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Distortion-less Transmission of Signal through a Filter 

Periodic signal 

Interference 

Conventional low-pass filter output 

In distortion-less transmission, the inter-harmonic phase relations 
must remain same before and after transmission. 
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Distortion-less Transmission of Signal through a Filter 

For distortion-less transmission of signal through a filter within its pass-
band region let the magnitude of the steady state gain of the filter 
(assuming it be an ideal low-pass) be: 

|H(ω)| = K, for 0≤ω≤ωc  ….(1) 

and the output of the filter be: 

y(t) = Kx(t-td) ….(2) 

where x(t) is the input signal, band limited to ωc, and td is a constant 
delay. 

Taking Fourier transform of relation (2), 

Y(ω) = KX(ω)exp(-jωtd)  ….(3) 

using delay property of Fourier transform. 



Distortion-less Transmission of Signal through a Filter 

From relation (3), the steady-state transfer function is: 

….(4) 

Thus, |H(ω)| = K ….(5) 

Then, ө(ω) = -ωtd  
….(6) 
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and H(ω) = -ωtd = ө(ω), say   

H(ω) = Y(ω) / X(ω) = Kexp(-jωtd)  



Distortion-less Transmission of Signal through a Filter 

passband





slope = -td

c0

Thus, for distortion-less transmission, phase 
shift () is lagging and proportional to 
frequency within the pass band region. 

This characteristic is called linear phase 
characteristic. 

If the phase shift () includes any constant offset, say 0, then let 
 

() = 0 - ωtd 
….(7) 
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Distortion-less Transmission of Signal through a Filter 





0



Thus the steady state filter gain may be expressed as,  

H(ω) = Kexp(j(0 – ωtd)) 

= Kexp(j0).exp(-jωtd) 

or H(ω) = K .exp(-jωtd) 

where K  (= Kexp(j0)) is the complex gain of the filter. 

….(8) 



Distortion-less Transmission of Signal through a Filter 

H(ω) = K .exp(-jωtd) Now, 

Therefore, 

Y(ω) / X(ω) = K .exp(-jωtd) 

or Y(ω) = K X(ω).exp(-jωtd) 

Taking inverse Fourier transform, 

y(t) = K x(t – td) ….(9) 

Thus distortion-less transmission is possible with a linear phase 
characteristic with offset. 
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Phase Delay of a distortion-less filter 

The phase delay of a filter is defined as: 

p(ω) = -() /  ….(10) 

Now, for a linear phase filter,  

() = -ωtd  

Thus, p(ω) = -ωtd /ω = td , a constant. 

Now, for a linear phase filter with offset, 

() = 0 - ωtd 

Thus, p(ω) = -(0 – ωtd)/ω = - 0 /ω + td , not a constant quantity. 



Group Delay of a distortion-less filter 

The group delay of a filter is defined as: 

g(ω) = -d() / d ….(11) 

Now, for a linear phase filter,  

() = -ωtd  

Thus, g(ω) = -d(ωtd )/dω = td , a constant. 

Now, for a linear phase filter with offset, 

() = 0 - ωtd 

Thus, g(ω) = -d(0 – ωtd)/dω = td , a constant. 

Thus it may be concluded that a filter with constant group delay in the 
pass band region is a distortion-less filter.  



Linear Phase Digital Filter  

The z-transfer function of a digital filter may be expressed as: 

  





n

n
n zhzH ….(12) 

where hn is the discrete impulse response (impulse sequence) of the 
digital filter.  

jez Putting                    , the steady state frequency response may be 
obtained as:  

  





n

jn
nehH  ….(13) 



Linear Phase Digital Filter  

Properties of H(ω)  

Periodicity: 

Let ω = pωs + ω΄, where 0 ≤ ω΄< ωs/2 and p = 0, ±1, ±2,… with ωs 

as the sampling frequency. 

