

Internal Combustion Engines

Lecture-14

Swarnendu Sen
Professor
Department of Mechanical Engineering
Jadavpur University
Kolkata – 700032
E-mail: sen.swarnendu@gmail.com

European Diesel Emission Standard

Tier	Date	CO	THC	NMHC	NOx	HC+NOx	PM	P [#/km]
Diesel								
Euro 1†	July 1992	2.72 (3.16)	-	-	-	0.97 (1.13)	0.14 (0.18)	-
Euro 2	January 1996	1.0	-	-	-	0.7	0.08	-
Euro 3	January 2000	0.64	-	-	0.50	0.56	0.05	-
Euro 4	January 2005	0.50	-	-	0.25	0.30	0.025	-
Euro 5a	Septemb er 2009	0.50	-	-	0.180	0.230	0.005	-
Euro 5b	Septemb er 2011	0.50	-	-	0.180	0.230	0.005	6×10 ¹¹
Euro 6	Septemb er 2014	0.50	-	-	0.080	0.170	0.005	6×10 ¹¹

^{*} Before Euro 5, passenger vehicles > 2500 kg were type approved as light commercial vehicles N₁-I

^{**} Applies only to vehicles with direct injection engines

*** 6×10¹²/km within first three years from Euro 6 effective dates

† Values in parentheses are conformity of production (COP) limits

European Petrol Emission Standard

Tier	Date	CO	THC	NMHC	NOx	HC+NOx	PM	P [#/km]
Petrol (Gasoline)								
Euro 1†	July 1992	2.72 (3.16)	-	-	-	0.97 (1.13)	-	-
Euro 2	January 1996	2.2	-	-	-	0.5	-	-
Euro 3	January 2000	2.3	0.20	-	0.15	-	-	-
Euro 4	January 2005	1.0	0.10	-	0.08	-	-	-
Euro 5	Septemb er 2009	1.0	0.10	0.068	0.060	-	0.005**	-
Euro 6	Septemb er 2014	1.0	0.10	0.068	0.060	-	0.005**	6×10 ^{11***}

^{*} Before Euro 5, passenger vehicles > 2500 kg were type approved as light commercial

vehicles N₁-I

** Applies only to vehicles with direct injection engines

*** 6×10¹²/km within first three years from Euro 6 effective dates

† Values in parentheses are conformity of production (COP) limits

Indian Emission Standard

Standard	Reference	YEAR	Region	
India 2000	Euro 1	2000	Nationwide	
		2001	NCR*, Mumbai, Kolkata, Chennai	
Bharat Stage II	Euro 2	2003.04	NCR*, 13 Cities†	
		2005.04	Nationwide	
Bharat Stage III	Euro 3	2005.04	NCR*, 13 Cities†	
Dilarat Stage III	Lui O J	2010.04	Nationwide	
Bharat Stage IV	Euro 4	2010.04	NCR*, 13 Cities†	
Bharat Stage V	Euro 5	(to be skipped)		
Bharat Stage VI	Euro 6	2020.04 (proposed)[11]	Entire country	

^{*} National Capital Region (Delhi)

[†] Mumbai, Kolkata, Chennai, Bengaluru, Hyderabad, Ahmedabad, Pune, Surat, Kanpur, Lucknow, Sholapur, Jamshedpur and Agra

- CO, Hydrocarbon and NOx are the main pollutant from SI engine
- Oxides of sulphur are there. Sulphur is present in fuel.
- There are other pollutants also – but in a negligible quantities

CI Engine Emission

- CO, Hydrocarbon and NOx are the main pollutant from SI engine
- There are particulates in the exhaust
- Oxides of sulphur are there. Sulphur is present in fuel.
- There are other pollutants also but in a negligible quantities

Hydrocarbon Emission

Incomplete combustion

Improper mixing Flame quenching

Crevice volume and flow in crevice

- Leakage past the exhaust valve
- Valve overlap
- Deposit on walls
- Oil on combustion chamber walls

Carbon Monoxide Emission

- Generated due to incomplete combustion
- Present in fuel rich combustion zone
- Energy loss is associated with CO generation
 2CO + O₂ → 2CO₂ + heat
- Low in CI engine exhaust

NOx Emission

- There are mainly NO, small amount of NO₂ and trace of other oxides together called NOx
- Possible major reactions are

$$O + N_2 \rightarrow NO + N$$

 $N + O_2 \rightarrow NO + O$
 $N + OH \rightarrow NO + H$
 $NO + H_2O \rightarrow NO_2 + H_2$
 $NO + O_2 \rightarrow NO_2 + O$

Dissociation occurs at 2500-3000K

$$N_2 \rightarrow 2N$$
 $O_2 \rightarrow 2O$
 $H_2O \rightarrow OH + 0.5 H_2$

Photochemical smog formation from NOx

$$NO_2$$
 + Ultraviolet ray \rightarrow NO +O

$$O + O_2 \rightarrow O_3$$

Internal Combustion Engines
Department of Mechanical Engineering, Jadavpur University

- Soot is amorphous carbon particles
- Generated at rich combustion area
- The formation mechanism of soot particles is quite complex and not yet completely understood. Four broad steps have been identified
 - Precursor formation
 - polycyclic aromatic hydrocarbons (PAH)
 - 1200K 1800K
 - Particle inception
 - Growth and agglomeration
 - Oxidation

Thermal Converter

- At 600°C and 50 millisecond residence time, the following reactions occur
 - $2CO + O_2 \rightarrow 2CO_2$
 - $C_xH_y + (x + 0.25y)O_2 \rightarrow xCO_2 + yH_2O$
- For efficient operation temperature should be above 700°C
- This causes energy loss in cylinders

Catalytic Converter

- The oxidation occurs at 250-300°C in presence of platinum or palladium
- Rhodium promotes the reduction reactions of Nox
 - NO + CO \rightarrow 0.5 N₂ + CO₂

Thank You