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Numerical Computation of Electric Field

Introduction

The design of the insulation of high voltage apparatus between phases and earth and also
between the phases is based on the knowledge of electric field distribution and the dielectric
properties of the combination of insulating materials used in the system. The principal aim is
that the insulation should withstand the electric stresses with adequate reliability and at the
same time the insulation should not be over dimensioned.

It is well known that the withstand voltage of the external insulation of apparatus designed
with non-self restoring insulation is determined by the maximum value of electric field
intensity within the insulation system. Further, corona discharges are eliminated by proper
design of high voltage shielding electrodes. Thus a comprehensive study of the electric field
distribution in and around high voltage equipment is of great practical importance.

High voltage equipments, in practice, are in most of the cases subjected to a.c. field of
frequency 50Hz or 60Hz. These fields may be approximated as quasi-static as the wavelength
is much longer compared to the dimension of the components involved. Because of this, the
electrostatic field calculation is possible by the different methods in use.

Mathematically, an electric field calculation problem may be formulated as follows:

The purpose is to determine, at each point within the field region of interest, the value of
potential ¢(x,y,z) and that of the electric field intensity E(x,y,z) are to be determined, which
are related as

E(x,y,2)=-V¢ ...13.1

In order to do that either the Laplace’s Equation for systems without any source of charge in
the field region,

V=0 ....13.2

or, the Poisson’s Equation for systems with sources of charge in the field region,

V2g=—Pu ...133
&

are required to be solved.

The solutions of these equations are called Boundary Value problems, whereby the boundary
conditions are specified by means of the given potential of electrode (Dirichlet’s Problem) or
by the given value of electric field intensity (Neumann’s Problem).



Methods of Determination of Electric Field Distribution

The methods that are employed for determination of electric field are detailed in Fig.13.1.

Methods for determination of electric field distribution

Y

Methods based on experimental techniques

Graphical Method
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\ 4

Analytical Methods

Numerical Methods

Y

Y

Differential Equation Techniques

Y

Finite Difference Method (FDM)

Y

Finite Element Method (FEM)

Y

Monte Carlo Techniques

Y

Fixed Random Walk Method

> Floating Random Walk Method

Integral Equation Techniques

Y

> Charge Simulation Method (CSM)

Surface Charge Simulation Method (SCSM)

\ 4

> Boundary Element Method (BEM)

Fig. 13.1 Different methods for determination of electric field distribution

The analytical methods can only be applied to the cases, where the electrode or dielectric
boundaries are of simple geometrical forms such as cylinders, spheres etc. In other words, in
this method the boundaries are required to be defined exclusively by known mathematical
functions. The results obtained are very accurate. But, as it is obvious, this method cannot be
applied to complex problems. However, the results obtained by analytical methods for
standard configurations are used still today to validate the results obtained by some other
approximate methods such as numerical methods.

Earlier the experimental as well as the graphical methods were used to get a fair idea about
the nature of field distribution in some practical cases. However, these methods are greatly



limited in their areas of usage and the errors involved are usually very high for any complex
problem to be taken directly for design purposes.

In more and more engineering problems now-a-days, it is found that it is necessary to obtain
approximate numerical solutions rather than exact closed-form solutions. The governing
equations and boundary conditions for these problems could be written without too much
effort, but it may be seen immediately that no simple analytical solution can be found. The
difficulty in these engineering problems lies in the fact that either the geometry or some other
feature of the problem is irregular. Analytical solutions to this type of problems seldom exist;
yet these are the kinds of problems that engineers need to solve.

There are several alternatives to overcome this dilemma. One possibility is to make
simplifying assumptions ignoring the difficulties to reduce the problem to one that can be
easily handled. Sometimes this approach works; but, more often than not, it leads to serious
inaccuracies. With the availability of computers today, a more viable alternative is to retain
the complexities of the problem and find an approximate numerical solution.

Several approximate numerical analysis methods have evolved over the years as shown in
Fig.13.1. For each practical field problem, depending upon the dielectric properties,
complexity of contours and boundary conditions, one or the other numerical method is more
suited.

Uniqueness Theorem

It states that once any method of solving Poisson’s or Laplace’s equations subject to given
boundary conditions has been found, the problem has been solved once and for all. No other
method can ever give a different solution.

Proof:

Consider a volume V bounded by a surface S. Also consider that there is a charge density p,
throughout the volume V, and the value of the scalar electric potential on the surface S is ¢.
Assume that there are two solutions of Poisson’s equation, viz. ¢, and ¢, Then

Vg =21 and Vi, =L
& &

So, V3(¢—-¢,)=0 ....13.4
Now, each solution must also satisfy the boundary conditions. It is to be noted here that one
particular point can not have two different electric potentials, as the work done to move a unit
positive charge from infinity to that point is unique. Let, the value of ¢ on the boundary is
¢1s and the value of ¢, on the boundary is ¢ and they must be identical to ¢.

Therefore, Dis = (s = @s
or, d1s— s = 0
For any scalar ¢ and any vector D, the following vector identity can be written.
V(D)= ¢(v.B)+ V4.5 ...135

Consider the scalar as (¢1 — ¢,) and the vector as V(g, — ¢, ). Then from identity (13.5),
6[(¢1 - ¢z)§(¢1 - ¢2)]E(¢1 - ¢2)[§€(¢1 - ¢2)] + 6(¢1 - ¢2) 6(@ - ¢2) ... 13.6

Now, integrating throughout the volume V enclosed by the boundary surface S,



[9](4 - .09 - ¢,)lav=( Ja- 6V ¢2]dv+JV¢1 4,).9(4 — ¢,)dv

-j¢1 5.V - ¢2]dv+j[ Vg -4, v

Applying divergence theorem to the L.H.S of |dent|ty (13.7),
INCESEANE [0 = ¥ 0~ ) =0 .. 138

as ¢is = ¢ps On the speC|f|ed surface S.

.. 13.7

On the RHS of identity (13.7), V?(¢,—4¢,) = 0 from eqn.(13.4). Hence, identity (13.7) reduces

[V - 4,)7av =0 ... 13.9

Since, [ﬁ(qﬁl - ¢, )]zcannot be negative, hence the integrand must be zero everywhere so that
the integral may be zero.

Hence,
¥a-g) =0 or V(4-4)=0 1310
Again, if the gradient of (¢ — ¢,) is zero everywhere, then
¢1 — ¢ = Constant ... 1311
This constant may be evaluated by considering a point on the boundary surface S. So that,
G — 2= s— s =0
or, =)

which means that the two solutions are identical.

However, in practice if the same problem is solved by using different numerical techniques
the results are not exactly the same. This is due to the fact that the errors in a particular
numerical method are often problem dependent and hence the results are not exactly same in
all the methods. So, this is not a violation of the Uniqueness theorem.

Procedural Steps in Numerical Electric Field Computation

The following are the procedural steps that need to be followed not only for FDM but for
most of the numerical electric field computation methods.

At first, the Region of Interest (ROI) needs to be identified. ROl is the region where the
solution for electric field is to be obtained. For example, normally the field solution is not
needed within the electrode volume or below the earth surface. Hence, for an isolated
electrode and the earth surface, the ROI will be region between the electrode surface and the
earth surface as shown in Fig.13.2. Before the ROI is identified, the geometries of the
components that comprise the field system need to be defined. This step is now-a-days done
with the help of CAD software.

The subsequent procedural step is to discretize the entire ROl or the boundaries to create the
nodes where the solution of field will be obtained. Ideally one should find the field solution at
each and every point within the ROI. But it will result in immense computational burden and
hence the field solution is obtained at discrete nodes. This step is called Discretization and is
often done with the help of mesh generators, which are software modules that create the mesh
within the entire ROI or on the boundaries. In order that the electric field solution can be
obtained at any specific location within the ROI, a pre-defined variation of electric field
between successive nodes is assumed. In fact, this assumption is a root cause of inaccuracy of
the numerical method.



HV Electrode

Region of Interest

Earth

Fig. 13.2 Depiction of Region of Interest for Electric Field Computation

The next step is to create the system of equations based on the numerical method that is being
employed. Subsequently, the system of equations is solved using a suitable solver. The solver
needs to be chosen depending upon the nature of the coefficient matrix that is being created
by the specific numerical method. This solution gives the results for the unknown field
quantities at the pre-defined nodes. Finally the results at any desired location is computed
using the assumed variation of electric field between the nodes, which is termed as post
processing of results. The procedural steps are depicted in Fig.13.3.

Definition of Geometries

v

Identification of ROI

v

Discretization of ROI

v

Creation of System of Equations

v

Solution of System of Equations

v

Post-Processing of Results

Fig. 13.3 Procedural steps in numerical electric field computation



FINITE DIFFERENCE METHOD

A) Two Dimensional System with equal nodal distance:
In a 2-D system, V is independent of one of the axis directions, e.g. in the case of cable V
is taken to be independent of z-direction, where z is along the length of the cable. Then

the Laplace's equation is written as -

2 2
OV 9V _y 1)
OX oy
d
In FDM V, is expressed in terms of the
2
* potentials of the connected nodes, i.e.
3 , 0 ) 1 h
79— * V1, V2, V3 and V4, such that Laplace's
b a h
¢ equation is satisfied at the point "0".
4
X
[
h h

Let, a and b be the mid-points between 0 & 1 and 3 & 0 respectively. Then according to

mean value theorem

NY V-V
(&j ki @
and (ﬂj _Yo—Vs 3)
X ), h

Again, 0 being the mid-point between a and b,



=) 515

ox? h
V, 1V, 2V
— 1 ;2 0 (4)
2 —
similarly,(aay\gj _Ve “’;2 2V, (5)

Now, satisfying Laplace's equation at "0"

(azv] [ava
+ =0
ox? ). oy ),

or VitVe Vg V4V, -2,
h? h?

