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Periodic signal ‘

Conventional low-pass filter output



Periodic signal ‘

Distortion-less low-pass filter output



Distortion-less Transmission of Signal through a Filter

For distortion-less transmission of signal through a filter within its pass-
band region let the magnitude of the steady state gain of the filter
(assuming it be an ideal low-pass) be:

|H(w)| = K, for Osw=sw, (1)

and the output of the filter be:

y(t) = Kx(t-t,) ..(2)

where x(t) is the input signal, band limited to w,, and ¢, is a constant
delay.

Taking Fourier transform of relation (2),
Y(w) = KX(w)exp(-jwt,) ....(3)

using delay property of Fourier transform.



Distortion-less Transmission of Signal through a Filter

From relation (3), the steady-state transfer function is:

Hw) = Y(w) / X(w) = Kexp(-jwt,) ...(4)
Thus, |H(w)| = K ....(5)
and ZH(w) = -wt, = 6(w), say
Then, 6(w) = -wt, ..-+(6)
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Distortion-less Transmission of Signal through a Filter
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Thus, for distortion-less transmission, phase
shift §(w) is lagging and proportional to
frequency within the pass band region.

This characteristic is called linear phase
characteristic.

If the phase shift & ) includes any constant offset, say 6,, then let
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Distortion-less Transmission of Signal through a Filter

+0(0)
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Thus the steady state filter gain may be expressed as,
H(w) = Kexp(j(6, — wt)))

= Kexp(/6,).exp(Jjwt,)
or Hw) = K" .exp(Jjwt ) ....(8)

where K’ (= Kexp(jg,)) is the complex gain of the filter.



Distortion-less Transmission of Signal through a Filter

A 9(0))

Now, H(w) = K’.exp(-jwt ) 9°\

0 5
Therefore, \

Y(w)/ X(w) = K".exp(-jwt,)
or Y(w) = K’ X(w).exp(-jwt )

Taking inverse Fourier transform,

yit) = K’ x(t—1t,) ..(9)

Thus distortion-less transmission is possible with a linear phase
characteristic with offset.



Phase Delay of a distortion-less filter

The phase delay of a filter is defined as:

(W) =-0(w)/ w ....(10)
Now, for a linear phase filter,
Thus, 7,(w) = -wt, /w =t,, a constant.

Now, for a linear phase filter with offset,

Thus, 7,(w) =-(6,— wt)/w = - 6,/w + 1, not a constant quantity.



Group Delay of a distortion-less filter

The group delay of a filter is defined as:
74(w) =-df(w) / de ...(11)
Now, for a linear phase filter,
O w) = -wt,
Thus, 7(w) = -d(wt, )/dw = {,, a constant.
Now, for a linear phase filter with offset,
A w) = 6, - wt,

Thus, 7,(w) =-d(9,— wt)/dw = {,, a constant.

Thus it may be concluded that a filter with constant group delay in the
pass band region is a distortion-less filter.



Linear Phase Digital Filter

The z-transfer function of a digital filter may be expressed as:

H(z)=> hz™" .(12)

n=—aoc

where h, is the discrete impulse response (impulse sequence) of the
digital filter.

Putting z = e’ “" the steady state frequency response may be
obtained as:

H(a)): ihne‘f”“” ...(13)

n=—oc



Linear Phase Digital Filter
Properties of H(w)

Periodicity:

Let w =pw, + w’,where 0 s w<ws/2and p =0, £1, £2,... with w,
as the sampling frequency.

Then, z = exp(jw7)
= exp(j(pws + w’)7)
= exp(jpwsr *jw 1)
= exp(jp21T + jw z) as w, = 211/
= exp(jp2m).exp(jw ) = exp(jw 1)
Thus,
H(w) — H((,U') ....(14)



Linear Phase Digital Filter
Properties of H(w)

Let w =pw,-w’,where0sw<wy/2and p =0, +1, £2,... with w, as the
sampling frequency.

