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Image Enhancement Techniques 

Image Enhancement 

Techniques 

 The principal objective of image enhancement is to process an 

image so that the result is more suitable than the original image 

for a particular application. 

Spatial Domain Approach Frequency Domain Approach 

Spatial domain refers to the 

image plane itself and involves 

direct manipulation of the pixels 

of an image 

Frequency domain processing 

techniques are based on 

modifying the Fourier Transform 

of an image 



Image Enhancement Techniques 
Spatial  Domain Approaches 

Image Processing functions in the spatial domain: 

    y,xfTy,xg 

f(x,y): The input image  

g(x,y): The processed output image 

T: an operation on f defined over 

some neighborhood of (x,y)  

A 3  3 neighborhood about a 

point (x,y) in an image. 

 Note: The smallest 

neighborhood size is 1  1. 



Image Enhancement Techniques 
Spatial  Domain Approaches 
For a neighborhood size of 1  1 : 

 rTs 

r:  gray level  of f(x,y) at (x,y)  

s:  gray level  of g(x,y) at (x,y) 

T: a gray level transformation function  

Gray level transformation functions 

for Contrast Enhancement. 

  



Image Enhancement Techniques 
Spatial  Domain Approaches 

Spatial 

domain 

approaches 

Point 

processing  

Image 

subtraction  

Spatial 

filtering  

Image 

averaging  

Contrast 

stretching  

Gray level 

slicing  

Bit plane 

slicing  

Histogram 

processing  

Low-pass 

filtering  

Median 

filtering  

High-pass 

filtering  

Histogram 

equalization  

Histogram 

specification 



Spatial Domain Techniques 
Point Processing Techniques 

Negative of an Image  

 rT

1L

1L

s 

r 

s = L – 1 – r, for gray levels 

in the range [0, L – 1] 

Original Pepper Image 

Negative of the Pepper Image 



Spatial Domain Techniques 
Point Processing Techniques 

Contrast Stretching  

 The possible causes of a low contrast image are: 

o Poor illumination 

 o Lack of dynamic range in the imaging sensor 

 o Wrong setting of the lens aperture during image 

    acquisition 

 Contrast stretching attempts to increase the dynamic 

range of the gray levels of the image being processed. 

Solution ?? 



Spatial Domain Techniques 
Point Processing Techniques 

Contrast Stretching  

A low Contrast Image 

Enhanced Image after 

Contrast Stretching 

 rT

1L

1L

s 

r 

 
11

s,r

 
22

s,r

 The locations of the points (r1, s1) 

and (r2, s2)  control the shape of 

the transformation function. 



Spatial Domain Techniques 
Point Processing Techniques 

Dynamic Range Compression  

 Sometimes dynamic range of a processed image far 

exceeds the capability of the display device. 

Solution ?? 

 This results in only the brightest parts of the image being 

visible on the display screen. 

 Compress the dynamic range of the pixel values by using 

an intensity transformation function:                                . 

      Here c = a scaling constant. 

 rlogcs  1
10



Spatial Domain Techniques 
Point Processing Techniques 

Dynamic Range Compression  

A Fourier spectrum, [0, R] = [0, 1.5  106], 

scaled linearly for display in 8-bit  system. 

s 

 rT

R

1L

r 0

 Example: For [0, R] = [0, 2.5106],                                                                  

                                                . 

 To scale this range up to [0, L-1] = 

[0, 255], scaling factor c = (255/6.4). 

   46 01
10

.,rlog 

Log transformed image. 



Spatial Domain Techniques 
Point Processing Techniques 
Power-Law (Gamma) Transformations  

s = cr, with c and  positive constants. 

 Note: This 

method is 

popularly 

known as 

gamma 

correction 

method. 



Spatial Domain Techniques 
Contrast Enhancement using 
Power-Law Transformations  

MRI of a 

fractured 

human spine. 

Power-Law 

transformed 

image with c = 1 

and  = 0.6. 

Power-Law 

transformed 

image with c = 1 

and  = 0.3. 



Spatial Domain Techniques 
Point Processing Techniques 
Gray-level Slicing  

 Sometimes we need to highlight a specific range of gray 

levels in an image. 

Solution ?? 