=0

or V, = %(v1 +V, +V, +V,) (6)

Proof applying Taylor's Series:

Taylor's Series

2 2 b2 2

f(x+a,y+b)=f(x,y)+ a% f(x,y)+ b% f(x, y)+a_6_ f(x, y)+—a—2 (X y)+...

21 ox? 2! oy

Applying this series between the nodes 0 and 1, i.e. a=h and b=0,

2 2
vV, =V +h6_V +h_8V + e (8)
° ox ), 2 ox? )

Similarly, between the nodes 3and 0, i.e.a=-hand b =0. So,

()



oV N EGRY
V3 =VO - h(&jo +E(8X2 jo T sesass (9)

Neglecting higher powers of h, as h is small and adding (8) and (9),

2
V, +V, =2V, + hz(zx\gj

oV V, +V, -2V,
or, (@ij —_1 h32 (10)

Similarly, applying Taylor's series between the nodes 2, 0 and 4, it can be proved that

oV V, +V, -2V,
(ﬁyzj B D

Then, satisfying Laplace's equation at 0", it may be obtained that

Vv, :%(v1 +V, +V, +V,) (12)

Simple Example

FDM equations
100 110 140 190

V=Y (V2 +V3+ 90+ 110)

920 1 3 180 Vo=Y,4 (Vl +V,+ 60+ 20)

V3=V (Vl +V, + 140 + 180) and
60 150

V=Y (V2 + V3 + 50+ 150)

10 20 50 100



Acceleration of Convergence by over-relaxation:

It has been found that successive over-relaxation proposed independently by Frankel
and Young can have very rapid convergence, e.g. a problem that may require 840 iterations
by simple Gauss- Seidal method will take only about 70 iteration by this acceleration
technique. This technique proposes that

V =Vec+ (a-1) (Veac - Voud) (13)

Ve is the calculated value from Laplace’s equation
Vg IS the value from previous iteration

a is the acceleration factor

V is the value of the node potential.

The value of a is always 2 >a > 1.

Equation (13) can be rewritten as

V =V +a (Vearc - Void) (14)

Equation (14) thus implies that if there is a tendency of a node potential to increase from the
value of the earlier iteration, then node potential to be taken in this iteration is above the
calculated value by a certain fraction of the increment, as 2 > a > 1.

At the final iteration, where the convergence criterion is met, the difference from the
previous iteration will be very small and, hence, there will be negligible deviation from the
calculated value. However, the number of iterations required to achieve convergence
depends heavily on the choice of acceleration factor.

For Laplace's equation empirical results show that optimum value of acceleration

factor "a" for a square field region with (p+1) nodes along each side is given by



High accl. facotr

/ Proper accl. factor

Low accl. factor

Simple Gauss-Seidal mehtod

No. of iteration

(15)

For rectangular region with (p+1) x (q+1) nodes

a_z{l_ﬂ z(%%j} n
2{p° ¢

where , p and q are greater than 15.

Forp=q>15,
a= 2(1—1j (17)

Equation (17) also follows from equation (15), because n/p being small,

. T T
SIN—= —

PP

. Thus, from equation (15)

a- 1+2% _ 2(1+%j_1 ~ 2(1—%] as %«1

10



Problem

100 110 140 190

V1% = 1/ (V5 + V3)+50

90 ! 3 {180 Vo™ = 3 (V1 + Va)+20

V5% = 1/ (Vy + V,)+80

60 150
V2 = 1/ (V5 + V3)+50

10 20 50 100

Here,p+1=4 or,p=3

~. Accl.factor (a) = =1.072

_2
1+sin%

For iteration 1:
V1 =Vlcalc + (a _1)(\/lcalc _Vlold )
=50+ (1.072-1)50-0)=53.6

V2 _ Vzcalc + (a _ 1)(\/anIc —VZOId )

Now, V¢ = %(53.6 +0)+20 =334
-V, =33.4+(1.072-1)(33.4-0)=35.8

and so on.



B) Two-dimensional system with unequal nodal distance:

Near electrode or dielectric boundaries, the nodal distances may not be equal. As shown

in the diagram

S1,S,, S3, Sa< 1.

=<V

In the Taylor series expansion between the nodes 0 and 1, a = S;h and b = 0. So,

212 2
V, =V, +Slh(%j + 5,1 6_\2/ Fyo (18)
oX ), 2\ ox® ),
and between the nodes 3and 0, a = - Sshand b = 0.
oV S2h? (9%
V,=V -S.h| — | +=3 T 19
s 3[8Xj0 2 (ale (19)
Hence,

Vi Vo _y (1,1, §,h* +S;h? az\g
S, S, S, S, 2 ox? ),
V, |V, 1.1
o s, s, els, s,
or, [ ] — 1 3 1 3

(20)

12



Similarly,

, \/2+\/4_V0(1+1J
[8 V] _ Sz S4 SZ S4

(21)

As per Laplace's equation at "0"

oV oV
|+ -~ =0
ox* ), oy° ),

i 22
1 1 (22)
+

Problem

100kV

Sz
60kV

le———o—040kV

20— ¢ ¢20kV

S, = 0.5, other constants are 1. Because of symmetry, it may be written that V; = % (100 +
Vi+Vo+ V4)

13



or,

V, = %(2v4 +V,)+25

1
V, =Z(2V5 +V,)

ForV, S,=S,=S,=1 butS,=05

1(60+1oo)+ 1 (100 Vs
2 1+05(05 1

l+i
0.5

or, V, =0.22V, +71.1
Again,
1
vV, :Z(Vl +V, +V; )+10

and V, =%(v2 +V,)+5

C) 3-D System with equal nodal distance:

[ ]

The 3-D field region has to be divided into a large number of cubic elements



oV V, +V, -2V,
oy’ = h2

OV ) Vg4V, -2V,
oz° ), h?

Thus, satisfying Laplace's Eqn. at "0",

W=%M+W+W+W+W+W)

1 6
or, VO:—EVn
673

D) Axi-symmetric System with Equal Nodal Distance

z
A

(6)

15



For axi-symmetric system, if the values of r and z are kept constant, then the potential
remains same for any value of 6. Thus the potential is a function of r and z only, where z is
the axis of symmetry.

Laplace’s equation is cylindrical co-ordinates (r,0,z):

o 1oV 10V oV
+ =0

1ov 1oV _ oV _ 24
o ror  r?o0* ozt 24)

In axi-symmetric system, V is independent of 6, so that Eqn.(24) reduces to

0N 10V oWV
+ + =

- 0 25
o ror  0z° (25)

(Y]
4
4
D
4

S=1 S=2 S=3 S=4 S=5

From Taylor's series between 0 and 1,

2 2
V, =V, +h(ﬁ) +h_(6 Vj (26)

or 2\ or?

and between 3 and 0

oV h?( 0%V
V3 :V0 —h(Ej +?(ar2 j (27)

16



SO,

oV
V,+V, =2V, +h2(arz jo

oV V4V, -2V,
or, =
or? . h?

Again, subtracting (27) from (26),

Similarly,

o) V,+V, -2V,
oz° )

Thus, satisfying Laplace's equation at "0",

VitV £V, 1V, -4V, V-V

h? 2Sh?
or. V _ ViV, +Vs +V, +V1—V3
b 4 8s

Eqgn.(30) is valid only when node "0" is away from the axis (i.e. S#0)

(28)

(29)

(30)

17



For the node "0" on the axis of symmetry:

1

2
1
0 @
4
>
S=1 S=2
Now, applying L-Hospital's rule
2
Ltlﬁ:a\g as ﬂ—w when
r—>0r or  or or

Then, Laplace's egn. becomes

2 2
28\2/+8\2/ =0
or 0z

Taylor's series between the nodes 0 and 1,

2 2
V1=Vo+h(ﬂj +h— 8\2/
or), 2{or” ),

or (azvj _2(v,-v,)

or? h?

] o V., +V, -2V
Again, =—2 4 0
] (822 jo h?

Putting in Laplace's Eqgn.,

r—-0

(31)

(32)

(33)

18



4(v, _v0)+v2 +V, =2V,
h h?

=0

4, +V, +V,

o, V,=
6

(34)

Problem

100

V. = 4V, +V, +100

' 6
V. = 4V, +V, +10
2 6

V, = %(Vl +V, +V; +110)+V5 _1/1 , a8 S=1

X

V, =%(v2 +V; +V +20)+V6 _\1/2 , as S=1

8 x

V, =%(v3 +V, +140+180)+180_2\/3 , as S=2

X

V, :%(VA +V, +50+150)+150_2V4 , @ S

X

2

19



E) Axi-symmetric System with Unequal Nodal Distance

$
2
3 1
}_
h
a0l
4
From, Taylor's series expansion,
2 A2
V, =V, + slhﬂ+@% (35)
v (S,h)* 83V
V3 :V0 —S3h5+%a? (36)
Now,
Vi Vo OV S0V
S, S, or 2 or?
Vi Vo v S0
S, S, or 2 or?
Hence,

S, S, s, 's,) 2
or,
aZV l 83 Sl (37)
or? 1
T

Again, from Eqgns. (35) and (36),

S2 s2 s, o 2 o

V, _V, haov htov

20



Vs _V, hav h?o¥

= +_
2 s2 s,or 2 or

Thus,
%Yy (LoL)L )
S, S, S; S, S, S,)or
or,
Vi Vs (1 1
v S s; s s 38)
or 1 1
hl —+—
Sl S3
So,
Vi Vs f1_1
1ov 1 v _S sf °\sf s
ror Sh or gh? 51t Ss
S183
VT
_ S1 Ss_ S3_81 (39)
(S, +S,)sh? °sh?.S,S,
82
Following the same procedue as that for e
r
Ve W_vo(l j
6V=SZ S4 SZ 4 (40)
2
R

Now, putting Egns. (37), (39) and (40) in Laplace's Eqgn.