Then, z = exp(jw7)
= exp(j(pws - w)7)
= exp(jpw.t - jw 1)
= exp(jp21T - jw 1) as w, = 21/t

= exp(jp2m).exp(4jw 1) = exp(-jw "),
complex conjugate of exp(jw 1)
Thus,

H(w) = H(w"), complex conjugate of H(w’) ....(15)






Linear Phase Digital Filter
Design of digital filter by Fourier series method

Let the digital filter be an ideal low-pass filter with a cutoff frequency of
w,, then |H(w)| may be represented as:

[H(w)|

A
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Thus, H(w) is found to be periodic with period o (in frequency domain).



Design of digital filter by Fourier series method

H(®)|
A
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Comparing this periodic property with that of a periodic signal, complex Fourier
coefficients of a periodic signal may be evaluated as follows:

For a periodic time signal x(t), with T, as the
time period,
1

o0 I
X(f) — ZFne]na)ot with Fn — ? Ix(t)e—jnwot Cl’t | F.
n=—0o0 00
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Design of digital filter by Fourier series method
For a periodic time signal

|H(w)|
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Comparing this periodic property with that of a periodic signal, complex Fourier
coefficients of a periodic signal may be evaluated as follows:

From relation (13),

H(a)) — Z hne_j"m X()E€DHW) F.e>h T edw, wyed-t
n=—0oC
1 ¢
h, may be evaluated as: hn - J‘[—](a)kjm‘”da) ....(16)

a,



Design of digital filter by Fourier series method
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Comparing this periodic property with that of a periodic signal, complex Fourier
coefficients of a periodic signal may be evaluated as follows:

From relation (13),

H(a)) = i hne_j”“”

n=—oc

h, may be evaluated as: h =— J‘[—](a)kjm‘”da) ....(16)



Design of digital filter by Fourier series method

Digital filter impulse sequence h,:

hn—1

__fH(w)gfnfwda) ....(16)
o, 3

Now, relation (16) may be re-written as:

e
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by shifting the limits of integration and using the periodicity property of H(w).



Design of digital filter by Fourier series method

Proof of relation (17):
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Now, from periodicity property,

}H(a))ej"“’)da) = TH(a))ej”m’da)
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Frequency response of digital filter

From relation (13), the frequency response H(w) may be expressed as:

H(w)= ihne_j e

n=—ocC

_ — JnT@ — JnT@
= Zhne +hy, +Zhne
n=l

n=—1

oC oC

_ JnTo —JnT@® -

=hy+ Y h,e"+> he .
n=l1 n=l1 )

Let h, be real and symmetric, i.e. h,=h,. ‘

Then,



Frequency response of digital filter

For real and symmetric h,,

H (a)) = h, + i h (ef’”“’ 4+ e‘f”m) ......... ‘
n=1

= h, + 22 h cos(nrw)
n=1

This is a real quantity.

...(18)

Thus, with a real and symmetric h,, a real frequency response may be
obtained. This results in a distortion-less filter with zero phase shift.



Digital Filter




Realization problems

oC
( ) Z h 7~ X(2) HG) Y(z)
X(z) =
Then
oc Digital Filter
. —n
Y(z)— X(Z)Z h,z
n=—oc
or, Y(z Zh 2" X(z
n=—oc
Now, using the shifting property,
_nX Zxk _,Z , the z-transform of sequence X, delayed by n.

k=—oc






Realization problems

Substituting,
Y(z): Z h, Zxk_nz_k
n=—oc k=—oc

Changing the order of summation,

OED DR =

k:—(x n=—aoC

Now Y(z) may be expressed as:

Y (z) = Z ykz_k
 —

where y, is the filter output sequence.

...(19)

...(20)



Realization problems

Xy Vi Y(Z) = Z { Zhnxk—n }Zk....mg)

—— hn ———p k:—OC Nn=—-aC

8

—k
Y(Z)= Zykz ...(20)
Digital Filter k=—oc
Comparing relations (19) and (20),
Ve = Zhnxk_n fork=0,1,2,... ..(21)

n=—oc

Relation (21) is the discrete convolution summation.
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Practical realization of relation (21) requires that,

» summation to finite number of terms, which means applying some approximation to relation (21)

> h_to be causal (i.e. h, =0, for n <0)



Realization problems

First requirement: summation to finite number of terms
Considering M number of finite terms (assuming M to be an odd number),
the truncated h, extends from n = -(M-1)/2,...,0,...,(M-1)/2.

