‘ Colum Images n@nsnyProflles

of a Qe orrupted by Gaussian

:Q?YB“S.D. =0, 0.1, 1.0,

/ ~ m |
i &&géog \e\l‘s‘?y‘ evels, respectively.

-
/ | v (O
{ HMﬂW&@Z@A :&

Column 3. Second Derivative images
and Intensity Profiles.




Edge Detection
Three Fundamental Steps Performed in Edge Det

e



Edge Detection using Image Gradient

The edge strength and direction at location (X, y) of an |lmage f\can be
found by using the gradient Vf. AN ‘

$/ _
The gradient of a function §</ @

flx, y) at coordinates (x, y) is = S
defined as the two- ‘ é@gr@“f _{ } gl

dimensional column vector:

| Oy _
The magnitude -mag(Vf) M(x,y)=
(length) of vectorV£: e
The direction of ve€torY fiwith y) tan™
respect to the x-axis: gx
0w 9y M(X, y) 2 %ﬁare Images of the same size as the original. M(x, y) is
called the gr The direction of an edge at an arbitrary point (x, y) is

orthogonal to t rectlon o(x, y), of the gradient vector at the point.



Edge Detection using Image Gradient

Determination of Edge Strength and Direction at dPoint
= ¥

G’:ﬁdi: I ve

o

direction

" -

AT
(a) (b) (c)

Note. Each square inthe figure‘represents one pixel. The pixels in
gray have vatte 0 and the plxels In white have value 1.

At our point # ; af A M(x Y ) 22
of interest: Vf.s { } af —{ 2} q afx, y) = tan- {g }:_450
g.

The directioil A o —90° — 45° A The entire edge segment
angle of the edge: q B q is in the same direction.

| Oy |



Edge Detection using Image Gradient

Gradient Operators

_ 9 lxy) _ q
Digital Approximation Y P et )
of First Derivative: _ &)

g, = f(oy+1)-f(x,p)

oy

When diagonal edge directions are

) LV W \
Important, we need 2-D Masks. =

K_H

Roberts Cross-Gradient Operators; |
6= —(z,-2) g, ST <722 gl
x ax 9 5/ y ay 8 6 1
RO One-dimensional masks
L 0| o
A ) QQQ Masks that are symmetric about
0 1 V:[ 0 the center point are more popular
than masks of even sizee.g. 2 x 2.




Edge Detection using Image Gradient
Gradient Operators
The masks for 15t derivative operatorg.of stze 3 x 3:

1] 2|1 1 oo |1
0 | 0|0 el o 2
1 | 2 [ Al o 1

Sebeloperators

of

g =—=(z7 w2z, +Zg)—(z1 +2z, —|—23)
19),8

o

g :—:(23+226 +zg)—(zl+224 -I—Z7)
B ay

M(x,y)z‘(z7 WX+ z,)— (2, + 2z, +Z3)(+‘(23 +2z +z )—(z, +2z, +Z7){



Edge Detection using Image Gradient
Gradient Operators
The masks for 15t derivative operators of size 3 x 3:

1| -1 [l S R0 |1
0| 0| O ¢rl o | 1
1 |1 |l 10| 1

Prewitt‘operators

M(x,y)z‘(; +z, +Zg)—(z1 +z, +Z3)(

+la+z,+z,)-(z,+ 2, +2,)



Edge Detection using Image Gradient
Gradient Operators
Prewitt and Sobel masks for detegtingdragestal Edges

011 2 A0 |
1| 0 || a4 N8|
1 | -1 [0l B
S \
Prewitt
o [# 2] [2]2]o
1 !gbxéslﬁj i 0 1
20 0 [1]2

Sobel



Edge Detection using Image Gradient
An Example. . .

—

(b) Processed Image utilizing the vertical
S6bet mask with Automatic Thresholding

(c) Processed Image utilizing the vertical (d) Processed Image utilizing both vertical and
Sobel mask with Specified Threshold horizontal Sobel mask with Specified Threshold

B
(a) Original Image of a building




Edge Detection using 2" Derivative

v The Laplacian of a Gaussian{LOG) Edge Detector.

v The Canny Edge‘Detector



Edge Linking and Boundary Detection
Constraints of Edge Detection Algorithms. ..

The pixels identified on edges seldom completely characterizé edges.
Why 2?

Because of noise, breaks in the edgesdue te-noh-ugtform illumination,
and other effects that introduce spurtoussdiscontinuity in intensity
values.

Is there any Solution ??