21



\/1+\/3_V0£1+1J Vli_vsi V72+V74_ 0£1+1]
S; Sy S;  Sq S, Ss (83_81) S; S, S: S,
2(s,+s

+ 2 Vo gp2
2(31+ 2 (S, +S,)sh sh?s,S, 1(52+s4)h2
or,
v1§+v3§ vli—v3i v2§+v4§
S, S, 'S 'Sy 'S, S, _V{zs +33—81+2s}
S, +S, S, +8S, S, +8S, °l's,S, S8, S,S,
or,

L2548, 28-8, | 25 (Vi v,
S, +5, |l S, S, S,+S,\S, S,

0 25+5,-5, _ 25
5,S, s,S,

V (41)

Unequal Nodal Distance for the Node on the Axis

Z
Laplace's Eqn. for the node on the axis:
2 oV oV
2 + =0

Szh or?  oz°

0 1
Ssh

4

From Taylor's Series expansion between the nodes "0" and "1",

2 A2
V, =V, +slh%+Mg
or 2 or

22



or,

2 A2
Vl—Vozma\Z/ ﬂ:o as r—0
2 or r
or.
2
4V, —
or*  (s,h)
Putting Eqns. (42) and (40) in Laplace's Eqn,
V72+V74_V0 S, +S,
4(V1 _Vo) S2 S4 S284
S+ 1 =0
(8:h) ROk
or,
2_\/21+ L V—2+V—4 =V, %+ L
S S,+S,{S, §, S, S,S,
or,
M, 1 (Ve Ve
sf S,+S,\S, S,
VO - 2 1 (43)
5t
S S,S,
Problem

23



V, = %(4v4 +V, +100)

V, = %(4\/5 +V1)

For the node "3"

V, >V,, V, =60, V, =100, V, =100

S,=S,=S,=1 S,=05& S=1

Then from Eqn.(41)

_ 407+1.33V,

Y
$ 6

40-V,

V, :%(v1 +V, +V, +40)+

20-V,

V, :%(V2 +V, +20)+

Calculation of ‘S’ for circular Boundaries:

i)

To calculate S, :

r
sin@:ézl

r 2
or, & =30°

~.S,h=r—rcosé =r(1-0.866)

24



or,
r
S, x—=0.134r
2
or, S, =0.268

01

Here, h= r
3

sinelzz—hzg
r

or, 6,=4181
h 1

Sinl92 :?:g

or, 6,=19.47°

S;h=r(1-cosé,)

Sih=r(l-cosé,)

- S; =3(1-c0s19.47° )= 0.171
S =3(1-cos41.81°)=0.765

25



F. 2-D Multi-dielectric System

y
292
3 o— X
0 1
4'e4
€2 €1
Medium Medium
2 1

The boundary condition is that the normal component of flux density remains constant in

both the sides of the dielectric interface.

ie, D, =D,
or, &E, =¢,E,

oV oV’
or, &,—=¢,

44
OX OX (44)

Now, nodes 2 and 4 are on the dielectric interface, so the potential and its derivative along y-
direction must be same on both sides of the interface.
Moreover, Laplace's equation has to be satisfied on both the sides of interface.

Now, from Taylor’s series expansion -

2 A2
V1:V0+haa—v+h7g\2/ (45)
X X
' 2 A\
v, =V, -h& +h?aév2 (46)
X X
2 A2
V2=V0+h%/+h?gy\2/ (47)

26



Now, Laplace's Eqns.-

2 2
Medium1: 0 \2/ + 0 \g =0
OX oy
2\/1 2\
Medium 2: 0 \/2 +8—V2:0
OX oy
Again, from Eqn.(44)
N _ NV
OX OX
where, K = ‘sy
&,
From Eqgns. (46) & (51)
2 2\/ 1
V, =V, - Khﬁ—VJrh—8 V2
oX 2 0Ox
From Eqn.(45),
oV
N =V1 -V, —h&
ox® h*
2
From Eqgn (52),
oV
PNE =V3 -V, + Kh&
Ox? h*
2

From Eqgns.(47) & (48),

(48)

(49)

(50)

(51)

(52)

(53)

(54)

27



o  V,+V, -2V, WV’
ayz = h2 = 6‘y2

Thus, from Egns. (49), (53) and (55),

N

Vi-Vo —h ox , VoV, -2V,
e o 0
2
Again from Eqgns.(50), (54) & (55),
oV
V3 _VO - Kh& Vz +V4 B 2Vo
+ =0
h2 h2

2
From Eqgns. (56) and (57),
2K

Vo: K+1
4

2
vV, +V, +mv3 +V,

For single dielectricsystem, K = a g
&

Thus from Egn.(58), V, = %(vl +V, +V, +V,)

(55)

(56)

(57)

(58)

which is the same equation as derived earlier for 2-D single-dielectric system.

28



Problem:

&=
(porcelain)

g 1
&,
It is a cylindrical system, i.e. 2D arrangement,

2V, +V, +100

V, 4
v, = 2V, +Xl +V,

For thenode"3": V, >V, ;V, >V, ; V,->V,
V, >V, ;V, >V, of eqn.(58)

So, from Eqgn.(58),

2x025 , +Vg+—-V, +V,
v, = 1+0.25 1+0.25
=
4
Again,
v, = 2V, +V,
4

For the node "5", S; = S3=S,=1 and S, = 0.268



So, from Eqgn.(22)

1(70 100 1 100 Vq
~—+ + +-2
2\ 1 1 1+0.268\ 1

V. = 1

14—
0.268

or, V, =80.18 + 0.166V,

Again,
1
V, = Z(vl +V, +50+V,)

v, =%(v2 +V, +V, +30)

For the node "8" from Eqn. (58),

2x0.25 LV, 2 V, +20
V, = 1+0.25 1+0.25

4

and V, = %(v4 +V, +10)

30



Numerical Computation of HV Field by Finite Element Method (FEM)

Introduction

The Finite Element Method (FEM) is a numerical analysis technique to obtain solutions to
the differential equations that describe, or approximately describe a wide variety of physical
problems ranging from solid, fluid and soil mechanics, to electromagnetism or dynamics. The
underlying premise of the FEM is that a complicated region of interest can be sub-divided
into a series of smaller sub-regions in which the differential equations are approximately
solved. By assembling the set of equations for each sub-region, the behavior over the entire
region of interest is determined.

It is difficult to state the exact origin of the FEM, because the basic concepts have evolved
over a period of 100 or more years. The term finite element was first coined by Clough in
1960. In the early 1960s, FEM was used for approximate solution of problems in stress
analysis, fluid flow, heat transfer, and some other areas. In the late 1960s and early 1970s,
application of FEM was extended to much wider variety of engineering problems. Significant
advances in mathematical treatments, including the development of new elements, and
convergence studies were made in 1970s. Most of the commercial FEM software packages
originated in the 1970s and 1980s. The FEM is one of the most important developments in
computational methods to occur in the 20th century. The method has evolved from one with
applications in structural engineering at the beginning to a widely utilized and richly varied
computational approach for many scientific and technological areas at present.

Basics of Finite Element Method

Using the finite element method, the region of interest is discretized into smaller sub-regions
called elements as shown in Fig. 15.1, and the solution is determined in terms of discrete
values of some primary field variables, e.g. electric potential, at the nodes. The governing
equation, e.g. Laplace’s or Poisson’s equation, is now applied to the domain of a single
element. At the element level, the solution to the governing equation is replaced by a
continuous function approximating the distribution of the field variable ¢ over the element
domain, expressed in terms of the unknown nodal values ¢, ¢ and ¢; of the solution ¢. A
system of equations in terms of ¢, ¢ and ¢; can then be formulated for the element. Once the
element equations have been determined, the elements are assembled to form the entire
region of interest. Assembly is accomplished using the basic rule that the value of the field
variable at a node must be the same for each element that shares that node. The solution ¢ to
the problem becomes a piecewise approximation, expressed in terms of the nodal values of ¢.
The assembly procedure results in a system of linear algebraic equations.

Several approaches can be used to transform the physical formulation of the problem to its
finite element discrete analogue. If the physical formulation of the problem is known as a
differential equation, e.g. Laplace’s or Poisson’s equation, then the most popular method of
its finite element formulation is the Galerkin method. If the physical problem can be
formulated as minimization of a functional then variational formulation of the finite element
equations is usually used. For problems in high voltage fields, the functional turns out to be
the energy stored in the electric field.
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Fig. 15.1 Depiction of Region of interest, element and nodes for FEM formulation

A third and even more versatile approach to deriving element properties is known as the
weighted residuals approach. The weighted residuals approach begins with the governing
equations of the problem and proceeds without relying on a variational statement. This
approach is advantageous because it makes it possible to extend the finite element method to
problems where no functional is available.