Assuming h,, to be real and symmetric, from relation (21),
h

n=(M-1)/2 i M =7and
A _ h h,=h_,
Vi = nXk—n

n=—(M-1)/2

-3 2 -1 0 1 2 3

where )? is an estimate of y,
k Truncated real and symmetric impulse sequence

The corresponding frequency response may be expressed as from relation (18),

A (M~1)/2

H(a)) =h, +2 Zhn cos(n Ta)) , a real quantity, where H(w) is an estimate
p— of H(w).



Realization problems

Second requirement: h, to be causal

To make h,, to be causal, let the impulse sequence be delayed by (M-1)/2 delay
units (one unit is 7, the sampling interval).

Let the delayed impulse sequence be h, where [ =n + (M-1)/2.

Symmetry property: h, = h_, Symmetry property: ?



Realization problems

Symmetry property of h,

The symmetry property of h, may be expressed as follows:
Before shifting, h, = h_,

Now shifting by (M-1)/2 units,

hn+(M—l)/2 — h—n+(M—l)/2

Putting / = n + (M-1)/2,

hl — h(—l+(M—1)/2)+(M—1)/2
or , =h,, .(22)

Relation (22) signifies a symmetric property of a causal filter whose impulse sequence is h,.



Realization of a causal digital filter

The filter output sequence may be expressed as,

M-1
V,=2hX_, tork=012.. ...(23)
[=0

with the causal impulse sequence h,.

(M-1) unit delays

As the duration of the impulse
response is finite, it is called Finite
duration Impulse Response (FIR)
digital filter.




Frequency response

The frequency response of the causal digital filter may be expressed as:

M-1
. —jltw
= Zhle

(M 3)/2
—jltw —]ra)(M 1)/2 —jltw
or H Zhe + 50128 + Zhe
‘ [=(M+1)/2
....(24
lﬁl h(M_l) M — 7 / ( )
h > h
h, h(M 1)




Frequency response

Using the symmetry (M=3)/2
property of h,, the last ﬁ he ™ +h o JTM-DI2 he '
term of relation (24) Z -2 ~ (MZ;{) @
becomes,
(M-1) (M-1)
—jlto —jltw
2 he = D huie
I=(M +1)/2 [=(M +1)/2

By substitutingp =M - 11—,

(MZ—:I) ; (MZ—:I) (M—tp)
hle—]m): hpe—]M——pra)

I=(M+1)/2 I=(M+1)/2

When | = (M+1)/2, p = M-1-1 = M-1-(M+1)/2 = (M-3)/2

Changing index / to p, (M=) (M=3)/2

Zh e j(M-A-p)rw Zh P j(M-A-p)rw Zh P (MA-p)rw

I=(M+1)/2 p=(M=3)/2



Frequency response

(M=3)/2 1 / z
T 70} ito(M—1)/2 70}
H(w Zhef Py e T+ Zhef ' (24)
I=(M+1)/2
Now, changing index p to /,
(M-1) (M-3)/2
—jlm) _ M 1- l
> he =3 e

[=(M+1)/2

Substituting this in relation (24),
(M-3)/2

jra(M-1)/2 _jltw (M—l—l)ra))
H(a)) Prsnyn€ + Zh( +e
1=0



Frequency response

N_OW’ | (M-3)/2 | |
H(C!)) _ h(M_l)/ze—]rw(M—l)Q 4 Zhl (e—]lra)_l_e—](M—l—l)ra))
/=0
or, B _
O () jeali- -7
T ) —jra(M-1)/2 —jrel I« M-1)/2 el I~(M—1)/2
H (a)) =e Boarnyn Zhl (e +e’ )
L =0 4
or,
| (M=3)/2 N

H(w)=e"" "2 b\, +2 Y b cosiorl— (M —1)/2))
[=0

....(25)



Frequency response

(M=3)/2

H(w)=e """ b\, +2 Y b cosiorl—(M —1)/2))
[=0

....(25)

Relation (25) may be expressed as
H(w)= ‘ﬁ (a))(l 6(w)

where 6(w) = -wtr(M-1)/2, a linear phase characteristic.