 Possible application areas are masses of water in satellite 

imagery, enhancement of flaws in x-ray images etc.  

 Use one of the two basic approaches of gray-level slicing: 

o Approach 1 – All gray levels in the range of interest 

are displayed using a high value and the rest using a 

low value.  

o Approach 2 – Brightens the desired range of  gray 

levels but preserves the background and gray-level 

tonalities in an image. 



Spatial Domain Techniques 
Point Processing Techniques 

Gray-level Slicing – 
Approach 1  

s 

 rT

1L

1L

r A B0

Gray-level Slicing – 
Approach 2  

 rT

1L

1L

s 

r A B0



Spatial Domain Techniques 
Point Processing Techniques 

Comparison of Gray-level Slicing Approaches  

An Aortic 

Angiogram. 

Transformed 

image obtained 

with slicing 

approach - 1. 

Transformed 

image obtained 

with slicing 

approach - 2. 



Spatial Domain Techniques 
Point Processing Techniques 

Bit-Plane Slicing 

 Sometimes it is desirable to highlight the contribution made 

by specific bits to the total image appearance. 

 The image can be imagined to be composed of eight 1-bit 

planes, plane 0 for the LSB to plane 7 for the MSB. 

Bit-plane representation of 

an 8-bit digital image. 

Highest  order bits 

contain visually 

significant data. 

Lowest order bits 

contain more subtle 

details. 



Spatial Domain Techniques 
Example of Bit-Plane Slicing 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(a) An 8-bit gray scale image. (b) through (i) Bit planes 1 through 8 

with bit plane 1 for LSB. Each bit plane is a binary image. 



Spatial Domain Techniques 
Point Processing Techniques 

 In point-processing techniques, choice of different intensity 

transformation functions gives rise to different types of 

image enhancement. 

 However, choice of a suitable function for a given input 

image is rather cumbersome and a trial-and-error based 

approach can be rather time consuming. 

Solution ?? 
 An improved approach utilizes a systematic, automated solution 

for a suitable transformation mapping by employing information 

from image histogram. This can be achieved by utilizing: 

o Histogram Equalization Technique, or  

o Histogram Specification Technique.  



Spatial Domain Techniques 

Spatial Filtering 

 Low pass filters attenuate or eliminate high frequency 

components in the Fourier domain. Low pass filtering gives 

rise to image blurring. 

 High pass filters attenuate or eliminate low frequency 

components in the Fourier domain. High pass filtering gives 

rise to sharpening of edges and other sharp details. 

How to Implement ?? 

 Utilize suitable two-dimensional masks of suitable size e.g. 3 

 3, or  5  5, or  7  7, with appropriate mask co-efficients.  



Spatial Domain Techniques 
Spatial Filtering 

A 3  3 filter mask and the 

image neighborhood or 

sub-image under its 

influence. 



Spatial Domain Techniques 
Spatial Filtering 

A 3  3 image section 

under consideration 

w1 w2 w3 

w4 w5 w6 

w7 w8 w9 

z1 z2 z3 

z4 z5 z6 

z7 z8 z9 

z1 z2 z3 

z4 z5new z6 

z7 z8 z9 

= 

 







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1
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5

i
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new

zwzwzwzwR

Rfz



A 3  3 filter mask 

employed for this 

image section 

Output of the filter 

for this image 

section 

R = Response of the 

mask 

The mask is centered on the image pixel whose new intensity value is to be 

calculated. This calculation is performed for each pixel separately by moving 

the mask to center it on the pixel under consideration. 



Smoothing Spatial Filters 
Low pass Spatial Filtering 

1 1 1 

1 1 

 

1 

1 1 1 

Two typical 3  3 low 

pass filter masks 


9

1

 A Low pass spatial filter must have all positive coefficients. 

 For a Low pass spatial filter mask shown above in (a), the 

operation is also popularly termed as neighborhood averaging. 

This averaging causes blurring and loss of sharpness. 

1 2 1 

2 4 

 

2 

1 2 1 


16

1

(a) (b) 

 For a filter mask shown in (b), it is called weighted averaging.  



Smoothing Spatial Filters 
Median Filtering 

 Median filters are nonlinear filters employed with an objective 

of noise reduction, without blurring.  