Yes, the Edge Detectionsitodehtypieally be followed by Edge Linking
algorithms so that theedge pixels tdentified are assembled into
meaningful edges and/o¥region boundaries.

Three fundamgntal V) ISR et

approaches t@’ Edge = 1) Regional Processing
Linking:

111) Global Processing



Edge Linking and Boundary Detection

Local Processing

Analyze the characteristics of pixels in a small neighbathood of each

edge pixel, identified by any edge detection-algorithm;.utilizing a
predefined criteria.

Link all those points which are foting,to share some common properties
according to the specified critéria.

How to specify the-CritetigJor Establishing Similarity ??

Utilize the Strength ¥magwitude) and the Direction of the gradient
vector.



Edge Linking and Boundary Detection

Local Processing

Let S, denote the set of coordinates centered at'peint (x, ¥). An edge
pixel with coordinates (s, t) in S, Is similag to thspixel\at'(x, y) if both
magnitude criterion and angle criterionare satisfied~Then the pixel at
(s, 1) can be linked to the pixel at (x, 4.

Magnitude Angle
Criterion Criterion
‘M(S,t)—M(x,y)(SE ‘a(s,t)—oc(x,y){SA
E: a positive threskigid A: a positive angle threshold

This process is repeated-at every location in the image.

However this'method is Computationally Expensive because all neighbors
of every point arge needed to be examined.



Edge Linking and Boundary Detection

Local Processing

A Simplified Procedure for Real Time Applications:

Compute Gradient magnitude and angle afrays,
M(X, y) and a(X, y) of the input4mage €O<, \)

{

Form a Binary g(x’y):{o
image ¢ —p>

1\if Mi(x,y)>T, ANDolx,y)=A+T,

otherwise

Teathrestiold;  A: specified angle direction;

1 +F% héayfl of acceptable directions about A

Scan rows of g and fif¢set\t0 1) all gaps (sets
of Os) in each row tirat do not exceed K

!

—>

K: a specified
length

To deterniing~gaps in an arbitrary direction 0, rotate g by
0, applythe\previous step and rotate the result back by -6




Edge Linking and Boundary Detection

Edge Linking by Local Processing
An Example. ..

Horizontally connected

Gradient'Magnitude |

An Image of the Rear
of a Vehicle. Image. Edge Pixels.

The LogicalOR of the two Vertically connected
Preceding Images. Edge Pixels.



Edge Linking and Boundary Detection

Local Processing

Constraints of Local Processing. ..

This method can be used in those situatiens-where atdeast partial
knowledge about pixels belonging to pdwid(al objects is available.

Will there be any Problem jwPractical Sttuations ??

Yes, usually we only have the édge-image at our disposal and no
knowledge about the locdtions©p oby@ets of interest is available.

Then, what should be.done?

Then all pixels arg:tandidates for linking and must be accepted or
rejected based on predefined global properties.



Edge Linking and Boundary Detection

Global Processing
A Simple Method:

The Problem: Given n points in an image, wewant-to findsubsets of
these points that lie on straight lines.

The Solution: Find first all lines determined’by-every pair of points and
then find all subsets of points thatare elase tg_particular lines.

&

This method requires determination'of n(n-1)/2 ~ n? lines and then
(n)(n(n-1))/2 ~ n® number ofccomparisons of every point to all lines.

\
Any Problem 2?2 F8 This method is too computation heavy.

4

Any Solutiern?? \¢ Use Hough Transform.



Edge Linking and Boundary Detection

Global Processing by Hough Transform
Line Detection: . &)

Consider a point (x;, ;)

I
in the xy-plane. ||*
W straight line in slope- ’

Xy-plane
intercept form
y. =ax +b .
-
i b
Consider the ab-plane '
Or parameter space. “d parameter
W straight [inedn slopes space
ingereept form
b=—xa+y

Conclusion:The\line containing both (x;, y;) and (x;, y;) points in the
xy-plane is theine with a’slope and b/ intercept.



Edge Linking and Boundary Detection

Global Processing by Hough Transform
Line Detection (contd...):

We can plot lines in the parameter space for all paoints.(X;;"y,) in the xy -
plane and the principal lines in that plane cam e fotind by identifying

points in the parameter space wheredarge Mumber-of parameter space
lines intersect.

Any Problem with A\ THefre is'a practical difficulty when the
this Method ?? <X hneapproaches the vertical direction.
ﬂny SO[utwnf or \} We should use the normal
this Problem ?? —_ 2 representation of a line.