Procedural Steps in FEM

In general terms, the main steps of the finite element solution procedure are as follows.

1. At the beginning the region of interest is discretized into finite elements.

2. Suitable functions are considered to interpolate the field variables over the element.

3. The matrix equation for the finite element is formed relating the nodal values of the
unknown field variables to other physical parameters.

4. Global equation system is formed for the entire region of interest by assembling all
the element equations. Element connectivities are used for the assembly process.
Boundary conditions, which are not accounted in element equations, are imposed
before the solution of equations.

5. The finite element global equation system is solved to get the nodal values of the
sought field variables.

6. In many cases additional parameters need to be calculated after the solution of global
equation system. For example, in high voltage field problems electric field intensity,
electric flux density and charges are of interest in addition to electric potential, which
are obtained after solution of the global equation system.

Variational Approach towards FEM Formulation

For high voltage field problems, the principle of minimum potential energy is used in this
approach. The principle of minimum potential energy can be stated as: Out of all possible
potential functions ¢(x,y,z) the one which minimizes the total potential energy is the potential
solution that will satisfy equilibrium, and will be the actual potential due to the applied field
forces.
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Thus, a potential function that will minimize the functional, i.e potential energy, is desired.
Minimization of functionals falls within the field of variational calculus. In most cases an
exact function is impossible to determine, necessitating the use of approximate numerical
methods. The minimization of potential energy in a finite element formulation is carried out
using the energy approach. The finite element method develops the equations from simple
element shapes, in which the unknowns of the solution are the potentials at the nodes. The
calculus of variations enables the energy equation to be reduced to a set of simultaneous
equations with the nodal potentials as the unknown quantities.

FEM Formulation in 2-D System with Single Dielectric Medium

The potential energy in a two-dimensional electric field is given by

1 —2
Urou =j!§gogr E| 1.dA ...15.1
([tes-94 .. 152
or, U jAjzgogr V| 1dA
where, E = electric field intensity, ¢ = electric potential, | = length normal to the area A

(usually considered as unity for 2-D field), & = permittivity of free space and & = relative
permittivity of dielectric.

The integration of egn. 15.1 must be carried out over the area A, which is identical to the field
region under consideration as shown in Fig. 15.1. Since, this area must be finite, FEM cannot
be applied to the problems with “open fields” without modifications.

To apply FEM, the region of interest is to be discretized by so-called finite elements as
shown in Fig. 15.1. If a region of interest is divided into elements such that continuity of
electric potential between elements is enforced, then the total potential energy is equal to the
sum of the individual energies of each element. For N number of elements, the total potential
energy can then be stated as:

N
UTotal = ZU (e) 153
=1

To minimize the total potential energy, U, of the entire region of interest, U(e) must be
minimized for each element. Seeking a set of nodal potentials for each element will minimize
U(e). Observe that the functional, U(e) is a function only of the nodal potentials. Using
calculus of variations, an extremization of U(e) occurs when the vector of the first partial
derivatives with respect to ¢ is zero.

1 (X3, ¥3)

$s

b2

¢1 (X2, ¥2)
1
(X1, y1)

X

Fig. 15.2 Linear Triangular Element
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The simplest 2-D element is the linear triangular element as shown in Fig. 15.2. For this
element there are three nodes at the vertices of the triangle, which are numbered around the
element in anti-clockwise direction. Electric potential ¢ is assumed to be varying linearly
within the element such that

¢ =oa +o,X +agy ... 154
Hence, Exz—a—vz—az and Ey:—ﬁ:—a3 ....155
OX oy

Thus, for this element electric field intensity components are constant throughout the
element. As a result, this type of element is also known constant stress element (CST).

Now, considering a triangular element as shown in Fig. 15.2
¢ = taX+asy,
Py = ay+ X, +25Y, ....15.6
Py = o +a,X Y,
So, from eqn.3.6
Lé v

1¢,Y,
L ¢,
Loy
1 X Y,
1X3y3

or, a, =%[¢1(y2 —¥3)+ b (Ys = i)+ d5(V — V)] ... 15.7

where, D = (Xz Y3 — XsYz)"' (X3Y1 - X1Y3)+ (X1Y2 =X y1) ... 15.8
= 2 times the area of the triangle

Similarly, a, = %[ (X, =X, )+ 8, (X, — X3 )+ ¢, (%, — %, )] ....15.9
The magnitude of the electric field intensity within an element T,

E:|= e +[E2| = Vai +a? ... 15.10
Hence, the electric potential energy in an element T
E [ Al = %gogr Al(a? +a?) ... 1511

1
U; = Egogr
For electric potential energy in an element to be minimum,

U, =lgogrA.|.2(aZ%+a3%j=0 ... 15.12
op 2 o, )

Eqn. 15.12 is to be applied to every node where the unknown potential is to be determined. It
may be noted here that the node under consideration may belong to more than one element.
Then Egn. 15.12 is to be applied for all such elements considering the node under
consideration as node-1 and the other two nodes of the element being node-2 and node-3
taken in anti-clockwise direction.

0, Yo=Y 003 X=X, and A=D/2
D

Now, = , =
¢, D ¢,
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So, from eqn. 15.12
%5(@ %.I.Z{az Y~ Y +a, s~ % } =0
0

D D

. ....15.13
or, Egogr-l-[az(yz - ya)"'as(xs - Xz)]:
Hence, from eqns. 15.7, 15.9 and 15.13
I
LA (= v ) (s - )+ (- v 2 - ¥s) 514
+ { 1(X3 - X2)+ ¢2(X1 - X3)+ ¢3(X2 - Xl)}(x3 - Xz)] =0
or A R R A A (S (R P (A A AN
+¢3{(X3 =X )(Xz - X1)+(y2 - ys)(y1 - Y2)}]: 0
or, Kt + Ky, + Kyrhy =0 ... 15.15
Ky = Ei[(xeﬂ — Xyt )2 + (sz — Yar )2]
T
where, K2T = gT [(XST =Xyt )(Xl — Xar )+(y2T — Yar )(yST —Yir )] ... 15.16
T
Er

Ky = D— [(X3T —Xor )(XZT — X7 )+ (sz —Yar )(le —Yor )]

N
In egn. 15.16, subscript T denotes the element number, Dr is twice the area of the element as

given by egn. 15.8 and & is the permittivity of the dielectric within the element.

2 3 2
1

e Avey
P

5

@ (b)
Fig. 15.3 Nodal connectivity — a) 6-element (Hexagonal), b) 8-element (Octagonal)

Discretization using triangular elements is usually done is such a way that one particular node
is connected to either 6 other nodes in hexagonal connectivity as shown in Fig. 15.3(a) or to 8
other nodes in octagonal connectivity as shown in Fig. 15.3(b). For hexagonal connectivity,
an equation may be formed involving potentials of all the six nodes surrounding the node “0”
applying egn. 15.15. In such case, for every element, node-0 of Fig. 15.3 is considered to be
node-1 of egn. 15.15 and the other two nodes are considered to be node-2 and node-3 in anti-
clockwise direction. Application of egn. 15.15 thus results in six simultaneous linear
equations, the summation of which may be represented as follows.
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F1¢1 + F2¢2 + F3¢3 + F4¢4 + I:5¢55 + F6¢6 + Fo¢o =0 ... 15.17
Fl = sz) + KS(TG)

Fz = KZ(TZ) + KS(Tl)
Fz =RKya + KS(TZ)
where, Fy = Kyray + Kyrg ....15.18
I:5 = KZ(TS) + K3(T4)
Fo = Kyrey + Kygrs)

6
and F, =) Ky

T=1
Application of eqgn. 15.17 to all the nodes having unknown potential will generate the FEM
system of simultaneous linear equations, which needs to be solved for determining the node
potentials. Eqgns. 15.17 and 15.18 could be suitably modified for octagonal nodal
connectivity. Here, it may also be noted that FEM formulation as described above
automatically takes into account the unequal elemental sizes as the coefficients as in eqn.
15.18 are all computed in terms of nodal coordinates that may have any numerical values.

FEM Formulation in 2-D System with Multi-Dielectric Media

For computing electric field in a multi-dielectric media, triangular elements are so positioned
that any given triangular element comprises only one dielectric medium. In other words, a set
of nodal points are to be placed on the interface between two dielectrics as shown in Fig.
15.4. Hence, the coefficients Kit, Kot and Ksr for any node are to be calculated depending on
its nodal position (i.e. 1, 2 or 3) in an element considering the proper value of &.

|

|
|
€r2 2 €r1

15
|

Fig. 15.4 Elemental discretization for multi-dielectric media

While applying eqn. 15.17 for the nodal connectivity shown in Fig. 15.4, the following
modifications need to be made for F;, Fs and Fq keeping the others unchanged.