Then, z = exp(jω) 

= exp(j(pωs + ω΄)) 

= exp(jpωs  + jω΄) 

= exp(jp2π + jω΄) as ωs = 2π/  

Thus, 

H(ω) = H(ω΄) ….(14) 

= exp(jp2π).exp(jω΄) = exp(jω΄) 



Linear Phase Digital Filter  

Properties of H(ω)  

Symmetry: 

Let ω = pωs - ω΄, where 0 ≤ ω΄< ωs/2 and p = 0, ±1, ±2,… with ωs as the 
sampling frequency. 

Then, z = exp(jω) 

= exp(j(pωs - ω΄)) 

= exp(jp2π - jω΄) as ωs = 2π/  

= exp(jpωs  - jω΄) 

= exp(jp2π).exp(-jω΄) = exp(-jω΄), 
      complex conjugate of exp(jω΄) 

Thus, 

H(ω) = Ĥ(ω΄), complex conjugate of H(ω΄) ….(15) 



Linear Phase Digital Filter  

Properties of H(ω)  

Periodicity: H(ω) = H(ω΄), ω = pωs + ω΄ 

….(15) 

….(14) 

Symmetry: H(ω) = Ĥ(ω΄), ω = pωs - ω΄  



Linear Phase Digital Filter  

Design of digital filter by Fourier series method 

Let the digital filter be an ideal low-pass filter with a cutoff frequency of 
c, then |H(ω)| may be represented as: 


s/2 s/2 s

c c

H(

usable 
range

Thus, H() is found to be periodic with period s (in frequency domain).  



Design of digital filter by Fourier series method 

For a periodic time signal x(t), with T0 as the 
time period,  
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Comparing this periodic property with that of a periodic signal, complex Fourier 
coefficients of a periodic signal may be evaluated as follows: 
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Design of digital filter by Fourier series method 

Comparing this periodic property with that of a periodic signal, complex Fourier 
coefficients of a periodic signal may be evaluated as follows: 

From relation (13), 
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For a periodic time signal 

x(t)H(ω) Fnhn T0ωs ω0- 



Design of digital filter by Fourier series method 

Comparing this periodic property with that of a periodic signal, complex Fourier 
coefficients of a periodic signal may be evaluated as follows: 

From relation (13), 
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Now, relation (16) may be re-written as: 

Design of digital filter by Fourier series method 
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Digital filter impulse sequence hn : 
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by shifting the limits of integration and using the periodicity property of H(ω). 



Design of digital filter by Fourier series method 

Proof of relation (17): 
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Now, from periodicity property,  
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Design of digital filter by Fourier series method 

Proof of relation (17): 
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Frequency response of digital filter 

From relation (13), the frequency response H(ω) may be expressed as: 

Let hn be real and symmetric, i.e. hn= h-n. 
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Frequency response of digital filter 

For real and symmetric hn, 
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This is a real quantity. 

Thus, with a real and symmetric hn, a real frequency response may be 
obtained. This results in a distortion-less filter with zero phase shift. 



Realization problems 

From relation (12), 
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In terms of input and output, 

H(z)
X(z) Y(z)

Digital Filter

 
  






n

n
n zh

zX

zY



Realization problems 

H(z)
X(z) Y(z)

Digital Filter
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or, 

Now, using the shifting property, 
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n zxzXz , the z-transform of sequence xk delayed by n.  



Substituting, 

Realization problems 
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Substituting, 

Realization problems 

   











n k

k
nkn zxhzY

Changing the order of summation, 
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Now Y(z) may be expressed as: 
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where yk is the filter output sequence. 

….(20) 



Realization problems 
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Comparing relations (19) and (20), 
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Digital Filter

ykhn

, for k = 0,1,2,… ….(21) 

Relation (21) is the discrete convolution summation. 