A 9(0))

Thus the frequency response of the FIR filter has a 0:
linear phase characteristic (which implies a S Pe=rdalz
distortion-less filter). :

(O]

The group delay of the FIR filter is: 7,(w) = -df(w) / dw = 7(M-1)/2, a constant



Frequency response

Thus, any FIR digital filter, with a real and symmetric impulse response (h,= h,, ;)
has a linear phase characteristic with a constant group delay.

hy 16(c)

»
>

<« éslope =-1(M-1)/2

It may be noted that, an FIR digital filter

with anti-symmetric impulse response #

(i.e., h,=-h,,,,) also results in a linear
phase characteristic with offset (piece- 0 ‘ ‘

~v

wise linear) and constant group delay.

Reference: J. R. Johnson, Introduction to Digital Signal Processing



Direct realization of linear-phase FIR digital filters

From relation (23), the output sequence from the causal FIR digital filter may be
expressed as:

M-1
y.=>hx_  fork=012,.. ...(26)
[=0

Direct realization of relation (26) may be carried out with a tapped delay line having
(M-1) unit delays as shown below:

(M-1) unit delays
Y Yl Xk X-M+1
T T T e » T
h, /T r————— h,,
+
Vi

Here number of multiplications required is M.



Direct realization of linear-phase FIR digital filters
The output sequence from the causal FIR digital filter may be expressed as:

— thxk_z ,forK=0,1,2,... ....(26)

Considering the symmetry property, h, = h,, ,, assuming an odd M, the input output
sequence relation may be expressed as, from relation (26),

(M-3)/2 M-1
Z hx,_; + h(M—l)/zxk—(M—l)/z T Z hx,
1=0 I=(M+1)/2

Substituting h, = h,,_,, in the last term,

thk | = ZhM 1-1X k-1

I=(M+1)/2 I=(M+1)/2



Direct realization of linear-phase FIR digital filters

The last term: Zh Xj—p = ZhM 11X

I=(M+1)/2 I=(M +1)/2

Let p =/- (M+1)/2. Then the last term becomes,
(M-3)/2

ZhM—l—( M)/ 2) Xk~ p(M+1)/2)
p=0
(M—=3)/2

h((M—3)/2)—pxk—(p+(M+1)/2)
p=0



Direct realization of linear-phase FIR digital filters

(M -3)/2
p=0
Let g = (M-3)/2 - p. Then after rearrangement, the last term becomes
(M=3)/2

hqu—((MH)/2+((M—3)/2)—q)
q=0

(M=3)/2

- Z hqu—(M—l—q)
q=0



Direct realization of linear-phase FIR digital filters

(M =3)/2
The last term: Z hqu_(M_l_q)
q=0
Now, replacing g by /, and putting it in the main relation, we get:
(M=3)/2 (M=3)/2

Vi = Z hx,_ + Zhlxk—(M—l—l) +h(M—1)/2xk—(M—1)/2
1=0 1=0

o (M=3)/2

Ve = Z h, (xk—l + xk—(M—l—z))"' h(M—l)/Z'xk—(M—l)/Z
1=0

.(27)



Direct realization of linear-phase FIR digital filters

(M=3)/2

Z h, (xk—l T X (M-1-1) )"‘ h(M—l)/zxk—(M—l)/z +(27)
1=0

Vi =

Realization of relation (27) is shown below:

T

] k-1

e

Here number of
multiplications
required is (M+1)/2.
Similarly, for even M,
the number of
multiplications
required is M/2.