A 3  3 image section 

under consideration 

z1 z2 z3 

z4 z5 z6 

z7 z8 z9 

Median 

filtering 

z1 z2 z3 

z4 z5new z6 

z7 z8 z9 

Output of the filter for 

this image section 

 
9215

z,,z,zmedz
new



The filter is most effective when the noise pattern consists of spike-like 

components and it is of utmost importance to preserve edge sharpness. 



Smoothing Spatial Filters 
A Comparison of  Average and Median Filtering - I 

A Blood cell image 

corrupted by salt-and-

pepper noise. 

Processed image 

employing a 3  3 

averaging mask. 

Processed image 

employing a 3  3 

median filter. 



Smoothing Spatial Filters 
A Comparison of  Average and Median Filtering - II 

Same Blood cell 

image corrupted by 

speckle noise. 

Processed image 

employing a 3  3 

averaging mask. 

Processed image 

employing a 3  3 

median filter. 



Sharpening Spatial Filters 
Derivative Filters 

 The differentiation operation is expected to sharpen an image.   

 One can use either first derivative or second derivative 

information.   

Digital Approximation of First Derivative: 

 
),(),(

,
yxfyxf

x

yxf





1

Digital Approximation of Second Derivative: 

 
),(),(),(

,
yxfyxfyxf

x

yxf
211

2

2








Sharpening Spatial Filters 

First and 

second 

derivatives of a 

horizontal, 

single-row 

intensity 

profile of an 

image. 



Sharpening Spatial Filters 
Constraints of using a Definition for First Derivative Filters 

 Must be zero in areas of  constant intensity.  

 Must be non-zero at the  onset of an intensity step or ramp.  

 Must be non-zero along ramps.  

Constraints of using a Definition for Second Derivative Filters 

 Must be zero in areas of  constant intensity.  

 Must be non-zero at the  onset and end of an intensity step or 

ramp.  

 Must be zero along ramps of constant slope.  



Sharpening Spatial Filters 
Implementing a First Derivative Filter for Image Sharpening 

By applying the Gradient. 

The gradient of a function 

f(x, y) at coordinates (x, y) is 

defined as the two-

dimensional column vector: 

 































y

f
x

f

g

g
fgradf

y

x

The magnitude 

(length) of vectorf: 

   
22     
yx

gg

fmagyxM



,

M(x, y) is an image of same size as the original and called the gradient image. 

The computation of this gradient is the basis for various approaches to 

develop first derivative filter. 

 
yx

ggyxM ,



Sharpening Spatial Filters 
First Derivative Filters 

A 3  3 image section 

under consideration 

z1 z2 z3 

z4 z5 z6 

z7 z8 z9 

Derivative 

filtering 

       2
1

2

56

2

58
zzzzyxM ,

Approximated form: 

 
5658

zzzzyxM ,

Another approach using 

cross-differences: 

       2
1

2

68

2

59
zzzzyxM ,

6859
zzzzf 

These equations can be implemented 

using masks of size 2  2 . 

 Constraint: Masks of even sizes are awkward to implement. 

Hence an approximation with 3  3  neighborhood is preferred.   



Sharpening Spatial Filters 
First Derivative Filters 

The masks for 1st derivative operators of size 3  3:  

Sobel operators 

-1 -2 -1 

0 0 0 

1 2 1 

-1 0 1 

-2 0 2 

-1 0 1 

         
741963321987

22 22 zzzzzzzzzzzzyxM ,

   
321987

22 zzzzzz
x

f
g

x







   
741963

22 zzzzzz
y

f
g

y









Sharpening Spatial Filters 
First Derivative Filters 

The masks for 1st derivative operators of size 3  3:  

Prewitt operators 

-1 -1 -1 

0 0 0 

1 1 1 

-1 0 1 

-1 0 1 

-1 0 1 

     
   

741963

321987

      zzzzzz

zzzzzzyxM



,



Sharpening Spatial Filters 
Example of Sobel Masks 

Original ‘Saturn’ 
image. 

Output of Sobel 

Vertical Mask. 

Blurred ‘Saturn’ 
image. 