Realization problems 







n
nknk xhy , for k = 0,1,2,… ….(21) 

Realization of relation (21) is shown below: 



Realization problems 







n
nknk xhy , for k = 0,1,2,… ….(21) 

Practical realization of relation (21) requires that, 

 summation to finite number of terms, which means applying some approximation to relation (21) 

 hn to be causal (i.e. hn = 0, for n < 0) 



Realization problems 

Considering M number of finite terms (assuming M to be an odd number), 

the truncated hn extends from n = -(M-1)/2,…,0,…,(M-1)/2. 

Assuming hn to be real and symmetric, from relation (21), 
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Truncated real and symmetric impulse sequence k
ŷwhere is an estimate of yk 

First requirement: summation to finite number of terms 

The corresponding frequency response may be expressed as from relation (18), 
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of H(ω). 



Realization problems 

Second requirement: hn to be causal 

To make hn to be causal, let the impulse sequence be delayed by (M-1)/2 delay 
units (one unit is , the sampling interval). 

Let the delayed impulse sequence be hl, where l = n + (M-1)/2.  
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Truncated real & symmetric impulse sequence Delayed & truncated real & symmetric impulse 
sequence 

Symmetry property: hn = h-n Symmetry property: ? 



Realization problems 

Symmetry property of hl  

Before shifting, hn = h-n 

The symmetry property of hl may be expressed as follows: 

h l
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Now shifting by (M-1)/2 units, 

2/)1(2/)1(   MnMn hh

Putting l = n + (M-1)/2, 

  2/)1(2/)1(  MMll hh

lMl hh  1
or ….(22) 

Relation (22) signifies a symmetric property of a causal filter whose impulse sequence is hl. 



Realization of a causal digital filter 

The filter output sequence may be expressed as, 
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xhy , for k = 0,1,2… ….(23) 

with the causal impulse sequence hl. 

As the duration of the impulse 
response is finite, it is called Finite 
duration Impulse Response (FIR) 
digital filter. 



Frequency response 

The frequency response of the causal digital filter may be expressed as: 
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Frequency response 
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Using the symmetry 
property of hl, the last 
term of relation (24) 
becomes, 
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By substituting p = M - 1 – l,  
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When l = (M+1)/2, p = M-1-l = M-1-(M+1)/2 = (M-3)/2 

Changing index l to p, 
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Frequency response 
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Substituting this in relation (24), 
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Now, changing index p to l, 



Frequency response 
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….(25) 

Relation (25) may be expressed as 

       HH

where θ(ω) = -ω(M-1)/2, a linear phase characteristic. 





slope = -
0Thus the frequency response of the FIR filter has a 

linear phase characteristic (which implies a 
distortion-less filter). 

The group delay of the FIR filter is: g(ω) = -d() / d = (M-1)/2, a constant 



Frequency response 

Thus, any FIR digital filter, with a real and symmetric impulse response (hl = hM-1-l) 
has a linear phase characteristic with a constant group delay. 
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It may be noted that, an FIR digital filter 
with anti-symmetric impulse response 
(i.e., hl = -hM-1-l) also results in a linear 
phase characteristic with offset (piece-
wise linear) and constant group delay. 
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Reference: J. R. Johnson, Introduction to Digital Signal Processing 



Direct realization of linear-phase FIR digital filters 

From relation (23), the output sequence from the causal FIR digital filter may be 
expressed as: 
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xhy , for K = 0,1,2,… ….(26) 

Direct realization of relation (26) may be carried out with a tapped delay line having 
(M-1) unit delays as shown below: 

xk

yk
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h0 h1 h2
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+

(M-1) unit delays

Here number of multiplications required is M. 



Direct realization of linear-phase FIR digital filters 

The output sequence from the causal FIR digital filter may be expressed as: 








1

0

M

l
lklk

xhy , for K = 0,1,2,… ….(26) 

Considering the symmetry property, hl = hM-1-l, assuming an odd M, the input output 
sequence relation may be expressed as, from relation (26),  
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Substituting hl = hM-1-l in the last term,  



Direct realization of linear-phase FIR digital filters 
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Direct realization of linear-phase FIR digital filters 

The last term: 

Let q = (M-3)/2 - p. Then after rearrangement, the last term becomes 
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Direct realization of linear-phase FIR digital filters 

The last term:  qMk
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q
q xh 
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Now, replacing q by l, and putting it in the main relation, we get: 
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Direct realization of linear-phase FIR digital filters 
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Realization of relation (27) is shown below: 

Here number of 
multiplications 
required is (M+1)/2. 
Similarly, for even M, 
the number of 
multiplications 
required is M/2. 