™ ormar representation

xXC0SA+ ysingd =p



Edge Linking and Boundary Detection

Global Processing by Hough Transform
Line Detection (contd...):

v i N Emin 0 Il-'i||11.1.:-:

. <D = Padl "0 L b
xjcos +|ysing =p L )

1 1 I [ 1 1 1
1 i i I 1 1 i
i i i i i i i
el o e o e e s s M e s o
1 ] 1 [ 1 1 1
i i i i i I i
i ] i ¥ i 1 i
1 1 1 |} 1 1 1
Y I e [ i’ B R
i i i i i I i
ﬂ 1 1 i I 1 1 i

i i i i i | i

e e - s ot s ey s s e e et s e s e ]

1 1 I I 1 1 1

i i i I i 1 i

i i i i i i i

SRS SR SRR (P S S (N |

1 ] 1 [ 1 1 1

f i i i i i i i

1 ] I ¥ 1 1 ]

1 ] ]

' e B e e e
i i i ¥ i 1 i

M
||l - ﬂ THE 1 | I I 1 | i
xpmost + wosmt= p e N N e
i < &

* p p

(0, 6) parameterization of Sinhusoidalcuryves in the pé&plane.  Division of p@plane into
line in the xy-plane. (¢, @):point-corresponding to the accumulator cells.

xcosf+ysinf=p = linepassing through (x;, y;) and —~90°<0<90°
(X, ¥;) In the xy-plane. =) D
Why is HoughTrausform Computationally Attractive ??

Because of‘the subdivision of the p@plane into accumulator cells.



Edge Linking and Boundary Detection

Global Processing by Hough Transform
Line Detection (contd...):

. — = o The cell at coordinates (i, 4)\with.accumulator value
A(i, j) correspofds todhe square associated with
TR T T parameter-space coordinates (o ,ﬁj).

i i i i
i ¥ i i i
1 i i 1 1 ]
TrTTTTTTTATTTT YT TTT T
i i i i i i
i i i i i i
|t et et bty t 1
1 I I 1 1 1
i i I i i i
i i i i i i
L Lo o o e b e
1 ] b 1 1 1

) A S S S Initialization: All cells are initially set to zero.

Prain

.

>

Division of p@plane into For_everynon-background point (X, , Y,), in the xy-
accumulator cells. plane, 6.4s\made equal to each allowed subdivision on
_90° <0 <90° the'0-axis and solve for p = x,c0s0 + y,sino.

.

-D<p<D

B R G e e Round-off p to nearest allowed cell value along p-axis.

between opposite
corners in an\Ymage:

.

Make A(p, q)=A(p, q)+1, if a choice of 8, results in p,.



Edge Linking and Boundary Detection

Global Processing by Hough Transform
Line Detection (contd...):

||||||||
|||||||

——————————————————————————————
|||||||
|||||||

IIIIIII

__________________________

|||||||
|||||||
|||||||

__________________________

|||||||
"""""""""""""""""""
|||||||
|||||||
IIIIIII
_________________________
|||||||
IIIIIII
|||||||
]
|||||||

>

Division of p@plane into
accumulator cells.
—-90°<0<90°

-D<p<D
D: Maximum djsfaice

between opposite
corners in an\Ymage:

Conclusion at theEnd ofthe
Previous Proceditre. <

A value of Pin A(i,/)) means that P points in
the xy-plane he-on theline xcosé +ysin 8 = p.

AnImgortant Observation. . .

The number of subdivision in the p@-plane
determines the accuracy of the colinearity of
these points.



Edge Linking and Boundary Detection
Line Detection by Hough Transform
An Example. ..

An image containing five polnts.

Corresponding parameter space.



Edge Linking and Boundary Detection

Hough Transform for the Edge Linking roblem

Obtain a binary edge image usfag any/ef the
Edge Detection Technriques.

Specify subdivistons+in'the pb-plane.

&

Examine the.counts’ of the accumulator cells for
highy pixel.concentrations.

. 3

Examife the relationship (principally for
continuity) between pixels in a chosen cell.



Edge Linking and Boundary Detection

Line Detection and Linking by Hough Transfarm
An Example. ..

— ()

£

(

AV,
SiM

— 3l [l S
i

Hough Transform withfive
Peak Locations'selected.

Line Segments Corresponding to
Hough Transform Peaks.