Output of Sobel 

Horizontal Mask. 

Output of Sobel 

Gradient Mask. 



Sharpening Spatial Filters 
Example of Sobel Masks – contd … 

Original ‘Saturn’ 
image. 

Blurred ‘Saturn’ 
image. 

Output of Sobel 

Gradient Mask. 
Output of Sobel Gradient Mask 

added to the Blurred image. 



Sharpening Spatial Filters 
Implementing a Second Derivative Filter for Image Sharpening 

By applying the Laplacian. 

The Laplacian of an image 

function f(x, y) of two variables: 
     

2

2

2

2

2

y

yxf

x

yxf
yxf










,,
,

Common digital 

approximations of the 

second derivatives: 

 
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yxfyxfyxf
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 
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  ),(),(),(),(),(, yxfyxfyxfyxfyxfyxf 411112 



Sharpening Spatial Filters 
Second Derivative Filters 

The masks for 2nd derivative operators of size 3  3:  

Mask employing Laplacian 

considering four directions:  

(a) horizontal, (b) vertical, (c) 

+45° and (c) -45° directions 

0 1 0 

1 -4 1 

0 1 0 

1 1 1 

1 -8 1 

1 1 1 

Mask employing Laplacian 

considering conventional 

horizontal and vertical 

directions 

Mask 1 Mask 2 



Sharpening Spatial Filters 
Second Derivative Filters 

The masks for 2nd derivative operators of size 3  3:  

A Laplacian Mask employing 

negative of the Laplacian 

Mask 2 

0 -1 0 

-1 4 -1 

0 -1 0 

-1 -1 -1 

-1 8 -1 

-1 -1 -1 

A Laplacian Mask 

employing negative of the 

Laplacian Mask 1 

Mask 3 Mask 4 



Sharpening Spatial Filters 
Second Derivative Filters 

The Laplacian is a derivative operator that  highlights intensity 

discontinuities in an  image and, in the process,  de-emphasizes image regions 

having slow  variations in intensity profile.  

How to preserve the original background features 

and yet perform sharpening operation ?? 

There is a Problem … 

Utilize the Laplacian in the following manner: 

      yxfcyxfyxg ,,,
2

f(x, y): The input image  

g(x, y): The sharpened output image 

c: a constant  

c = -1, for Masks 1 and 2. c = +1, for Masks 3 and 4.  



Sharpening Spatial Filters 
Example of 

Laplacian Filters 

Output of 

Laplacian Mask 1 

(without scaling). 

Output of non-scaled 

Mask 1 subtracted from 

the Blurry image. 

 ‘Blurry Moon’ 
image. 

Output of 

Laplacian Mask 1 

(with scaling). 



Sharpening Spatial Filters 
Example of 

Laplacian Filters 

– contd… 

Output of 

Laplacian Mask 2 

(without scaling). 

Output of non-scaled 

Mask 2 subtracted from 

the Blurry image. 

 ‘Blurry Moon’ 
image. 

Output of 

Laplacian Mask 2 

(with scaling). 



Sharpening Spatial Filters 
Performance Comparison of Laplacian Filters 

 ‘Blurry Moon’ 
image. 

Performance of 

the Laplacian 

Mask 2. 

Performance of 

the Laplacian 

Mask 1. 



Sharpening Spatial Filters 

High pass Spatial Filtering using 

First and Second Derivatives 

 For a high pass spatial filter mask, whether utilizing 

first derivative or second derivative, the sum of the 

mask coefficients is always zero. 

An Important point …  



Sharpening Spatial Filters 
Unsharp Masking and  High –boost Filtering 

 When k = 1, we have unsharp masking.   

Create a blurred version 
of the original image 

   yxfyxf ,, 

Subtract the blurred 
version from the original 

     yxfyxfyxg
mask

,,, 

Add this mask to the 
original image 

     yxgkyxfyxg
mask

,,, 

 When k > 1, we have high-boost filtering.   



Sharpening Spatial Filters 
Illustration of Unsharp Masking 



Frequency Domain Methods 

 Frequency domain techniques for image enhancement utilize 

convolution theorem in two-dimensions.   