Effect of truncation of impulse response

Relation between the desired frequency response of the FIR digital filter,
considering infinite impulse response, and the frequency response obtained by
truncating the impulse response may be expressed as follows:

Let H(w) be the desired frequency response and be expressed in terms of the
infinite impulse sequence h,, n = 0,£7,£2,...,+~ as

H(w)= > he " ...(28)
: 1 @, /2
where h = — jH(a))Bjnmda)
@, ~w, /2
L

_ I H(we" " do  [from relations (16) & (17)
a)s 0



Effect of truncation of impulse response

Let H(w) be the frequency response of the filter with truncated impulse sequence
(without considering the delay for causality) h,, n = 0,£1,£2,...,+(M-1)/2 and be
expressed as
(M —-1)/2 |
Hw)= D, he " ...(29)
n=—(M-1)/2
Now, H(w) may be expressed in terms of infinite impulse sequence, considering a

rectangular window sequence w,, n = 0,£7,£2,...,+~ defined as

w, = 1 for |n| < (M-1)/2
= 0, otherwise ---+(30)

and x :
H(w) = Zhnwne_mm

iy, Z

4 ...(31)

1

t g




Effect of truncation of impulse response

Now, by replacing h, with its value,

o @, /2
Hw) =Y wi [ H(QE"de2 |w,e "
n==—| s —w, /2 n

with 2 as a dummy variable for integration.
Now, changing the order of summation and integration,

/2 o
'[—[(w) :6()i jH(Q ane—jm(a)—Q) dO
S —w,/2

n=—ac

< —jnt(0-Q) . . . .
Now Z w € is the Fourier series representation of W(w-Q).

n=—aoC

1 @, /2
Therefore, H(Ww) = . f H (Q)/V(a) — Q)dQ ..(32)

S —w,/2






Effect of truncation of impulse response

¥
@, /2 | \
Hw) = Q)L jH(Q‘W(a)—Q)dQ ...(32)
S —w, /2

Relation (32) is known as the Circular Complex Convolution Integral.
Now,

oc (M-1)/2
_ —jhot _ —J/nwt  (considering the sequence w
W(w)= Zw e = Ze ( g g n)

n
n=—oC n=—(M-1)/2



Effect of truncation of impulse response

@, /2
H(w) = Q)L jH(Q)/V(a)—Q)dQ ....(32)
S —w, /2

Relation (32) is known as the Circular Complex Convolution Integral.
Now,

oC (M-1)/2
W(a)) — ane‘f”’m — ze—f”’m (considering the sequence w,)
n=—oc n=—(M-1)/2
Let k =n + (M-1)/2. Then,
M- M-1
W( a)) _ Z - F(k~(M-1)/2)or _ eja)f(M—l)/2 Z - ket
k=0 k=0
Changing index k to n,
W(C()) _ e]a)r(M—l)/2 Ze—]na)r (33)

n=0



Effect of truncation of impulse response

M-
W(w)=e/ MDY g ..(33)
n=0
M-
Now Ze_j”m may be expressed as
n=0
M- 1 — Mot
_; —e
Ze jnot _ —
n=0 1-e /
Thus,
—j 'wtM /2 —jorM /2
_ _Jjor(M-1)/2 .

eja)r/Z . e—ja)f/Z

jotM /2 —jotM /2 .
:(e e )/ 2] :sin(wTMj/sin(w;j

(eja)r/Z_e—ja)T/Z)/zj 9 Y












Effect of truncation of impulse response

Hlw)

%)
AW (@)
Y
\W(w) ;
Convolution , :
N o an‘v_(")
e N R Lo,
it BN t

This is known as
In this case, the peak overshoot is about 9%.

The major part of the ripple in ‘H(w) is mainly due to the last component of the
truncated Fourier series, as obtained in relation (33).



Effect of truncation of impulse response

A 1 (W) These overshoots and undershoots (ripples)
may be minimized by replacing the
; S rectangular window function by an
: l appropriate smooth window function whose
- = WA~ amount of side lobes are minimum.
H(w)
H()
g
“W
‘ r 1
AW ' '
Convolution ! !
