6
F, = Kooy + Koy + Fs = Kyrsy + Kyray and F, = z Kir
=]
where,

L2 (k= % X% = %o )+ (¥ = Y3 X(¥s = Yo ]

K2(T2) = D
T2
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K3(T1) = S_rTll[(Xz - Xl)(xl - Xo)"’ (yl - Y )(YO - yl)]

K2(T5) = %[(Xe — X5 )(Xo - X6)+ (ys — ¥ )(YG —Yo )]

T5

gl’
K3(T4) = D_z[(xs — X )(X4 - Xo)"‘ (y4 =Y )(yo -V, )]
T4
For the computation of Fo, Kit is to be calculated considering & for the elements 1, 5 and 6
and considering & for the elements 2, 3 and 4, using eqgn. 15.16. For example, for elements
T3 and T6, respectively, the expressions for Kyt will be as follows.
gl’
Kyra) = D_Z[(X4 — X5 )2 + (ys — Y, )2]

T3

and Kl(TG) = %[(Xl —Xg )2 + (ye - yl)Z]

T6
Here, it may be noted that no separate formulation is required for multi-dielectric media in
FEM in contrast to FDM.

FEM Formulation in Axi-symmetric System

As already discussed, electric potential energy in a triangular element is

1 —|2
Uo=3 6t E| Al ....15.19
where, (A.l) is the volume of the element.
A Z
(ra, z3)
3

2 &

)

£

(r1+r2+r3)/3

- 2

©

0

= 01 (r2, 22)

< 1

(ri, z1)
>

Fig. 15.5 Triangular element for axi-symmetric formulation

For axi-symmetric system, this volume is created due to the rotation of a triangular element
around the axis of symmetry. The area of the triangle being A, | should then be the mean
length of rotation, i.e. 2z times the radial distance of the centroid of the triangle.

So.  |ooplithtr) 1520

Putting this expression for | in egn. 15.14b
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Pt 272'(!’1 LY I’3) [¢1{(I’3 —-h )2 + (22 - 23)2 }+ 9, {(rs - rz)(rl - r3)+ (Zz - 23)(23 - Zl)}

2D 3 . 15.21
+ ¢3{(I’3 -0 )(I’2 - r1)+ (Zz - Zs)(zl - Zz)}] =0
So, from eqn. 15.21 in axi-symmetric system
K1T¢1 + K2T¢2 + K3T¢3 =0
R
KlT = %[(rST — b )2 + (ZZT — Iy )2]
T
R
Wwhere, Ko = ;rT [(r3T — b )(rl Iy )+ (ZZT gy )(ZST — Ly )] - 15,22
T
R
3T:L st — ot Nt — har 21 = A3t Near T for
K D‘T [(ry =1 X = )+ (2or — 207 N2ir =257 )]
T
and R=(r+r,+r,)

For axi-symmetric system with multi-dielectric media, the modifications to be brought in are
the same as those described for two-dimensional formulation discussed in section 15.4.2.

38



Numerical Computation of HV Field by Charge Simulation Method (CSM)

Introduction

The principle of FDM and FEM is to provide the entire region of interest into a large number
of sub-regions, and solve for unknown potentials a set of coupled simultaneous linear
equations which approximate Laplace’s or Poisson’s equation. Compared to these two
methods, only boundary surfaces, i.e. electrode surfaces and dielectric interfaces, are
subdivided and charges are taken as unknowns in CSM. It follows, firstly, that the amount of
human time and effort needed for subdivision is greatly reduced in CSM. Secondly, the
electric field strength can be given explicitly in CSM without any numerical differentiation of
the potential, which results in significant reduction in error. The second characteristic is very
important because the field strength is usually more important for the design of an insulating
system than electric potential.

The earlier attempts for numerical field solutions employing CSM were reported by Loeb et
al in 1950 and then by Abou-Seada and Nasser (IEEE-PAS, 1969, ppl802-1814).
Subsequently, in a comprehensive paper Singer, Steinbigler and Weiss presented the details
of CSM (IEEE-PAS, 1974, ppl1660-1668). Since then many refinements to the original
method have been proposed and CSM has evolved into a very powerful and efficient tool for
computing electric fields in HV equipments. CSM is very simple and applicable to systems
having more than one dielectric medium. This method is also suitable for 3-D fields with or
without symmetry.

CSM Formulation for Single Dielectric Medium

The basic principle of conventional CSM is very simple. For the calculation of electric fields,
the distributed charges on the surface of the electrode are replaced by N number of fictitious
charges placed inside the electrode as shown in Fig.16.1. The fictitious charges are placed
inside the electrode to avoid singularity problem. In general, the fictitious charges are to be
always placed outside the region of interest (ROI), as the field is ideally required to be
determined at all the points within the ROI. If the fictitious charges are placed within the
ROI, then at the location of the fictitious charges singularity arises because at these points the
distance between the charge and the point at which the field solution is required becomes
zero.
o

X Fictitious Charges : j=1,....., N
[ ) Contour Points : i=1,....., N
Fig. 16.1 Fictitious charges and contour points for CSM formulation in single dielectric
medium
The types and positions of these fictitious charges are predetermined, i.e. user-defined, but
their magnitudes are unknown. In order to determine their magnitude some collocation
points, which are called contour points, are selected on the surface of electrode. In the
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conventional CSM the number of contour points is chosen to be equal to the number of
fictitious charges. Then it is required that at any one of these contour points the potential
resulting from superposition of effects all the fictitious charges is equal to the known
electrode potential. Let, Q; be the jth fictitious charge and ¢ be the known potential of the
electrode. Then according to the superposition principle

N
Y .PQ=¢ ... 161
j=1

where, Pj; is the potential coefficient, i.e. the potential at the point i due to a unit charge at the
location j, which can be evaluated analytically for different types of fictitious charges by
solving Laplace’s equation. When Eqn. 16.1 is applied to N no. of contour points, it leads to
the following system of N linear equations for N unknown fictitious charges

RiQ +PQp +.ee. +PQ +.n. +PyQy=¢
P,Q +P,Q,+....... + szQj Foeeens +P,,Qy =¢

' .. 16.2
P,Q +P.,Q, +....... +PBQ; +. . +PQ\ =¢
Py @+ Py,Q, + e +PyQ; v + P Qy =9
In matrix form, Eqn 16.2 can be written as
Py PPy By Q, ]
Py Pyvecni Py, Py Q,
' ' = ....16.3
Py Py Py Py Q [
Pt Puz e P P | LQ0 Ja
where, [P] = potential coefficient matrix, [¢] = column vector of known potential of contour

points.

Egn. 16.3 is solved for the unknown fictitious charges. As soon as the required fictitious
charge system is determined, the potential and the field intensity at any point within the ROI
can be calculated. While the potential is found by Eqn. 16.1, the electric field intensities are
calculated by superposition of all the stress vector components. For example, in Cartesian co-
ordinate system, the three superimposed field components at any point i are given as follows.

i .Z_ZFX“Q ... 16.4

OX
N @PI N
z ayJQ __ZFy,iij ... 165
j=1
N OP. N
and E,, Z Z“ =-> F;Q ....16.6
j=1 j=1

where,  Fyij , Fyj and Fj; are the electric field intensity coefficients in the X, y and z
directions, respectively, i.e. the components in the x, y and z directions, respectively, of
electric field intensity at the point i for a unit charge at the location j.

In many cases the effect of the ground plane is to be considered for electric field calculation.
This plane can be taken into account by the introduction of image charge.
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Formulation for Floating Potential Electrodes

Floating potential conductors are often present in high voltage system, the most common
example being condenser bushings. If floating electrodes are present, whose potentials are
constant but unknown, then the boundary condition that is imposed for field computation is
given below.

¢.,—¢ =0, for i=1...,N-1 ... 16.7

Moreover, a supplementary condition is included such that the sum of fictitious charges for
each floating electrode is zero.
Then the system of equation that is obtained will be as follows

1 y A 1 1 o
(le_Pll) (P22_P12) ------ (sz _Plj) ------- (PZN _PlN) Ql

(P31_P21) (Psz_Pzz) ------ (P3j _sz) ------- (P3N _PZN) Qz

. ' =[0],,, ...16.8
(P(i+1)1 - Pll) (P(i+1)2 - P|2) ------ (P(i+l)j - P”) ------- (P(i+l)N - F:N) Qi

. _QN_le

_(PNl_P(N—l)l) (PNZ_P(N—l)Z) ------ (PNj _P(N—l)j) ------- (PNN _P(N—l)N)_NXN

If the floating electrode has a net charge, then the supplementary condition is included such
that the sum of its fictitious charges is equal to the known net charge value (Qg). In Eqn. 16.8
the first row is then modified as follows

Q+Qy+. Q4. +Qy =Q¢ ....16.9

CSM Formulation for Multi-Dielectric Media

The field computation for a multi-dielectric system is somewhat complicated due to the fact
that the dipoles are realigned in dielectric media under the influence of the applied voltage.
Such realignment of dipoles produces a net surface charge on the dielectric interface. Thus in
addition to the electrodes, each dielectric interface needs to be simulated by fictitious
charges. Here, it is important to note that the dielectric boundary does not correspond to an
equipotential surface. Moreover, it must be possible to calculate the electric field on both
sides of the dielectric boundary.

It has been mentioned earlier that the fictitious charges should be outside the ROI. In the case
of electrodes this has been achieved by placing the charges within the electrodes. But, for
dielectric-dielectric interface, both the sides are within the ROI. Hence, any fictitious charge
placed on either side of the interface would cause singularity problem. This issue is solved by
placing two charges for every contour point on the dielectric —dielectric interface. For solving
the field within the dielectric-A, the set of charges placed within dielectric-B are considered
and vice-versa.

