Digital Signal Processing
Anjan Rakshit and Amitava Chatterjee
Jadavpur University, Electrical Engg. Deptt., Kolkata, India.

ADAPTIVE DIGITAL
FILFERS:
PART |



Digital Signal Processing
Anjan Rakshit and Amitava Chatterjee
Jadavpur University, Electrical Engg. Deptt., Kolkata, India.

ADAPTIVE NOISE CANCELLERS

When a random signal is corrupted by an additive random noise
with overlapping signal and noise spectra, Wiener filtefing
technique is found to be the optimum for stationary progesses. The
design of these optimal filters requires a priori know/lédge ofhoth
the signal and the noise. Adaptive filters, on the.other/and, have
the ability to adjust their own parameters aytofaticaNy-to reackrthe
performance of optimal filters, while th&rdesiga requirss-ittle or

no a priori knowledge of signal and\peise statistics.

System output

+ (estimated signal)
+ >

Primary input

(signal +naise) ﬂ Hiter

output
Reference «— FHiter P

input (noise)
44 Adaptive

algorithm * Error

Hg. 1: The basic adaptive noise canceller
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In Fig.1, a reference input from the noise field is filtered and

subtracted from the primary input containing both signal and noise.

The difference between the primary input and the(filter
output adjusts the filter parameters through an adaptivesalgorithm
so that the primary noise is attenuated org elmingted: by
cancellation.

Let the primary input sample be P, at the nth instant and"it is

P,=S,+N, 1)
where S, is the signal sample at.the nth_instant.and N, is the
additive noise sample at the nth-instant;-¥f thereference input at the
nth instant be R, and is assumed t6 be, correlated to the noise but
uncorrelated to the sigial, then
E[RN,]+0

& E[RS]=0 @
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N,(Noise) (Estimated Signal)
PAS
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Sl (Primary) ﬁ
R h il (Estimated
(Refgrence) ; TEEE)
. En
Z L Adaptive

algorithm (Efror)

Hg. 2: Adaptive noise canceller with corre€lated noise
in the reference input

In fig. 2, the reference input Ry-is filtered through the filter

H(z) to give the estimated noise sample N, which is subtracted
from the primary sample to yield<the' signal estimate S,. The

resulting error E;, 'which happensto be the estimated signal itself,

ultimately adjusts the-parametéers of the filter system function H(z).

The adaptive,algorithm adjusts the filter parameters so that
the error converdes to a minimum in the pean — sguare sense
Then'the adaptive filter becomes an equivalent to the Wiener filter.
Ahe fiter impulse response hy,; at this optimal condition is such

that
Ty Rrr(i)=Rep(j) (3)
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where Rggr(j) is the discrete autocorrelation function of the
reference input, and Rgp(j) is the discrete cross-correlation function
between the reference and the primary inputs. By applying Wiener
= Khintchine theorem

Srp(2)=Srr(2)Hw(2) (4)
where Sgp(z) is the cross spectral density betweén the reference
and primary inputs, Sgr(z) is the power spectral density af\the
reference input and H,(z) is the system function of the optimal
filter.

Now,

Srp(2)=Sgrs(2)+ Srn(2) (5)
Assuming that the original signal and the reference input are
completely uncorrelated,

Srs(2)=0
hence, S..(2)=S,.(2) (6)
Therefore; from(4) and(6),

H@= > () 0

Fhis-form of Wiener solution is unconstrained, because here
the’impulse response hy,; may be causal or non-causal and of finite
or infinite duration.

For physical realization, the impulse response is normally

truncated and delayed and realized with FIR filter structures.
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Adaptive Cancellation of Noise without an External Reference
Source:

In some applications no external reference input, fresdfrom
the signal, is available for adaptive processing. In sughhCasesihe
reference has to be derived from the primary inputsitselfi(lzet a
reference filter F(z) be included between the primary and reference
inputs so that the filter provides, as output,‘a referénee R,, which is
highly correlated to noise N, but is_almost uncorrélated to the

signal S, as shown in Fig. 3.

