Electrical Signal Transmission Systems

Prof. Anjan Rakshit and Prof. Amitava Chatterjee Electrical Measurement and Instrumentation Laboratory, Electrical Engineering Department, Jadavpur University, Kolkata, India.

Single-Loop Controllers

A single-loop controller

✓ Two popular modes of electrical signal transmission are:

Multi-Loop Controllers

✓ When the computer shares different control loops (for economic reasons), *multiplexers* are used for data collections.

Digital Controller

Problems:

- **Sensor errors (e.g., offset, gain, non-linearity etc.) should be** taken into account by the software.
- High cabling cost due to star connection/ junction at the controller.

Alternate Solution

✓ Utilize *smart sensors*, by incorporating a processor with requisite interface along with a traditional sensor.

Problems:

> Interface inaccuracies (e.g. ADC and DAC errors).

An Improved version of the Previous Solution

✓ Interface inaccuracies can be minimized with a serial digital transmission between a smart sensor and digital controller.

Adaptation for Multi-Loop Control

Features:

- ✓ A multiplexed serial data transmission system (bus) is used to minimize the cabling cost.
- ✓ Proper communication protocol is necessary for selective transmission of data from sensor-to-controller and controller-to-final control element .

Standard	Origin	Туре	Max. Length	Max. Data Rate	Number of Drivers and Receivers
RS – 232C (V24)	EIA (CCITT)	Single ended (unbalanced)	50 ft (at 20 kb/s)	20 kb/s	1 – driver 1 – receiver
RS – 423	EIA	Single ended (unbalanced)	4000 ft (< 1 kb/s)	100 kb/s (upto 30 ft)	1 – driver 10 – receivers
RS – 422	EIA	Differential (balanced)	4000 ft (< 100 kb/s)	10 Mb/s (upto 40 ft)	1 – driver 10 – receivers
RS – 485	EIA	Differential (balanced)	4000 ft (< 100 kb/s)	10 Mb/s (upto 40 ft)	32 – drivers 32 – receivers

EIA :Electronics Industries Association (USA)CCITT:International Telephone and TelegraphConsultative Committee

RS-232C

RS-423

RS-422

R_t : terminating resistor; **R**: receiver; **D**: driver; **T**: transceiver [Transmitter(driver) + receiver]

✓ In RS – 485, drivers can withstand bus faults and bus contention

Serial Data Transmission in presence of Noise

✓ In *differential or balanced* data transmission systems, common mode noise voltages (with respect to ground) are nullified.

✓ For *both balanced and unbalanced* transmission systems, receivers are provided with adequate *hysteresis to reject interference*.

Provision of Hysterisis with Asymmetry

Serial Data Transmission in presence of Noise

A System Without Hysterisis

Serial Data Transmission in presence of Noise

A System With Hysterisis

Electrical Specifications of Serial Interface Standards

	RS – 232C	RS – 423	RS – 422	RS – 485
Driver output maximum voltage	± 25V	± 6V	- 0.25V to + 6V	- 7V to + 12V
Driver output loaded Signal level unloaded	± 5V ± 15V	± 3.6V ± 6V	± 2V ± 5V	± 1.5V ± 5V
Driver load impedance	3K to 7K	450Ω min	100 Ω	54 Ω
Slew rate	30V/µS*			
Receiver input voltage range	± 15V	± 12V	± 7V	- 7V to + 12V
Receiver input sensitivity (min voltage)	± 3V	± 200 mV	± 200 mV	± 200 mV
Receiver input resistance	3K to 7K	4K min	4K min	12K min

*As the line is open ended, effects of line reflections are minimized with limited slew rate

Asynchronous Serial Data Communication transmits data in one simplex direction transmits data in both serial half-duplex directions, but not communication simultaneously transmits data in both full-duplex directions simultaneously

Asynchronous Serial Data Communication

 ✓ In asynchronous transmission, inter character spacing is not fixed. Each data character starts with a start bit with one or two stop bits at the end. Each character is identified by its start and stop bits – thus it can be sent at any time (i.e. in an asynchronous manner).

Asynchronous Serial Data Communication

Data Format for Asynchronous Transmission

✓ Parity Bit - set as odd or even – to identify one-bit error per character during transmission.

Asynchronous Serial Data Communication Data Format for Asynchronous Transmission An Example:

7 bit ASCII character 'E' with odd parity and two stop bits 'E': 69 d = 45 h

✓ overall parity of 7-bit character 'E'

= total number of ones including parity bit = $3 \rightarrow$ odd.

Asynchronous Serial Data Communication Data Format for Asynchronous Transmission Another Example:

7 bit ASCII character 'E' with even parity and two stop bits 'E': 69 d = 45 h

✓ overall parity of 7-bit character 'E'
 = total number of ones including parity bit = 4 → even.

RS-232C based Data Transmission Systems

Data Transmission Using MODEMs

✓ MODEM stands for (Modulator + Demodulator)

✓ Modulation Techniques:

AM (Amplitude Modulation)
FSK (Frequency Shift Keying)
PSK (Phase Shift Keying)
....

RS-232C based Data Transmission Systems Data Transmission Using MODEMs

RS-232C based Data Transmission Systems

Data Transmission Using MODEMs

DTE connector : 25 pin Male

DCE connector : 25 pin Female

DTE: Data Terminal Equipment; DCE: Data Communication Equipment

TxD: Transmitter data [zero : + 12V, one : − 12V (typical value)] → for all signal lines

RxD: Receiver data [--do--] RTS : Request to send [--do--]

CTS :Clear-to-send [--do--]DTR :Data terminal ready [--do--]

DSR :Data-set-ready [--do--]

RS-232C based Data Transmission Systems Data Transmission Without MODEMs (Null Modem)

RS-232C based Data Transmission Systems

Data Transmission Without MODEMs and Without Handshaking

 \checkmark If hardware handshaking is not available, software based handshaking is normally used through a suitable half-duplex communication protocol.

Transmission Rate

It indicates the rate at which serial data is being transferred. It is defined as the *number of unit time intervals per second* in the transmission.

An Example:

✓ If a maximum of ten characters with a data format using 7 bits per character, parity bit and 2 stop bits (i.e. 11 bit-times per character, considering the start bit) are transmitted each second, then *baud rate*:

11 bit-times per character × **10 characters per second**

= 110 baud

i.e. baud rate = 1/ bit-time

✓ Note: Baud rate and Bit rate (i.e. frequency) are not same.

Transmission Rate

An Example:

Consider the following character with even parity and one stop bit

Baud Rate = 1/bit-time Bit Rate (frequency) = (1/Time Period)

Here, Time Period = $2 \times$ bit-time, Hence, Bit Rate = $\frac{1}{2} \times$ Baud Rate

Transmission Rate

Standard Baud Rates

✓ 110 Baud

- ✓ 300 Baud
- ✓ 600 Baud
- ✓ 1200 Baud
- ✓ 2400 Baud
- ✓ 4800 Baud
- 🗸 9600 Baud
- ✓ 19.2 K baud

✓

Microprocessor Interface