Similarity based Algorithms

Thresholding <<§ v
| R A O
In Thresholding, we partition images dlrectl&/@xo ons.Joased on
Intensity values. Qg?“ &v«

D
Q.
&Q/ngn\ribygd Image:

T ?\/ \)é A point (X, y) at which f(x,y) > T,
Intensity histogra,.?&n ifhage Is called an object point.
flx, y), composed o( &‘&Jects
on a dark bickground. A point (x, y) at which f(x, y) < T,

<<>/ Qv is called a background point.
N8



Similarity based Algorithms
Thresholding &Q@i\v

Se@@nt@rm §}§
@Qy‘s Q@W)ﬂ
- LB sxn)st
Intensity histogram of an \2\VN @é \F

image flx, y), composed of N
&
2)

light objects on a dar&?‘

background. ?\ Cﬁ\%

entire image: Ve

28

If T ch \gw’?é%\)
changes over aQ_ age”

Variable thre@i@here T at any

point (X, y) n@ n properties of a

neighborhodd 0&3( y):

‘ Variable Thresholding

‘ Local Thresholding



Similarity based Algorithms
Thresholding

A More Difficult Thresholding Problem. ..

Segmented Image:
Xf @ if flny)>T,
"* )15 it 1< f(x,0)=T.
|| | | ¢ if fluy)<T,
| ||..,.I|IIL.. i B
T

A point (X, y) at which f(x, y) < T,, Is
called a background point.

An image intensity histogram with
three dominant(modes

corresponding to eg. two.types of

A point (X, y) at which T,< f(x, y) <T,,
light objects on a‘dark background. P x.Y) 1<f(x, ) <T;

Is called a point in one object class.

Thisis .Ca".ed%g% %regho'd'”g h A point (x, y) at which f(x, y) >T,, is
Classification/Se tation. S :
called a point in the other object class.



The Role of Noise in Thresholding

Noiseless 8-bit
Septagon Image

0 a0 100 150 200 2

Intensity Histogram

Very easy to
segment this'image.

S
| N
N

Gaussian Noise (Mean: O,

SD: 10, intensity Yevéls)

\ D

G000

g/

6000

=

250

50 100 150 200

9]
Intensity Histogram

Still, it is easy to
segment this image.

Septagon Image with-additive ~Septagon Image with additive

Gaussian Noise (Mean: O,
SD: 50 intensity levels)

12000

10000

000

6000

4000 -

2000

1]

200 250

1] 50

100 150

Intensity Histogram
Now the job gets difficult,
because no way we can
separate the two modes.
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Global Thresholding
An Iterative Algorithm to Perform Basic Global Thresholding. ..

Step 1: Select an initial estimate for the glokat threshold, T.

. 1

Step 2: Segment the image into_two levels using T, producing two
groups of pixels: G; (intensity values >T) and:-G, (intensity values <T).

&

Step 3: Compute mearxiRtengity vatues m, and m, for the pixels in G,
alfd~G,, respectively.

. 3

Step 4: Compute a\new threshold value: 7 = %(m1 +m,) -

. 3

Step 5: Repeat Steps 2 to 4 until the difference between values of T In
successive iterations is smaller than a specified AT.



Thresholding

Global Thresholding ((/é&

The Iterative Algorithm for Basic Global I ﬁresﬁo[&\@ Q\?‘
Conclusions. ..

This method works well for bi-level thr %&ve the valley
between the two histogram modes (| en the background
and foreground or object under (‘Q\l’i@rda@?ﬁlo\b reasonably distinct.
What is the Role of Par &Vbe gﬁ(@
In a situation where th éﬂtlon IS Important, this parameter
gets influential In c II l‘@g ber of iterations.

Larger AT Qv Smaller AT

The algﬁu n@?‘l Il perform The algorithm will perform
¥erations. more iterations.



Global Thresholding

The Iterative Algorithm : An Example. ..

‘ auA\ o5, v &\\\50
An original The Imflge The Segmented
Bone-marrow Intensity Image
Image histogram
Algorithm Info. ..

We chose AT =,0.5. Fhe algorithm stopped after 5 iterations. The

global thresheld determined was T = 152.4113. We chose the nearest
Integer for bi-level segmentation of the image i.e. T = 152.
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The Iterative Algorithm : Another Example. ..
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Algorithm Info...

We chose AT = 0.k The algorithm stopped after 5 iterations. The global

threshold determined-was T = 119.3685. We chose the nearest integer for bi-
level segmentation@fHthe image i.e. T = 119. With a choice of AT = 0.01, the

performance of the algorithm did not change.
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