+JIN~(Noise) A
+ P V S
S, - P + Iy
(Signal) (Primary)s- \ (estimated
signal)
Reference f A |
filter n N\
# (estimated
R H noise)
(reference) 0

L Adaptive

: <
algorithm E, (error)

Fg.3 : Adaptive noise canceller with reference
derived from the primary input
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The reference filter F(z) may be replaced by a hulk delay
stage when the signal is random but the noise is periodic (e.g.
sinusoidal interference). This delay decorrelates the signal in-the

reference path and so may be called a detorrelation delay. Rue to
its periodic nature the noise remains correlated in the<reference

path.
N, Periodic
+ 1 interference A
+ Pn + Sn
S, § l % >
(Z?nr?;)l;n - Decarrelation
g d delay ®,
N "
R, 5
KL Adaptive - E,
algorithm

FHg. 4. “Adaptivesnoise canceller for periodic
interference.without an external reference source

In “case/the signal contains correlated components (rather
than /being “purely random), improper selection of decorrelation
delay may lead to appreciable leakage of correlated signal in the
reference path. As a result, the filter not only cancels the
interference but also distorts, in general, the estimated signal at the

noise canceller output.
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THE ADAPTIVE DIGITAL FILTER

Let an M-weight FIR adaptive filter be realized from an M-tapped
delay line as shown in Fig. 5.

s,
P, _ %
(primary) H(z)
R, = T Rn-l; TF- -
(Reference)

/(hvs .............

; E
Adaptive < o
algorithm (error)
FHgw5: The Adaptive Hlter
The adaptive filter weights;h,, k=0, 1, ............. , M — 1 are

updated by the ‘adaptive algorithm at the input sampling rate %

The filter output N, can be expressed as

M1
Nn N7 th Rn—k (12)
k=0

and'the error E, is the same as the estimated signal S, and it is
~E,=S,=P,—N, (13)

In terms of matrix notations,



Digital Signal Processing
Anjan Rakshit and Amitava Chatterjee
Jadavpur University, Electrical Engg. Deptt., Kolkata, India.

N,=H'R, =R/ .H (14)
where HT =[hy,hypeeeeeeee... hy_1], the transposed weight vector
matrix,
and R! =[R,,Ry_1,weee. R,_m.1) the transposed reference matrix.

The error at the nth instant is

A

E, =Py — N, (15)
=P, -H'R, =P, —R, H
The square of this error is
EZ=P?-2P,RIH+H'R,R'H (16)

The mean square error & , i.e., the\expectedvalue of E? is
¢ =E|g?|=g|p? |- 2€|p,RIHH +HTE|R,RT H
or, &=E|P?|-2PTH K" RH (17)

where  PT =[Rpg(0).2r.... L Rer(M —1) the cross-correlation

and Ret | - _ . the reference

correlation matrix
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RR RR oo, RR .
Rn—l Rn Rn—l Rn—1
or R=E|
| Rn—M +1 Rn """""""" Rn—M +1R n-M+1_|

It may be observed from relation (17) that the ‘weansquare_error
(mse) is a quadratic function of weightsi_a (M+1): diménsional
paraboloid surface. The optimum fi\&fing<£coxresponds 'to the
bottom of the bowl. The adaptive dlgorithm seeks the bottom of the

bowl (shown in Fig. 6).

5

A
\V/4 gradient
h1
minimum mse
0

h

(]

FHg.6: Mean Square error surface
for two weights

The adaptive algorithm utilizes the rnethod of steepest

descent in seeking the minimum mse. The gradient at any point on

10
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the error surface may be obtained by differentiating relation (17)

with respect to weight vector. The gradient vector is

rﬂ N raE[E:]x
on, oh,
v={" l=l " l-_2p+2RH (18)
ot | |oE[E]
on,.] |on,.,

The optimal weight vector H,, generally<called the \Wiener
weight vector, is obtained by setting* the—~gradient ‘of the mse
function to zero, i.e.,

0=-2P + 2RH,
or H,=R'P (19)

This is the matrixform-of-the \Wiener-Hopf equation.
The minimum mse<is obtained from relations (17) and (19) as