Frequency response of Hann window

For a non causal Hann window,
w, = 0.5+0.5cos(21rn/(M-1)) for |n|<(M-1)/2

Then,
(M-1)/2

W(a)) = Z Wne_j o

n=—(M-1)/2

(M—1)/2

_ Z O.S-I—O.SCOS( L j e "t
n=—(M-1)/2 M -1

(M-1)/2 MD/2 [ Sj2mIM=1) | = j2ml(M =)

=0.5 Ze‘jnm+0.5 Z ; i

n=—(M-1)/2 n=—(M-1)/2




Frequency response of Hann window

(M-1)/2 M=)z (G2mAMA) | mj2miM-))
W(w)=0.5 Ze_]"“” +0.5 Z e "
n=—(M—-1)/2 n=—(M-1)/2 2
(M-1)/2 (M-1)/2 _; (m 2”) (M-1)/2 _Jn(am 27fj
M-l M-l

=0.5 > e +025 ) e +025 > e

n=—(M-1)/2 n=—(M-1)/2 n=—(M-1)/2



Frequency response of Hann window

(M2 (M-1)/2 _-n(m_%] (M-1)/2 _jn(wﬁ 2”1j
W(w)=05 > e +025 > e 4025 > e v
n=—(M-1)/2 n=—(M~-1)/2 n=—(M~-1)/2

or W(w) = 0.5/sin(wtM/2)/sin(w1/2)]
+ 0.25[sin(w - 2n/(M-1))M/2)/sin(wt- (2n/(M-1))/2)]
+ 0.25[sin(wt+ 2n/(M-1))M/2)/sin(wt+ 2rn/(M-1))/2)]

Now, 2n/(M-1) = 2nf /(M-1)f, = o ,7/(M-1)
Therefore,

W(w) = 0.5[sin(cwt™M/2)/sin(w1/2)]
+ 0.25[sin(w - (w/(M-1))t™M/2)/sin(o - (0 /(M-1))7/2)]
+ 0.25[sin(w + (0 /(M-1))tM/2)/sin(wt + (0 /(M-1))7/2)]















widened main lobe with
/ reduced amplitude

Er— - “
U 2w
™ " 0 = i

M .
™M smaller side lobe



Frequency domain characteristic of common window functions

mmm) Rectangular 2w /M
Bartlett 4w /M
Hamming 4w /M
Hann 4w /M
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Frequency domain characteristic of common window functions

Rectangular 2w /M
Bartlett 4w /M
Hamming 4w /M
‘ Hann 4w /M
Blackman 6w ,/M
P\ )
L 0°5™M
T —2us —w, 3

|
!

L=1
3E 1
N
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Design of brick-wall type low-pass FIR digital filter

[\ﬁ\(w)\
- g‘/lﬂ(w)]
l\ \ e 1 > 4
_-‘—:\:Mc. o\ ﬁi:_, o (A‘!;/Z‘ i

o Fr\'t\:mc.
~w (Mm-D /2.

|H(w)| is the desired gain of the filter with infinite impulse sequence
|H(w)| is the gain of the filter with finite impulse sequence of length M

Filter coefficients = finite impulse sequence = ?



Design of brick-wall type low-pass FIR digital filter

Here,

—jor(M-1)/2
H(w)=ae ™™ for lw| < w,

= 0, otherwise

considering a frequency range of - w/2
to w/2.

- (m-) /2

From relation (17) filter coefficients 4, [ = 0,1,2,...,(M-1) may be estimated as:



Design of brick-wall type low-pass FIR digital filter

Filter coefficients:

@, /2
h, _ 1 jH(a))eﬂ“"da)
@, —w, /2

Substituting the value of H(w),

S

I —jor(M-1)/2 ]lra)da)
-,
@

o

1 _
A Iae jor((M-1)/2—- Z)da)
a) a)

S

or hl

{ o jor(M-1)/2-1) T q | g edMD/2) _ jed(-D/2-)

jelM-n/2=0)|, @ —jdM-112-1)