In the simple example shown in Fig. 16.2, there are N; number of charges and contour points
to simulate the electrode, of which N4 are on the side of dielectric-A and (N;-Na) are on the
side of dielectric-B. These N; charges are valid for field calculation in both the dielectrics. At
the dielectric interface there are N, contour points sequentially numbered from
(N1+1,.....,N1+Ny), with N charges (N1+1,.....,N;+Ny) in dielectric-A valid for dielectric-B
and Ny charges (N1+Ny+1,....., N;+2Ny) in dielectric-B valid for dielectric-A. Altogether
there are (N1+N,) number of contour points and (N1+ 2N;) number of fictitious charges.
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i:N1+1

Dielectric-B (eg)

i:N1+N2

j:N1+N2 X X j:N1+2N2

S/
Fig. 16.2 Arrangement of fictitious charges for multi-dielectric media

In order to determine the fictitious charges, a system of equations is formulated by imposing
the following boundary conditions.

i) At each contour point on the electrode surface the potential must be equal to the known
electrode potential. This condition is also known as Dirichlet’s condition on the electrode
surface.

ii) At each contour point on the dielectric interface, the potential and the normal component
of flux density must be same when computed from either side of the boundary.

Thus the application of the first boundary condition to contour points 1 to N; yields the
following equations

N;+2N,
Z Q,+ DRQ=V ... i=1N, ....16.10
=1 j= N1+N2+1
Nl Ny+N,
and z P,Q, + ZPU.szv ...... i=N,+LN, 1611
j=1 j=Ny+1

Again the application of the second boundary condition for potential and normal flux density
to contour points Ni+1 to N;+N; on the dielectric interface results into the following
equations.

From potential continuity condition:

N;+N, N;+N,
> PQ- >YPQ=0 ... i=N,+L N, +N, ....16.12
j=N;+1 J=Ni+N,+1
From continuity condition of normal flux density Dy, :
D,(i)-Dg(i)=0 ... i=N,+LN;+N, ....16.13
Eqgn. 16.13 can be expanded as follows.
N, N;+N, N;+2N,
(ea—¢s)Y FiQ—es D FiQ +ex D FyQ =0.i=N+L N, +N, ....16.14
j=1 J=N+1 J=N;+N,+1

where, Fyjj is the field coefficient in the normal direction to the dielectric boundary at the
respective contour point and &y & &g are the permittivities of dielectric A and B, respectively.
Egns. 16.10 to 16.14 are solved to determine the unknown fictitious charges. These equations
can be presented in matrix form as detailed below.
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1 N; N1+N2 N;+2N, 1 1

1

= 0 ;
N 1 PIJ \V}
Pj Pij 0
Ny Ql= Ny
0 Pij -Pij
N;+N 0
(eaeB)| -e8 €a
Foji Fnji Fnji
N.{+2N>» N1+2Ns N;+2N,

Types of Fictitious Charges

The successful application of the CSM requires a proper choice of the types of fictitious
charges. Point and line charges of infinite and semi-infinite lengths were used in the initial
works on this method. Steinbigler et al introduced ring charges and finite length line charges.
Subsequently, a large variety of different charge configurations have been proposed. These
other types of charge configurations include elliptic cylindrical charge, axi-spheroidal charge,
plane sheet charge, disk charge, ring segment charge, volume charges, shell and annular plate
charges as well as variable density line charge.

In general, the choice of type of fictitious charge to be used depends upon the complexity of
the physical system and the available computational facilities. The potential and field
coefficients for point and line charges are given by simple expressions and require very small
computation time. For complex charge configuration, such coefficients may have to be
computed numerically. On the other hand, a smaller number of charges may be used if
complex charge configurations are employed, which reduces the overall memory requirement
and computation time. In practice, most of the HV systems can be successfully simulated by
using point, line and ring charges or a suitable combination of these charges.

Accuracy Criteria

If the fictitious charges completely satisfy the boundary conditions, then these charges give
the correct field distribution not only on the boundary but also everywhere outside it. But in
the CSM, the fictitious charges are required to satisfy the boundary conditions only at a
selected number of contour points. Again the number of contour points is kept small in order
to reduce the computer memory and computation time. Hence, it is essential to ensure that the
simulation is accurate. To determine the simulation accuracy, the following criteria can be
used.

) The “potential error” on the electrode can be computed at a number of control
points on the electrode surface between two contour points. The potential error is
defined as the difference between the known potential of the electrode and the
computed potential at the control point.

i) Compared to the potential error the “deviation angle” on the electrode surface is a

more sensitive indicator of the simulation accuracy. The deviation angle is defined
as the angular deviation of the electric field intensity vector at the control point on
the electrode surface from the direction of the normal to its surface.
Another very severe accuracy criterion is to check that the derivative of the
potential gradient perpendicular to the electrode surface at the control point
divided by the gradient itself is equal to the curvature at this point or not. This is
especially applicable for simulation of areas of the electrode with a small radius of
curvature.
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iii) In multi-dielectric systems the “potential discrepancy” can be computed at a
number of control points for each dielectric interface. The potential discrepancy is
defined as the difference in the value of potential at the control point when
computed from both the sides of the dielectric interface. Alternatively, the
discrepancy in the tangential electric stress at the control points on the dielectric
interface can also be computed. Another criterion for checking the simulation
accuracy is to compute the discrepancy in the normal flux density at the control
point on the dielectric interface.

For a good simulation all the above discrepancies should be small.

Factors Affecting Simulation Accuracy

The simulation accuracy in the CSM depends upon the types and number of fictitious charges
as well as locations of fictitious charges and contour points. In general, the simulation error
can be reduced by increasing the number of charges. However, it has been found that
increasing the number of fictitious charges beyond a certain limit does not necessarily
improve the simulation accuracy. Generally, the “assignment factor” (1) defined as the ratio
of the distance between a contour point and the corresponding charge (a2) to the distance
between two successive contour points (al), as shown in Fig. 16.14, considerably affects the
simulation accuracy. Steinbigler et al (IEEE-PAS, 1974) suggested that this factor should be
between 1.0 and 2.0. Several others suggest a range of 0.7<A<1.5.

In a good simulation, potential error values as low as 0.001% are possible. However, for
sharp corners and thin electrodes, such low values are difficult to achieve. Since the electric
field intensity error is an order of magnitude higher than the potential error, potential error
values of about 0.1% are considered reasonable. For multi-dielectric systems, if the dielectric
boundary has a complex shape, comparatively large potential discrepancy values of the order
of 1% are usually acceptable.

x Fictitious charge

o Contour Point

A =a2lal

Fig. 16.14 Definition of assignment factor

Manufacturing tolerances of the conductors define the practical limit for the accuracy of the
simulation of electrodes. In the same way, the accuracy of the determination of dielectric
constants of the involved media puts the practical limit on the accuracy of the simulation of
dielectrics.

Solution of System of Equations in CSM

The application of CSM for numerical field calculation involves solutions of linear systems
of equations as explained in earlier sections. In the conventional CSM, for a single dielectric
case, the matrix of the linear system of equations to be solved is in general asymmetrical
without a zero term as detailed in section 16.2. In such cases, the equations could be solved
using the Gaussian elimination technique with or without partial or complete pivoting.

44



In multi-dielectric systems, the matrix of systems of equations to be solved is rather
heterogeneous and is not symmetrical as detailed in section 16.3. Due to bad conditioning of
the matrix, it is preferable to solve it by using a direct method, e.g. Gaussian elimination
technique, to avoid non-convergence problem, which may arise in the case of iterative
methods. However, for complicated problems the size of the matrix becomes too large. In
such cases, iterative methods such as Gauss-Seidel method or the successive over relaxation
method with varying values of acceleration factor have also been found to be successful.

Comparison of CSM with FEM

Both the FEM and CSM are extensively used for numerical calculation of electric field in
high voltage engineering.

In FEM, the entire region of interest is subdivided into a large number of sub-regions and a
set of coupled simultaneous linear equations, which minimize the electrostatic energy in the
field region, are solved for unknown node potentials. On the other hand, in CSM only
boundary surface, i.e. electrode surface and dielectric interfaces, are subdivided with
fictitious charges which are taken as unknowns. Therefore, it follows that the amount of time
and effort needed for subdivision is greatly reduced in CSM. Moreover, the system of
equations thus obtained by discretization is of smaller dimension in CSM.

FEM is useful for two-dimensional and also three-dimensional systems with or without
symmetry and is advantageous for the calculation of fields where the boundaries have
complicated shapes. However, for computing field distribution at a large distance from the
HV electrodes by FEM, a large number of nodes and hence excessive computation time and
computer memory space are required. Thus, FEM is more suited for problems where the
space is bounded. On the contrary, application of CSM is easy with high precision for field
problems having infinity extended unbounded region and for relatively simple boundary
geometries but not so for fields with complex electrode configurations.

In FEM exact field intensity at any point cannot be obtained. Instead average field intensity
between two nodes is to be calculated from the known values of node potentials or numerical
differentiation of the potential has to be done. But, in CSM the electric field intensity can be
obtained explicitly with the fictitious charges without resorting to numerical differentiation of
the potential, which results in significant reduction in error. With proper positioning of the
fictitious charges and the contour points and with the optimum number of fictitious charges,
the potential and stress errors can be made less than 0.01% and 0.1%, respectively, in CSM.
Though FEM is more suited for multiple dielectric problems, CSM can also be effectively
employed for fields with many dielectrics.