(under’optimal ‘ConditiQn)

Enin =E|PZ|-2PTH,, + HLRH,,
or .~ & \=E[P?]-2P"H_+H'P (since, P=RH,)

or \Smin = EanZJ_ P’ H, (20)

Now, we can write,

11
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E=&n +P"H, —2P"H+H'RH
= Epmin + HyRH,, —2H,,RH + HTRH
(since R is symmetric, R=R" )
¢ +H'RH-HTRH, ~-HIRH +HIRH, (1)
=& +(HT —HVTV)(RH —RH,,)
or, E=&pin +(H—H,) R(H-H,)

Let V be the difference between H and the Wienen solution Hi,.

Then V. =(H —H,,). (22)
Then,
£ =Emin +V ' RY (23)
The gradient V can also be expressed by differentiating relation
(23) as
V =2RV
gradient (24)

matrix

The refetence-autocorrelation matrix being symmetric and positive

definite, may. be represented as

R=QA Q™ (25)

similarity transform

12
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where Q is the orthonormal (unity norms) modal matrix of R and A

Is its diagonal matrix of eigen values.

4,00 -+ 0
040 - 0

A (26)
00 @ A, |

Each column of Q represents the eigen vectors,of R, eorresponding
to each eigen value A,. Also,
Q'=Q' (27)
as Q is orthogonal (i.e, Q'Q = I With (nity notms. Then relation
(23) can be represented as
£=&min +V QAQRV (28)
Let a transformedwversion efVbe
V'=Q '\ and V=0V’ (29)
then relation(28) becomes,
E=E AV AV (30)
The primed-co-ocdinates are therefore the principal axes of the mse

surfacej(shown in Fig. 7).

13
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&(mse)

v,=(h~h,)
Vl,: (h1, - hv/vl)

where H’, “are._the

transformed Welghts.

V' Vv

FHg.7: Primed coordinates for two
weight error surface

1

Here V is the dimension 0 of vectdrV' and. /' is the-dimension 1

of vector V.

The method of steepest descent makes. each change in the weight
vector proportionalMo the-negative.of the gradient vector at the end

of the nth iteration as

Mo =M,y +/U(—Vn) (31)

where_ju is the‘feedback co-efficient (a scalar quantity) that controls
the-stability and the rate of convergence. Each iteration occupies a
unit time period T. The gradient at the nth iteration is represented
by V.. H, represents the weight vector matrix at the nth instant.
Using relations (24) , (25) and (29), relation (31) becomes,

14
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H. =H —-2uRV
or (H,—H )=(H -H )-24RV
or V.=V -2uRV
=V, -2pQ AQV,
or V' =V'=2unV’ (premultiplying by Q™)
or V! —(1-2unAN'=0

(32)

where | is the unity matrix

0 AV 1

Relation (32) is uncoupled~and.~each /mode can be solved

independently.
The initial condition can'be given as,
V/ =2 ANV

where-V{ is thetinitial value of V'.
(VG veoter V' at iteration O,
V. Xyéctor V'at iteration 1,

V, = vector V'at iteration 2, and so on)

15
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Then, at the next instant,

Vi =(1 —2u A/
= (1 —2u A)*Vg

Then, at the nth instant,

Vi =(1-2u~)"Vq (33)

Now, for convergence, it is necessary that, under pth “mode,
LtV, = 0), where V! : pth modeof V! at kefriteration.
[1-2pA, <1
or, 0<pi, <1

1
or, —>u>0
3 u

p

Then under att.modes;

*u>0 (34)

max

where~ 4.5, IS the“largest eigen value of R. Relation (34) is the

neecessary-candition for convergence.
From-relation(83) it can be seen that the transients in the primed
coefdinateS~will be geometric and the geometric ratio of the pth

coordinate is

r=(1-2u1) (35)

16
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where 4, is the pth eigen value of the correlation matrix R.

An exponential envelope can be fitted to a geometric sequence.