 The two-dimensional Discrete Fourier Transform (DFT) pair is 

given as:   

 









1

0

1

0

2
1 M

x

N

y

NvyMuxjyxf
MN

vuF )//(exp),(),(

1210  and   1210  NvMu ,,,,,,,, 
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 









1

0

1

0

2
M

u

N

v

NvyMuxjvuFyxf )//(exp),(),(

1210  and   1210  NyMx ,,,,,,,, 



Frequency Domain Methods 
Convolution Theorem in Two-Dimensions: 

       vuGvuFyxgyxf ,,,, 
and 

       vuGvuFyxgyxf ,,,, 
In Image Enhancement Problems: 

     yxfyxhyxg ,,,  h(x, y): input image       

f(x, y): a linear, position 

invariant operator        

g(x, y): output image 
     vuFvuHvuG ,,, 

G, H and F are FTs of g, 

h, and f. H(u, v) is the 

process transfer function. 

Our Problem:                          

f(x, y) is given. Select H(u, v) 

such that  g(x, y) exhibit some 

highlighted feature of  f(x, y).  



Frequency Domain Filtering 



Ideal Lowpass Filter (ILPF) 
Transfer function of a 2-D ILPF: 

   
 








0

0

 if    0

 if    1

DvuD

DvuD
vuH

,

,
,

  22
vuvuD ,

D0: a specified non-negative 

quantity;                                

D (u, v): Distance of the 

point (u, v) from the origin 

of the frequency plane 

(a) A 3-D perspective plot of an ILPF T.F., (b) Filter displayed 

as an image, (c) Filter radial cross section. 

(a) (b) (c) 



Butterworth Lowpass Filter (BLPF) 
Transfer function of a 2-D BLPF: 

 
  n

D

vuD
vuH

2

0

1

1












,

,

  22
vuvuD ,

n is the order of the filter.                                

The cut-off frequency locus 

is at a distance D0 from the 

origin. 

(a) A 3-D perspective plot of a BLPF T.F., (b) Filter displayed 

as an image, (c) Filter radial cross section of orders 1-4. 

(a) (b) (c) 



Gaussian Lowpass Filter (GLPF) 
Transfer function of a 2-D GLPF: 

 
 

2

2

2



vuD

evuH
,

,

  22
vuvuD ,

  is a measure of the spread 

of the Gaussian curve.                                

The cut-off frequency locus 

is at a distance D0 from the 

origin. 

(a) A 3-D perspective plot of a GLPF T.F., (b) Filter displayed 

as an image, (c) Filter radial cross section for various D0. 

(a) (b) (c) 



BLPF with     

n = 1, D0 = 80 

BLPF with     

n = 2, D0 = 80 

GLPF with 

D0 = 80 

ILPF with 

D0 = 80 

Lowpass Filters 
Comparison of Ideal, Butterworth and Gaussian Filtering - I 

Original 

image of a 

test pattern. 



ILPF with 

D0 = 480 

Lowpass Filters 
Comparison of Ideal, Butterworth and Gaussian Filtering - II 

Original 

image of a 

test pattern. 

BLPF with        

n = 1, D0 = 480 

BLPF with     

n = 2, D0 =480 

GLPF with 

D0 = 480 



Ideal Highpass Filter (IHPF) 

Transfer function of a 2-D IHPF: 

   
 








0

0

 if    1

 if    0

DvuD

DvuD
vuH

,

,
,

   vuHvuH
lphp

,, 1

D0: specified cut-off distance 

from the origin of the 

frequency plane;                              

D (u, v): Distance of the point 

(u, v) from the origin of the 

frequency plane 



Butterworth Highpass Filter (BHPF) 

Transfer function of a 2-D BHPF: 

 

 

n

vuD

D
vuH

2

01

1









,

,

  22
vuvuD ,

n is the order of the filter.                                

The cut-off frequency locus 

is at a distance D0 from the 

origin. 



Gaussian Highpass Filter (GHPF) 

Transfer function of a 2-D GHPF: 

 
 

2
0

2

2
1

D

vuD

evuH

,

,




  22
vuvuD ,

The cut-off frequency locus 

is at a distance D0 from the 

origin. 



Highpass Filters 

3-D perspective plot, image representation, and radial cross 

section for (a) IHPF, (b) BHPF, and (c) GHPF. 