Effect of truncation of impulse response 

Relation between the desired frequency response of the FIR digital filter, 
considering infinite impulse response, and the frequency response obtained by 
truncating the impulse response may be expressed as follows: 

Let H(ω) be the desired frequency response and be expressed in terms of the 
infinite impulse sequence hn, n = 0,±1,±2,…,±∞ as 
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Effect of truncation of impulse response 

Let Ή(ω) be the frequency response of the filter with truncated impulse sequence 
(without considering the delay for causality) hn, n = 0,±1,±2,…,±(M-1)/2 and be 
expressed as 
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Now, Ή(ω) may be expressed in terms of infinite impulse sequence, considering a 
rectangular window sequence wn, n = 0,±1,±2,…,±∞ defined as 

wn = 1 for |n| ≤ (M-1)/2 
     = 0, otherwise 

….(30) 
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Ή(ω) = 



Now, by replacing hn with its value, 

Effect of truncation of impulse response 
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Effect of truncation of impulse response 

Ή(ω) =       
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Effect of truncation of impulse response 

Ή(ω) =       
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Relation (32) is known as the Circular Complex Convolution Integral. 
Now, 
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Effect of truncation of impulse response 

Ή(ω) =       
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Relation (32) is known as the Circular Complex Convolution Integral. 
Now, 
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Let k = n + (M-1)/2. Then, 
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Changing index k to n, 
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Effect of truncation of impulse response 
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Effect of truncation of impulse response 
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Plot of W(ω): 



Substituting the value of θ (= ω/2), 

Effect of truncation of impulse response 
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Plot of W(ω): 



Effect of truncation of impulse response 

When W(ω) is convolved with H(Ω), in relation (32), overshoots and undershoots 
occur in Ή(ω) as shown below: 
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Convolution 



Effect of truncation of impulse response 

Convolution 

This is known as Gibbs phenomenon. 

In this case, the peak overshoot is about 9%. 

The major part of the ripple in Ή(ω) is mainly due to the last component of the 
truncated Fourier series, as obtained in relation (33). 



Effect of truncation of impulse response 

Convolution 

These overshoots and undershoots (ripples) 
may be minimized by replacing the 
rectangular window function by an 
appropriate smooth window function whose 
amount of side lobes are minimum. 



Common window functions for FIR filter design 

Bartlett or Triangular Window 

Non causal Causal 

wn = 1 - |n|/((M-1)/2) for |n| ≤ (M-1)/2 wn = 2n/(M-1) for 0 ≤ n ≤ (M-1)/2 

= 0, otherwise = 2 - 2n/(M-1) for (M-1)/2 ≤ n ≤ (M-1) 



Common window functions for FIR filter design 

Hamming or raised-cosine window 

Non causal Causal 

wn = 0.54+0.46cos(2πn/(M-1)) for |n|≤(M-1)/2 wn = 0.54-0.46cos(2πn/(M-1)) for |n|≤(M-1) 

= 0, otherwise = 0, otherwise 



Common window functions for FIR filter design 

Non causal Causal 

wn = 0.5+0.5cos(2πn/(M-1)) for |n|≤(M-1)/2 wn = 0.5-0.5cos(2πn/(M-1)) for |n|≤(M-1) 

= 0, otherwise = 0, otherwise 

Hann window 



Common window functions for FIR filter design 

Non causal Causal 

Blackman window 

wn = 0.42+0.5cos(2πn/(M-1)) 
       +0.08cos(4πn/(M-1))  for |n|≤(M-1)/2 

wn = 0.42-0.5cos(2πn/(M-1)) 
       +0.08cos(4πn/(M-1)) for |n|≤(M-1) 