From relations (33) and (35) , for the pth mode,
r My
Vpn - rpvpo
and from relation (32) and (35) , for the pth mode,
Vo, =T V'(

P~ P(n-)

Relation (37) is represented in Fig. 8 as
A V'
. 4>® > Pn

T |«

Hg.8

Relation (36) can'berewritten as

< nT j
Vio=e Vi Vi

Pn

Comparing with (36), we get

_n
N> e %p,[time:t:nT]

1

Tp

or, rp =€

17
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(37)

(38)

(39)
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where T, is the time constant, expressed in number of iteration
cycles, for the pth mode. Fig. 9 shows the exponential envelope

represented by relation (38)

n
-
0 T No. of iterations
FHg9
Now, relation (38) can be approximated as
r=e"” zl—i+ AN
° TN T, (40)
= , forlarge-z,
TP
Then.from relation.(35) and (40),
r, =1=2u, s1-+
.
p
. (41)
or, Tp ™
2ul

for large 1,

Relation (41) gives the time constant of the pth mode.

18
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The mean square error (mse) at the nth iteration can be expressed

from relation (30) as,
fn :§min +Vn'T /\Vn, (42)

Assuming no noise in the weight vectors during. adaptation; the

mse can be expressed (from relations (42) and (33)) as,

én :gmin +Vc;T /\(I —2u A)znvc; (43)

When the adaptation process is convergénty thenNiEt' &, =&
A—>cC

From relation (43), decay. in¢€,, gomg fram-&, to &min Will have a

geometric ratio of r§ for the pthr mode-and'it is

r2 =(1-2uy) (44)
Therefore, the_correspondingdime constant of decay of mse, under
pth modeyis

R (45)

R A,
for large 1,
2 1

since, r'=e " =e "™

19
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&€ (mse)
n

S

.
.
S T
.

N>

0 Trce No. of iterations

FHg.10: Learning curve

The curve representing the variation ofmse with- number of
iterations is known as the leaviing. turve Due to noise in the
weight vector, actual mse is generally highér than indicated by
relation (43).

Although the. learning cUrve consists of a sum of
exponentialsy~its can <ber approximated by a single exponential

(shown in-Fig. 10) whose time constant T IS given as

1 :
Thise = 775 cycles, where A,, = average of eigen values

av

Ao+t Ay R
M M

Condition (34) is necessary and sufficient for convergence of the

steepest descent method. However, in practice, the individual

20
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eigen values are rarely known. Since trR is the total power input to

the weights, trR is a known quantity, and

trR = Mfzk (46) ((/Q,

k=0 5
then, Q‘ &
trR > Amax &&Q(/‘l % ?\
Q\

as R is positive definite. A

Therefore, a sufficient condition for converﬁénce Q9~ \%
AV LAY

21
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The Widrow-Hoff LMS Algorithm
The LMS (least mean square) algorithim is an implementation of

the steepest descent using measured or estimated gradient, ¥he
LMS algorithm estimates an instantaneous gradient in, & crude Hut

efficient manner by assuming that E?, the square of\a single érror

sample, is an estimate of the mean square errorE TEEJ l.e.
£=E|e?|-E2 (49)

By differentiating EZ with.respect 6. H, wé abtain the estimated

gradient at the nth iteration)(in matrix form); given as,

(OE’ | 2\
oh, oh,
@n=< > =2 - > (50)
OE? OE,
Loh,, ¢ oh, ., |

From relation (15),

E,=P,-H'R

n n?

thus, Vv, =2E,(-R,)=-2E,R,

22
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The kth mode of gradient estimate is @k(n) =-2E,R, (51)

This is because,

R Vi
n-1 vl(n)
vV =—2E | .
Roo Vi
—R“‘M”— _V(Mfl)(n)_

Putting this value of estimated gradient,in relation (31),"yields the
Widrow-Hoff LMS algorithm,

Hoa=Hj, +,u(_@n)

52
=H, +2uE R, (2)

To determine an expresSion for, gach weight update individually,

we can write,

ho(n+1) W hO(n) Rn
hl(n+1) 1(n) n-1
S _ 5 n 2/,[En .
hk(n+1) hk(n) Rn—k
_h(M—l)(n+1)J _h(M—l)(n)_ _Rn—M +1_|
\ \ J \ J)
\ 4 \ 4
Hn+1 Hn Rn

23
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Then, for the kth weight,
Nikn+1) = Ny + 2RERR (53)

Fig. 11 shows a schematic representation of the LMS algorithm.