A major disadvantage of CSM was that the electric field is difficult to calculate in systems
having very thin electrodes because fictitious charges have to be placed within the electrodes.
However, this disadvantage is obviated by the application of Region Oriented CSM in recent
years. Further, CSM is usually, more accurate and less trouble-some in computing Laplacian
fields than FEM, but is difficult to use for non-Laplacian fields, e.g. Poissonian fields.
However, CSM with complex fictitious charges has been developed for calculating
Poissonian field including volume and surface resistance providing very accurate results.
Again, CSM is not suited for specific fields containing space charges where FEM can be
employed very effectively. But, now-a-days suitable boundary conditions have been
postulated for use in connection with CSM for computing spacer surface fields in compact
GIS as modified by the charges accumulated on the spacer surface.
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Sphere or Cylinder in Uniform External Field

Introduction

Conducting and dielectric components are integral parts of any electrical equipment. If the
size of the conducting or dielectric object is very small compared to dimensions of the field
region where the object is located, then the object contributes to the field only in the domain
near the object. In many cases, such objects are present as stray bodies in high voltage
insulation arrangement. As practical examples one may cite a small piece of conductor or
dielectric floating in liquid insulation of large volume in transformers, metallic dust particles
floating in gaseous insulation within gas insulated system etc. It is important to understand
how the presence of a conducting or dielectric object modifies the external field in the
vicinity of the object, because any enhancement of electric field intensity due to the
conducting or dielectric object may lead to unwanted discharge or in the worst case failure of
the insulation system.

If it is assumed that the source charges (in practical arrangement, the electrodes or conductors
with specific potentials) that produce the external field is located far away from the object
under consideration, then they are unaffected by the presence of the object. Consequently, the
field due to the source charges may be considered to be uniform at the location of the object.
If the object is such that its shape is defined by well known mathematical functions, e.g.
cylinders or spheres, then the complete solution for electric field due to the source charges
located at far away positions and the induced charges on the surface of the object could be
obtained by solving Laplace’s equation considering the field region to be free from any
volume charge. However, in order to get the complete solution appropriate boundary
conditions on the surface of the object, whether it is conducting or dielectric, need to be
satisfied. One of the common methods of getting the analytical solution for cylinder or sphere
in uniform external field is the method of separation of variables as described in this chapter.

Sphere in Uniform External Field

Consider a spherical object of radius a within a uniform external field as shown in Fig.10.1.
Since the boundary is a sphere of r=constant, hence the system is best described in spherical

coordinates as shown in Fig.10.1. The uniform external field is given by E,=— E,(, and the
potential at any point due to the external field is given by E,rcosé=E,z with respect to the

center of the sphere. In order to get the complete solution for electric field in this system,
Laplace’s equation in spherical coordinates as given in egn.(10.1) needs to be solved.

1o(pt) L2 o )L 101
reor or resing oe 060 ) r°sin“0 o¢
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Fig.10.1 Sphere in uniform external field

The field system has azimuthal symmetry wrt the z-axis, i.e. the field system does not change
with the rotation around the z-axis. So z-axis is made the polar axis in the spherical
coordinate system. Then the field is independent of coordinate ¢ and the Laplace’s equation
reduces to

%Q(rzﬂj +— 1 i(sinﬁﬂj =0 ... 10.2
r°or or resin@ oo 06

In order to separate the terms of the LHS of eqn.(10.2) into functions of only one variable,
eqn.(10.2) may be rewritten by multiplying r’ as

i(rzﬁj +_Li(sin gﬁj =0 ....10.3

or or sing 06 060

Then LHS of egn.(10.3) is the sum of two terms which are functions of only one variable
each, i.e. the first term is function of r only while the second term is function of & only. The
solution to eqgn.(10.3) can be obtained as the product of two functions of which one is
dependent only on r while the other is dependent only on 6.

Let the assumed solution be V(r,8)=M(r)N(60) ....10.4
The assumed solution is convenient as the boundary lies at r=constant.

Combining eqn.(10.3) and (10.4)

i(rzaM(r)N(e)j N 1 i(sineaM (r)N(e)] 0

or or sin@ 06 00
or, N(6) i(rZMj +M(r) _Li(sineaN—W)j =0
or or sin@ 06 060

Dividing by M(r)N(8),

Li(rsz(r)j st 1 i(sinewj =0 ... 105

M (r) dr dr N (@) sing do do
The partial derivatives become total derivatives in eqn.(10.5) as each term is dependent on
only one coordinate.
The sum of two terms of the LHS of egn.(10.5) could be zero only when the two terms are

separately equal to opposite and equal constant terms as given in egqn.(10.6).
Equal and opposite separation constant solution:

Li(rZMj =+p and L_Li(siné'wj =—p ....10.6
M(r) dr dr N (@) sing do do
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where, p is a positive constant.

Another solution is obtained when the separation constant is zero. Hence,

Zero separation constant solution:

Li(ﬁMJ =0 and i_ii(sin GM] =0 ... 10.7
M(r) dr dr N(6)sing do déo

Each of the above-mentioned two solutions is to be obtained separately.

Determination of the zero separation constant solution:

1 d (rz dM (r)

The first term of eqn.(10.7) is J =0, where M(r) is non-zero. So

M (r) dr dr
i(rz dM(r)J 0. or r2dM(r) _¢c,, or, dM(r) =C_§
dr dr dr dr r
Integrating and incorporating constants of integration
M (r):%jtc20 ....10.8
r
Next the second term of eqn.(10.7) is Lii(sin Mj =0, where N(6) is non-
N () sing do déo
zero. SO

sing do do déo
Integrating and incorporating constant of integration

N(0)= Aioln(tan jJrA20 ....10.9

Eqn.(10.9) becomes undefined for 6=z But this is not feasible in the given system as
potential must be a continuous function. So, Ajp should be zero in eqn.(10.9). Therefore,

N(6)=A,, ....10.10

Then from eqgns.(10.4), (10.8) and (10.10), the zero separation constant solution can be
obtained as

V(r,e):3+c2 ...10.11
r

where, C1=A2,C1 and C,=A»Cx.
Determination of the equal and opposite separation constant solution:

The first term of eqn.(10.6) is L i(rz dM (r) j =+p,
M(r) dr dr

1 d (I HdN(G)j:O,or, i[siné’dN(g)] 0, or, smedN(e) A
do do

or, i(rZMj =+ pM(r) ....10.12
dr dr
Putting M (r)=Cr"in eqn.(10.12)

di(rZCnr”'l)=+ pCr", or, Cn(n+1)r"=pCr",or, n>+n—p=0
.

Hence, n=%(—li1/1+4p) ....10.13
11 i(sinedN(e)j -
N (@) sing do do

or, 1 d( anN(H)j pN(O) ....10.14
sing do do

The second term of egn.(10.6) is
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Putting N(8)=Bcoséin eqn.(10.14), ;—9(— Bsin? 0):— pBcosdsing, or, p = 2.
Hence, from eqn.(10.13) n = +1, -2.

Therefore, M (r)=C'r+ = and N(8)=Bcosé .... 10.15

From eqgns.(10.4) and (10.15),

V(r,&):(C3r+C—;‘jcose ....10.16
r

where, C,=C’'BandC,=C"B.

The complete solution for potential function is uniquely given as a linear combination of the
two solutions given by eqgns.(10.11) and (10.16).

V(r,@):%+C2+[C3r+%jcose ... 10.17

where, the constants are determined by satisfying the boundary conditions.
It is evident from eqn.(10.17) that the first term corresponds to a net charge on the sphere and
the second term to a finite potential.

Conducting Sphere in Uniform Field

Consider that the sphere is a conducting one and is isolated and uncharged. Further, consider
that the potential at the location of the center of the sphere due to the external field is Vo.
Since the perturbing action of the sphere is negligible at a large distance from the sphere, the
potential at a large distance from the sphere (r>>a) is given by

V(r,0)=V,+E,rcosé ... 10.18

If the sphere is charged with a finite amount of charge Q, then

V(r,0)= Q +V,+E,rcosé ....10.19
Areyr

In practical systems, floating metallic particles are usually not charged and hence eqn.(10.18)
is taken here for further discussion.

Comparing egns.(10.17) and (10.18) for r—co, C,=V,, C,;=E,. C; will be zero for
uncharged sphere.

So, eqn.(10.17) can be rewritten as V(r,0)=V,+ ( E,r +%jcos@ ....10.20
On the conductor surface, i.e. for r=a, V (a,0)=V, + ( an+%} cosé ....10.21

But conducting sphere surface is an equipotential and hence electric potential is independent
of #on the conductor surface.
So, from egn.(10.21), C,=—E,a°
Hence, the complete solution for electric potential in the domain r>a is given by
3
V(r,6?)=V0+EO(r—a—2jcosé? ... 10.22
r
The r and 8 components of electric field intensity could be obtained as follows

3
E--N__ E0£1+213jc059 ....10.23
or r
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3
E,—— 1N _ Eo[l—a—stinH ....10.24

r oo r
On the conducting sphere surface, tangential component of electric field intensity must be
zero as it is an equipotential surface. Eqn.(10.24) shows that for r=a, Egis zero, which in turn
validates the solution obtained.
Again, on the conducting sphere surface, E, is the normal component of electric field

intensity, which is given by Er|r:a =—3E,cosd. Thus the maximum value of electric field

intensity on the surface of the conducting sphere is 3Eo, i.e. three times the strength of
uniform external field.

This is the reason why metallic dust particles should be avoided at all costs for gas insulated
systems. Because presence of metallic dust particles will increase the local electric field
intensity three times, which will result into partial discharge within the GIS that is very
detrimental for GIS operation.

