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FUZZY LOGIC AND FUZZY SYSTEMS
Why do we need it?

@ The theory of fuzzy logic is based.on tntuition and judgment.
@ The requirement of a system model-can be.dispensed with.

@ Fuzzy sets provide a smooth'transition-between members
and non members.

@ Relatively simple, fast ancadaptive.

@ Fuzzy systems can implement those design objectives which
are difficult to be expressed mathematically and hence can be
more convenienthy-expressed by linguistic or qualitative rules.
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CLASSICAL SETS vs. FUZZY SETS

Classical or Crisp Sets
A Crisp Set C is a set with a crisp.boun@ary-For
example, a crisp set C can be expressed as:

C ={x| x > 6}

In a crisp set C a memberx eitherbelongs to it or
does not belong to it. Hence.the.membership value
of a member x in C:is either O.or 1.

Fuzzy Sets

A Fuzzy Set A'isaset\without a crisp boundary. The
transition from-belonging to a set to not belonging
to a set is gradual’Hence a fuzzy set A contains
elementsihaving varying degrees of membership in
the setyranging from O to 1.



FUZZY SETS

Fuzzy set A in X, can be defined as aset of-ordered pairs:

A = {(x, L())| X € X}
X = a collection of objects, denoted generically by x,

U, (X) = Membership Function/(MF) of x in A, p,(x) € [0, 1].

X Is called the Universe-of Discourse or Universe
and the MF maps. eaeh element of Xto a
continuous membership value between 0 and 1.

An alternatives . A= Y u,(x;)/x;,if X is discrete.
representation 5 EA

of Fuzzy Set-A™ 4 = I“A (x)/x,1f X 1s continous.



FUZZY SETS WITH DISCRETE X

Let X={1, 2,3,4,5, 6, 7, 8} be the set.of numbers-of
courses a student may take in a semester. Let fuzzy set A
denote the appropriate number of courses:taken. A can be

given as:

A ={(1, 0.1), (2, 0.3), (3, 0.8);4(4,1); (5,70:9), (6, 0.5), (7, 0.2),

(8,0.1)} S e
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FUZZY SETS WITH CONTINUOUS X

Let X = R* be the set of possible agesA{or human-beings. Let
fuzzy set B = about 50 years old. B can be'expressed as:

B = {(X, Ly()| X € X} wheres,()=%—

1+(x—50j
5

K —age

The Fuzzy Set



TYPICAL SHAPES OF MEMBERSHIP FUNCTIONS

Trlangular MF

F-1]

Trapezoidal MF

triangle (x;a,b,c) = max(mln( —4d c—z ,0)

—a ,d—-x
trapézoid (x;a, b, ¢,d) = max (mln( 1, ),0)

—a d-c
gaussian (x;o,c) = gt l=)/oT’}
bell (x;a,b,c) = L n

xX—c
1+
a

Triangular MFs and
Trapezoidal MFs are
overwhelmingly popular for
real-time implementations
because of their simple
formulae and computational
efficiency.



GENERALIZED BELL MEMBERSHIP FUNCTION

bell (x;a,b,c) =

1+




A GENERIC FUZZY INFERENCE SYSTEM
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FUZZY RULE-BASE

If-Then Rules:

MAMDANI-TYPE INFERENCING
Rule : If X, is A, and X, is'B;,Theny is C,,
Rule : If X, is A, and X3is 85, Then y is C,.

SUGENO-TYPE INFERENCING

Rule : If x, is A| and X, is B, Then f,=r,,
Rule : If X;"isAy and X, is B,, Then f,=r,.



DEFUZZIFICATION STRATEGIES

MAMDANI-TYPE INFERENCING

@ Center-of-gravity / Center-of-area-method
& Center-of-sums method

@ Height method

@ Center-of-largest-area method

@ First-of-maxima method

@ Middle-of-maxima method

SUGENO-TYPEINFERENCING
& Weighted average method



AN EXAMPLE

Fuzzy Control of a Water Heater
with Mamdani-type inferencing
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Water outlet

Temp Sense
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Fuzzy Control of a Water Heater (conti.)

STEP 1: DEFINE INPUTS AND OUTPUTS

Variable Minimum» Maximum

Value Value
LevelSense 0 10
TempSensé 0 125
Heatkno® 0 10

Universe of discourse for inputs and output



Fuzzy Membership =

=
=)

=
=

Fuzzy Control of a Water Heater (contd.)

STEP 2: FUZZIFY THE INRUTS
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Fuzzy Control of a Water Heater (contd,)

STEP 2: FUZZIFY THE INPUTS (contd)
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Fuzzy Control of a Water Heater (contd,)

STEP 3: SETUP FUZZY MEMBERSHIP FUNCTIONS FOR THEOUTPUT
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Fuzzy'membership functions for HeatKnob



Fuzzy Control of a Water Heater (conti.)

STEP 4: CREATE A FUZZY IFETHEN RULIE BASE

TempSense —» Xsmall

LevelSense 4
Xsmall

Small

Medium

Large

Xlarge
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AWholeL ot

AWholeL ot
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Fuzzy rule base for output HeatKnob



Fuzzy Control of a Water Heater (conti.)