E + Th
- :<x> » 2u ’C? SN 2 r>|"”
+

Rn-k

=y

Fg.11: LMS algorithm for the computation of ‘kth weight
at the nth instant

This algorithm is very simple and“requires_only M number of
additions and M numbgr.of mtdtiplications per iteration, for the
filtering purpose, and“M pumber_ef“additions and M number of
multiplications\ forr computatign-of weights, i.e., a total of 2M
number of _additionss and\2M number of multiplications are
required.

The step_size 1 in the LMS algorithm was originally chosen to be
fixed:"However,-there can be both variations possible i.e. either u
is kept fixed or u is adapted over iterations. In adaptive filtering
problems, it is common to use a fixed p because of mainly two

reasons:

24
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o A fixed-step-size algorithm can be easily implemented in

both hardware and software.
o A fixed-step-size is appropriate for tracking time-variant
signal statistics, whereas, if u is adapted over iterationsand if

u, —> 0 as n — o, adaptation to signal variations cannot

OocCcur.

25
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OTHER APPLICATIONS OF ADAPTIVE
DIGITAL FILTERS

a) The adaptive noise canceller as a notch filter:

=R

g [3)

P, (primary) + > 9

[ - - - + n_> o —

random signal + sinusoidal _ N\

interference S =

90° phase shifter 2 E o

= 5

R, (Reference) T 23

© , »_ P A —

sinusoidal |inphase N

reference {

N
\&quadr

estimated D
sinusoidal =
interference =
l Lo
> '\—>§“‘
LMS E 3
< <_ 4 —~
Algorithm Ener)

26
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Application of single frequency adaptive noise cancellation in

50Hz wall outlet

on-line ECG processing

50 Hz interference

N

27

ECG Primary
Preamplifier 0}
) O
w
S
Patient + _,B o
© S
r'y g O
7
L
hO
] }—>| >—> +
Reference
[ ] TP
90° phase
shifter LMS <

Algorithm | FError
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b) Adaptive noise cancellation in speech signals:

o MIC(1) Primary +/~\ Outped

= : —>{ + :[K

e : Adaptive

2 filter 4 — Listener
H(2)

MIC(2) /
o f S % LMS /|
= Reference Algorithm | Efror

28
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c¢) Vibration analysis (extraction of harmonic signals)

Separating vibrations from two variable speed motors:

Motor (1)

Motor (2)

Primary +<+>
= A
sSensors

Vibration
Sensor

v

Sequence wave
reference

H(2)

v
Vibration due to

v

/ | VS "

29

Algorithm

Vibration due to

Motor (2)

Motor (1)
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d) FIR Modeling of an unknown system:

X (t) Input
Unknown -

System H(z) y(t) Output

N \
Synchronous Desired response
samplers (T) (Primary)
Reference + F(Z)zH(Z)

Error

LMS
Algorithm

Estimated output

Y

Impulse response of
the unknown system

ho-h(M-l)

Here.the unknown system H(z) is modeled by an FIR filter with M
agjustalleccoefficients (hg, hy, ..., hy.1). The reference input to the

FIR filter is identical to the system input or plant input i.e. X,.

Here, €stimated output of the filter § = MZlhkx (n=012,---)

n—k

Hence, the error sequence e =y -y

30
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The coefficients hy are selected such that &, =ilyn —thkxn_k]Z IS

minimum where (N+1) is the number of observations. This is
called the least-squares criterion. This condition leads us to a’set.of
linear equations, from which the filter coefficients) can e

determined, given as,
Shr(i-k)=r,(j) j=01--M-1

I'w(]): auto-correlation of the sequence X,
rx(J): cross-correlation of the system\outpOtly, with*the input

sequence X,
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