= 0, otherwise = 0, otherwise 



Frequency response of Hann window 

For a non causal Hann window, 

wn = 0.5+0.5cos(2πn/(M-1)) for |n|≤(M-1)/2 

Then, 
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Frequency response of Hann window 
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Frequency response of Hann window 
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or   W(ω) = 0.5[sin(ωM/2)/sin(ω/2)]  
                  + 0.25[sin(ω - (2π/(M-1))M/2)/sin(ω - (2π/(M-1))/2)] 
                  + 0.25[sin(ω + (2π/(M-1))M/2)/sin(ω + (2π/(M-1))/2)] 

Now, 2π/(M-1) = 2πfs/(M-1)fs = ωs/(M-1) 

Therefore, 
 

W(ω) = 0.5[sin(ωM/2)/sin(ω/2)]  
                  + 0.25[sin(ω - (ωs/(M-1))M/2)/sin(ω - (ωs/(M-1))/2)] 
                  + 0.25[sin(ω + (ωs/(M-1))M/2)/sin(ω + (ωs/(M-1))/2)] 



W(ω) = 0.5[sin(ωM/2)/sin(ω/2)]  
                  + 0.25[sin(ω - (ωs/(M-1))M/2)/sin(ω - (ωs/(M-1))/2)] 
                  + 0.25[sin(ω + (ωs/(M-1))M/2)/sin(ω + (ωs/(M-1))/2)] 

Frequency response of Hann window 



W(ω) = 0.5[sin(ωM/2)/sin(ω/2)]  
                  + 0.25[sin(ω - (ωs/(M-1))M/2)/sin(ω - (ωs/(M-1))/2)] 
                  + 0.25[sin(ω + (ωs/(M-1))M/2)/sin(ω + (ωs/(M-1))/2)] 

Frequency response of Hann window 



W(ω) = 0.5[sin(ωM/2)/sin(ω/2)]  
                  + 0.25[sin(ω - (ωs/(M-1))M/2)/sin(ω - (ωs/(M-1))/2)] 
                  + 0.25[sin(ω + (ωs/(M-1))M/2)/sin(ω + (ωs/(M-1))/2)] 

Frequency response of Hann window 



W(ω) = 0.5[sin(ωM/2)/sin(ω/2)]  
                  + 0.25[sin(ω - (ωs/(M-1))M/2)/sin(ω - (ωs/(M-1))/2)] 
                  + 0.25[sin(ω + (ωs/(M-1))M/2)/sin(ω + (ωs/(M-1))/2)] 

Frequency response of Hann window 



Frequency response of Hann window 

widened main lobe with 
reduced amplitude 

smaller side lobe 



Frequency domain characteristic of common window functions 

Type of window Approximate width of main lobe 

Rectangular 2ωs/M 

Bartlett 4ωs/M 

Hamming 4ωs/M 

Hann 4ωs/M 

Blackman 6ωs/M 



Frequency domain characteristic of common window functions 

Type of window Approximate width of main lobe 

Rectangular 2ωs/M 

Bartlett 4ωs/M 

Hamming 4ωs/M 

Hann 4ωs/M 

Blackman 6ωs/M 



Design of brick-wall type low-pass FIR digital filter 

|H(ω)| is the desired gain of the filter with infinite impulse sequence 

|Ĥ(ω)| is the gain of the filter with finite impulse sequence of length M 

Pass-band gain: a 
Cut-off freq: ωc 

Linear-phase 
characteristic 

Filter coefficients = finite impulse sequence = ? 



Design of brick-wall type low-pass FIR digital filter 

  2/)1(  MjaeH 

Here, 

for |ω| ≤ ωc 

= 0, otherwise 

considering a frequency range of - ωs/2 
to ωs/2.  