S—




Design of brick-wall type low-pass FIR digital filter

a| e

[ —jor((M-1)/2-1) eja)cr((M—l)/2—l) ]

o i eja)cr((M—l)/Z—l) e—ja)cr((M—l)/Z—l) ]

—jr((M-1)/2-1)

2j((M -1)/2-1)
2a

" w(M-1)/2-1)

sinfw,c((M -1)/2-1)]

w.1(M-1)/2-1)

sinlw,7(M -1)/2-1)]

,for/=0,1,2,...,(M-1)

....(35)



Design of brick-wall type low-pass FIR digital filter

b 2am, _sin[a)cr((M —1)/2_1)]_
o, | eg(M-1)/2-1)

S

,for/=0,1,2,...,(M-1)

....(35)

Now, for [ = (M-1)/2, the central coefficient h(M-I)/Z may be estimated, using the
limit theorem, as:

2a®
h(M—n/z = o - ....(36)

S

When window functions are employed to reduce Gibbs oscillations, the modified
filter coefficients may be expressed as:

hl/ =h, -w, . forl=012..(MI]) ..(37)

where w; is the causal window sequence.

o . M-1

The filter input-output relation for a /] h'

windowed filter may be expressed as: Vi = Z I Xk ....(38)
1=0



Sample problem

Find filter coefficients of a 7-tap causal linear-phase FIR brick-wall type
low-pass filter having a pass band gain of unity and a cut off frequency
of 100 Hz, with a sampling frequency of 1 kHz. Apply Hann window for
smoothing filter coefficients. Realize the filter.

Hints: only ((M-1)/2+1) i.e. 4 of h, need be calculated because of the
symmetry property of h; .




Sample problem

Find filter coefficients of a 7-tap causal linear-phase FIR brick-wall type
low-pass filter having a pass band gain of unity and a cut off frequency
of 100 Hz, with a sampling frequency of 1 kHz. Apply Hann window for
smoothing filter coefficients. Realize the filter.

Reference: J. R. Johnson, Introduction to Digital Signal Processing



Design of brick-wall type high-pass FIR digital filter

- /2 0 ®, /2 ((o -®,) o

For0<w <w;,,
_ —jer(M-1)/2
H(a))—ae ,foro,. <o <(v,—w,)

= (), otherwise

Then from relation (16),

h[ — Laj&v]{(a)kﬂfwda) _i j —jor(M-1)/2 ]lfa)d
4 » a)

S



Design of brick-wall type high-pass FIR digital filter

- /2 0 ®, /2 ((o -®,) o

For0<w <w;,,
_ —jer(M-1)/2
H(a))—ae ,foro,. <o <(v,—w,)

= (), otherwise

Then from relation (16),

hl :LJ&?H(a)kﬂM)da) _i j —]a)r((M —1)/2— Z)da)
), 0) o

S



Design of brick-wall type band-pass FIR digital filter

NS

R
()

£

£

ey

For-o/2<w <w/2,

_ —jor(M-1)/2
H(a))_ae ,forw, <|w| <o,

= (), otherwise

Then from relation (17),
1 @, /2

h = — J-H(a))eﬂma’a)
@

S —wg /2



Design of brick-wall type band-stop FIR digital filter

[H(w)|
A
a_ . L _
®,—0;, O O, co ®
—0 /2 0 0,/2 g
For-o/2<w <w/2,
_ —jor(M-1)/2
H(a))—ae ,for jo| <w,
=qe /TMIDE T gor w,<|w| <w/2
= (), otherwise
: /2
Then from relation (17), | s .
h =— jH(a))e]””da)
),

S —wg /2



Design of FIR digital filter with stepped characteristic

|H(w)|
A
] b, L
.
e BN ¢

For-o/2<w <w/2,

_ —jor(M-1)/2
H(a))_ae , for | <o,

—jor(M-1)/2
= pe /rMD ,forw, < |o| fw,

= (), otherwise

. w, /2
Then from relation (17), 1
h = — jH (@k"™dw
a

S —w, /2