(a) 

(b) 

(c) 



BHPF with     

n = 1, D0 = 40 

BHPF with     

n = 2, D0 = 40 
GHPF with 

D0 = 40 

IHPF 

with      

D0 = 40 

Highpass or Sharpening Filters 
Comparison of Ideal, Butterworth and Gaussian Filtering - I 

Original 

image of a 

test pattern. 



BHPF with         

n = 1, D0 = 150 

BHPF with          

n = 2, D0 = 150 

GHPF with 

D0 = 150 

IHPF 

with      

D0 = 150 

Highpass or Sharpening Filters 
Comparison of Ideal, Butterworth and Gaussian Filtering - II 

Original 

image of a 

test pattern. 



High-Frequency Emphasis Filtering (HFEF) 

Transfer function of a HFEF: 

   vuHbavuH
hphfe

,,  a: offset;  b: multiplier; 

Hhp(u, v): High pass filter T.F. 

The offset term is used to 

preserve the low 

frequency components. 

The multiplier term is 

used to highlight the high 

frequency components. 

 Note: This technique requires a  post-filtering processing to 

redistribute the gray levels.   

Candidate tool for post-filtering ?? 

 Histogram equalization is a popular option because it can 

provide contrast enhancement.   



High-Frequency Emphasis Filtering (HFEF) 

A chest X-ray image. Processed image employing BHPF (n = 2, 

D0 = 5% of image vertical dimension). 

Processed image after high-frequency 

emphasis filtering (a = 0.5, b = 2.0). 
Processed image after HFEF, followed by 

histogram equalization. 



Homomorphic Filtering 

     yxryxiyxf ,,,  i(x, y): illumination component; 

r(x, y): reflectance component. 

Why ?? 

 This method utilizes the illumination-reflectance  model.  

 This equation can not be used directly to operate separately on 

the frequency components of illumination and reflectance.   

 Because the Fourier Transform of the product of the two 

functions is not separable.   

There is a problem … 

        yxryxiyxf ,,, FFF 



Homomorphic Filtering (contd…) 

       yxryxiyxfyxz ,ln,ln,ln, 
Let us define: 

          yxryxiyxfyxz ,ln,ln,ln,  FFF

     vuRvuIvuZ ,,, 
I(u, v): F.T. of ln i(x, y); 

R(u, v): F.T. of ln r(x, y). 

Processing Z(u, v) with a Homomorphic Filter T.F. H(u, v): 

             vuRvuHvuIvuHvuZvuHvuS ,,,,,,, 

              
   yxryxi

vuRvuHvuIvuHvuSyxs

,,

,,,,,,
// 


           

1-1-1-

FFF



Homomorphic Filtering (contd…) 

i0(x, y): illumination component 

of the output image; 

r0(x, y): reflectance component 

of the output image; 

 As z(x, y) was formed by taking the logarithm of the original 

image f(x, y), the inverse operation on s(x, y) should give us the 

desired enhanced image g(x, y).   

    
     

   yxryxi

yxryxi

yxsyxg

,,

,exp,exp

,exp,
//

00
            

            





What is the salient feature of this approach ?? 

This approach works on separating the illumination and 

reflectance components of an image so that the Homomorphic 

Filter T.F. can work on these components separately. 



Homomorphic Filtering (contd…) 

Cross section of a circularly symmetric 

Homomorphic Filter function. 

Illumination Component is 

characterized by slow 

spatial variations. 

Reflectance Component is 

characterized by abrupt 

variations. 



Homomorphic Filtering (contd…) 

A full body PET 

(Positron Emission 

Tomography) scan. 

Homomorphic Filtered 

enhanced image. 



References: 

 R. C. Gonzalez and R. E. Woods. Digital Image Processing. 

Pearson Education Inc., 2008. 

 S. Annadurai and R. Shanmugalakshmi. Fundamentals of 

Digital Image Processing. Pearson Education, Inc. 2007. 

Image Enhancement Techniques 

 R. C. Gonzalez, R. E. Woods, and S. L. Eddins. Digital Image 

Processing using MATLAB. Pearson Education, Inc. 2005. 