From relation (17) filter coefficients hl, l = 0,1,2,…,(M-1) may be estimated as: 



Design of brick-wall type low-pass FIR digital filter 
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Filter coefficients: 

Substituting the value of H(ω), 









 deaeh jlMj

s

l

c

c




 2/)1(1

  






 dae
c

c

lMj

s




 2/)1(1

 

 

c

c
lMj

ea lMj

s
























2/)1(

2/)1(

or  hl    

   

  















lMj

eea lMjlMj

s

cc

2/)1(

2/)1(2/)1(







Design of brick-wall type low-pass FIR digital filter 

hl    
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, for l = 0,1,2,…,(M-1) 

….(35) 



Design of brick-wall type low-pass FIR digital filter 
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, for l = 0,1,2,…,(M-1) 

….(35) 

Now, for l = (M-1)/2, the central coefficient h(M-1)/2 may be estimated, using the 
limit theorem, as: 

s

c
M

a
h



2
2/)1(  ….(36) 

When window functions are employed to reduce Gibbs oscillations, the modified 
filter coefficients may be expressed as: 

lll whh /
, for l = 0,1,2,…,(M-1) ….(37) 

where wl is the causal window sequence. 

The filter input-output relation for a 
windowed filter may be expressed as: 






1

0

//
M

l
lklk xhy ….(38) 



Sample problem 

Find filter coefficients of a 7-tap causal linear-phase FIR brick-wall type 
low-pass filter having a pass band gain of unity and a cut off frequency 
of 100 Hz, with a sampling frequency of 1 kHz. Apply Hann window for 
smoothing filter coefficients. Realize the filter. 

Hints: only ((M-1)/2+1) i.e. 4 of hl  need be calculated because of the 

symmetry property of hl . 

hl

M = 7

3 4 5 60 1 2 l

h0
 1M

h



Sample problem 

Find filter coefficients of a 7-tap causal linear-phase FIR brick-wall type 
low-pass filter having a pass band gain of unity and a cut off frequency 
of 100 Hz, with a sampling frequency of 1 kHz. Apply Hann window for 
smoothing filter coefficients. Realize the filter. 

Reference: J. R. Johnson, Introduction to Digital Signal Processing 



Design of brick-wall type high-pass FIR digital filter 

s/2 s/2 s
sc)

H(

a

c

For 0 ≤ ω  ≤ ωs , 

  2/)1(  MjaeH 

= 0, otherwise 

Then from relation (16), 
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, for ωc ≤ ω  ≤ (ωs – ωc) 
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Design of brick-wall type high-pass FIR digital filter 

s/2 s/2 s
sc)

H(

a

c

For 0 ≤ ω  ≤ ωs , 

  2/)1(  MjaeH 

= 0, otherwise 

Then from relation (16), 
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, for ωc ≤ ω  ≤ (ωs – ωc) 



Design of brick-wall type band-pass FIR digital filter 


s/2 s/2

s

H(

a

1 212

For -ωs/2 ≤ ω  ≤ ωs/2, 

  2/)1(  MjaeH 

= 0, otherwise 

Then from relation (17), 

, for ω1 ≤ |ω|  ≤ ω2 
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Design of brick-wall type band-stop FIR digital filter 


s/2 s/2

s

H(

a

1 212

For -ωs/2 ≤ ω  ≤ ωs/2, 

  2/)1(  MjaeH 

= 0, otherwise 

, for |ω|  ≤ ω1 
2/)1(  Mjae 

Then from relation (17), 
  








deHh jl

s

l

s

s





2/

2/

1

, for ω2 ≤ |ω|  ≤ ωs/2 



Design of FIR digital filter with stepped characteristic 


s/2 s/2



H(

a

1 212

b

For -ωs/2 ≤ ω  ≤ ωs/2, 

  2/)1(  MjaeH 

= 0, otherwise 

, for |ω|  ≤ ω1 
2/)1(  Mjbe 

, for ω1 < |ω|  ≤ ω2 

Then from relation (17), 
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