STEPS: DEFUZZIFY TEHE QULPUTS

Four rules are activated:

& TempSense = Medium (0.75) AND LevelSense = Medium (0.4)
& TempSense = Large (0.25) AND LeyelSense = Medium (0.4)

& TempSense = Medium (0.75).AND LeévelSensé = Large (0.6)

< TempSense = Large (0.25)AND LevelSénse = Large (0.6

Activated fuzzified consequence with firing strength:

& HeatKnob = AGoodAmt-with-firing strength = (0.75) A (0.4) = (0.4)
& HeatKnob = VerylLittle with firing strength = (0.25) A (0.4) = (0.25)
& HeatKnob = ALot with firing strength = (0.75) A (0.6) = (0.6)

& HeatKnob =/ALittle with firing strength = (0.25) A (0.6) = (0.25)



Fuzzy Control of a Water Heater (cogﬁi\)

Yo
STEP 6: DETERMINE THE@QQ&%@%UT
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R
Defuzzification Strategy: 5 4.82

Center of Gravity



DEFUZZIFICATION STRATEGIES
CENTER-OF-GRAVITY/AREA METHOD
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DEFUZZIFICATION STRATEGIES
CENTER-OF-SUMS MEFHQOD
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KoLy (o(Y): membership value of y in the clipped kth fuzzy set CLY®



DEFUZZIFICATION STRATEGIES
HEIGHT METHOD

R .O .
2 S
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Graphical-Representation of Height Method.
. Cris, ;C(k)‘f;c
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f: height of the clipped kth output fuzzy set CLY®

c®: crisp value ofthe output y corresponding to the peak value of the
kth output fuzzy set LY®



FUZZY SYSTEMS WITH SUGENQ-TYPE INFERENGING

First-order Sugeno Model
Rule1: If Xis A, and Yy is B,

Then f, =p; x+qy+ 1y,
Rule 2 : If Xis A, and'y.isB,,

Then f;=p,X+q,y+7,.

A two-input one<ontput first-order Sugeno fuzzy model with two rules



ADAPTIVE FUZZY SYSTEMS

@ Structure/architecture adaptation

& Parameter adaptation

& Simultaneous structure<and parameter adaptation

@ Online and offline adaptation



NEURO-FUZZY SYSTEMS

layer 1 layer 4
layer2  layer3 l

Equivalent ANFIS architecture for the Sugeno-system
ANFISAddptive Neuro-Fuzzy Inference System



FUZZY CONTROL
Why?

& A practical alternative for a variety’of challenging control
applications

& A convenient method for constructing/nenlinear control
methodologies by using heuristie control knowledge

& Reduction of development and‘maintenance time

@ simultaneous achievement.of system identification and
control

& Better performance.in controlling dynamic and/or ill-defined
processes

& Marketing.and patents



SCHEMATIC REPRESENTATION OF A FUZZY CONTROLLER
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FUZZY CONTROLLERS IN CONTINUOUS-TIME SYSTEMS

reference
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FUZZY CONTROLLERS IN DISCRETE-TIME SYSTEMS

reference
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DESIGN OF DISCRETE-TIME FUZZY PI-CONTROLLERS

reference
signal
Mory,®) gy S®  Aun®) Ak
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Typical MFs for each input e,(K); Ae\(k), and output Au,(K)
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A REPRESENTATIVE RULE-BASE FOR FUZZY PI-CONTROLLER

Aey—> NB NM NS ZE PS PM PB
ey v .
NB NB NB NB NB NM NS ZE N .
NM NB NB NB NM NS ZE .PS
NS NB NB NM NS ZE PS“ PM
ZE NB NM NS ZE PS-PMOPB
PS NM NS ZE PS PM PB” PB
PM NS ZE PS PM~ PB.PB,“PB

PB ZE PS PM.\PB/PB ‘PB PB A fypical output response curve

time (sec.)

Input 1 : ey (K) = K (Y4(K)-Y(K));fuzzified using 7 triangular MFs,
in the range [-1, 1]

Input 2 : Aey(K) =K. ( e(K) =e(k-1)), fuzzified using 7 triangular MFs,
in the range [-14 N

Output : Aug(K); fuzzified using 7 triangular MFs, in the range [-1, 1]



DESIGN OF DISCRETE-TIME FUZZY PD-CONTROLLERS
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A REPRESENTATIVE RULE-BASE FOR FUZZY PD-CONTROLLER

Aey—> NB
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PB A typical output response curve

Input 1 : ey (K) = K (Y4(K)-Y(K));fuzzified using 7 triangular MFs,
in the range [-1, 1]

Input 2 : Aey(K) =K. ( e(K) =e(k-1)), fuzzified using 7 triangular MFs,
in the range [-14 N

Output : uy(K), fuzzified using 7 triangular MFs, in the range [-1, 1]



TWO IMPORTANT DESIGN GRITERIA FOR AN FLG

® Choice of Membership ‘Functions (MFs)

@ Choice of Scaling Factors (SFs)



TWO EXAMPLES OF POPULAR HOME APPLIANCES

e Panasonic ®/ National ® Fuzzy L.ogic Rice Cooker

Fuzzy logic controls the cooeking process,
self-adjusting for rice and water conditions

*National ® DeluxeElectric Fuzzy Logic Thermo Pot

| Fuzzylogic controls the production of clean boiled
water on‘demand for making tea
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