Induced surface charge density on the surface of the conducting sphere may be obtained as
follows

—=E,| =-3E,cos8,or, o, =-3g,E,c0s8 ....10.25
As stated_earlier, the sphere may be charged with an additional charge Q, which is distributed
uniformly on the sphere surface and its effect on the field could be found by superposition.

Dielectric Sphere in Uniform Field

In the case of dielectric sphere present in a uniform external field, there will be two solutions
to potential function, V; valid for the region within the sphere having dielectric of permittivity
& and V. valid for the region outside the sphere having dielectric of permittivity &. So from
eqn.(10.17)

Vi(r,9)=%+C2i+ (Csir+%jcose ....10.26

and Ve(r,é?):cr1e +C, + (C3er+ (I:";e)cose ... 10.27

The potential at large distance r (r>>a) from the sphere
V(r,0)=V,+E,rcosd ....10.28

where, Vo is the potential at the location of the center of the sphere due to the external field.
Comparing eqns.(10.27) and (10.28) for r—w, C, =V,, C,,=E,. Ci Will be zero as a

dielectric sphere is not considered to have any free charge.

Hence, eqn.(10.27) can be rewritten as V,(r,0)=V,+ [ E,r+ Cee jcosa .... 10.29

r.2
Inside the dielectric sphere electric potential must be finite at all the points. Hence, from
eqn.(10.26) C,;=C,,=0, C,, =V, . Hence, eqn.(10.26) can be rewritten as
V,(r,0)=V,+C,rcosd .... 10.30
At r=a, both eqns.(10.29) and (10.30) should yield the same electric potential. Therefore,

C“Zejcosezvo+C3iacose
a

V,+ ( E,a+

or, E0a+% =C,a ....10.31
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On the dielectric-dielectric boundary the normal component of electric field intensity should
be same on both sides of the boundary. For the spherical boundary, r-component of electric
field intensity is the normal component on the boundary. Hence,

oV, oV,
—&| — ==&,
( or jr_a [ or j

r=a

or, §Cy = ge(EO—Z;“ej ... 10.32
From eqns.(10.31) and (10.32)
4e = i a’E
2¢,+ &
and C,, = 3¢ E,
2e,+¢

Therefore, the complete solutions for potential functions inside and outside the dielectric
sphere are given by
3e,

V,(r,0)=V, +
|( ) 0 28 +

e i

E,rcosé ... 10.33

g,—¢g a
2¢,+¢&, 1°

and Ve(r,H):VO+(r+ JEocose ....10.34

Noting that rcosé=z, potential function inside the dielectric sphere can be written as
V,(X,y,2)=V, + 3¢, E,z ... 10.35

+é,

e 1
Hence, electric potential within the dielectric sphere varies in only z-direction, i.e. the
direction of the external field. Electric field intensity within the dielectric sphere will
therefore have only the z-component, which is given by
oV, 3¢,

E,=— =— E, ....10.36
0z 2¢,+ &

Eo,

& €e

\ 4
Eo

Fig.10.2 Electric field in and around dielectric sphere in uniform field

Eqgn.(10.36) shows that the magnitude of electric field intensity within the dielectric sphere is
constant. Typical field distribution in and around a dielectric sphere within a uniform external
field is shown in Fig. 10.2.

Eqn.(10.36) also shows that if <&, then |E,|>E,. Consider the case of a spherical air bubble
trapped within a moulded solid insulation of relative permittivity 4. If the magnitude of
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electric field intensity in solid insulation at the location of the air bubble is Eo, then the
magnitude of electric field intensity within the air bubble will be 1.33E,. The operating
electric field intensity within solid insulation is usually kept at a higher value as the solid
insulation has a higher dielectric strength and hence such increase in field intensity within the
air bubble often causes partial discharge within the air bubble as the dielectric strength of air
is much lower than solid insulation.

Cylinder in Uniform External Field

Consider a long cylindrical object of radius a within a uniform external field as shown in
Fig.10.3. Since the boundary is a circle of r=constant on the x-y plane, hence the system is
best described in cylindrical coordinates as shown in Fig.10.3. The uniform external field is

given byEo:— Eof and the potential at any point due to the external field is given
by E,r cos@=E,x with respect to the axis of the cylinder. In order to get the complete solution

for electric field in this system, Laplace’s equation in cylindrical coordinates as given in
eqn.(10.37) needs to be solved.

1a(av) 1oV oV _,

Sl St T
rorl or r200*> o0z°

EEERREY

AX

... 10.37

Fig.10.3 Cylinder in uniform external field

For this arrangement electric field distribution does not vary along the length of the cylinder,
i.e. along z-coordinate. Hence, Laplace’s equation reduces to
10 ( avj 1 0%V

——|r— | +5—=—= =0

ror\ or r-oé

Separating the terms of the LHS into functions of only one variable by multiplying r?* with
eqn.(10.38), it may be written that

ri(ra_Vj A ... 10.39
or\_ or 00

The two terms on the LHS of egn.(10.39) are functions of only one variable each, i.e. the first
term is function of r only while the second term is function of & only. The solution to
eqn.(10.39) can be obtained as the product of two functions of which one is dependent only
on r while the other is dependent only on é.

Let the assumed solution be V(r,8)=M(r)N(60) .... 10.40
The assumed solution is convenient as the boundary lies at r=constant.

.... 10.38
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Combining eqns.(10.39) and (10.40),

rﬁ(réM (r)N(@)J LOM(ION@) _,

or or 00°
or, N (0){ri(rM”+M (r)aZM(r—)ZNW) =0
or or 00
Dividing by M(r)N(6),
r i(rdl\/l(lr)j+ L_d°NO)_, ... 10.41
M (r) dr dr N(@) dé

The partial derivatives become total derivatives in eqn.(10.41) as each term is dependent on
only one coordinate.

As in the case of sphere in uniform field, zero separation constant solution and equal and
opposite separation constant solution are to be obtained separately in this case, too.
Determination of the zero separation constant solution:

The first term of eqn.(10.41) is ' i(r am (r) j =0, where M(r) is non-zero. So

M (r) dr dr
d rdM(r) 0. or rdM(r) _¢c,,or, dM (r) _ G
dr dr dr dr r
Integrating and incorporating constants of integration
M(r)=C,Inr +C,, ....10.42
1 d’N(9) .
Next the second term of eqn.(10.41) is >— =0, where N(¢) is non-zero. So
N(@) do
N(@)=A,0+A, ....10.43

But, from eqns.(10.42) and (10.43), it can be seen that there is discontinuity of potential at
r=0 and @G=oo, which are not feasible in the given arrangement as potential must be a
continuous function. Hence, C,,=A,=0 in eqns.(10.42) and (10.43).

Therefore, V(r,8)=C,, A,,=C, ....10.44
Determination of the equal and opposite separation constant solution:

The first term of egn.(10.41) is r i(r am(r) J =+ p, where p is a positive constant
M(r) dr dr

2
2 d Mz(r) or dM(r) _
dr dr
Substituting M (r)=Cr"in egn.(10.45), it may be obtained that

n(n-1)+n=p, or, nzi\/B

or, + pM(r) .... 10.45

_C
Hence, M(r)_ﬁ +C"r ....10.46
2
Again, the second term of eqn.(10.41) is 1 d N(29) =-p
N@) dé
d’N(6)
or, =—pN(@ ... 10.47

Substituting N (6)=e*’ in eqn.(10.47), it may be obtained that

a% = —pe*, or, a=+i,/p
Hence, N(6)=Bcosl\/p6 + ) ....10.48
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Eqgns.(10.46) and (10.48) lead to
V(r,0)=M (r)N(6)= ( “Cyr ]cos(\/_«9+a)) ....10.49

where, C,=C'Band C,=C"B

From eqgns.(10.44) and (10.49), the complete solution for potential function at all values of r
and 6 can be obtained as

C,
V(r,9)=C1+(rf iCr jcos(\/_9+a)) ....10.50
The potential at large distance r (r>>a) from the cylinder is given by
V(r,0)=V,+E,rcosé ... 10.51

Matching eqns.(10.50) and (10.51), \/leand o=0.
Hence, the complete solution as given by egn.(10.50) reduces to

V(r,H):Cl+(%+C3chose ... 10.52

Conducting Cylinder in Uniform Field

Comparing eqns.(10.51) and (10.52), C;=V, and C3=E,.
So, V(r,0)=V,+ (&+Eorjcose
r

On the conductor surface, i.e. for r=a, V (a,0)=V, + [% + anj cosé ... 10.53

But conducting cylinder surface is an equipotential and hence electric potential is
independent of & on the conductor surface.
So, from egn.(10.53), C,=—E,a’

Hence, the complete solution for electric potential in the domain r>a is given by
2

V(r,0)=V,+E, r—""T cosd ....10.54
The r and 8 components of electric field intensity could be obtained as follows
2
E =Y El1+2 |coso ....1055
or r
2
=M _E[1-2 |sing ....1056
r oo r

Eqgn.(10.56) shows that for r=a, Ey is zero, i.e. the tangential component of electric field
intensity is zero on the cylindrical conductor surface as it is an equipotential surface.
Again, on the conducting cylinder surface, E, is the normal component of electric field

intensity, which is given by Er|r:a =—2E,cos@. Thus the maximum value of electric field

intensity on the surface of the conducting cylinder is 2E,, i.e. twice the magnitude of uniform
external field. Comparing this maximum electric field intensity with the value obtained for
conducting sphere in uniform field, it may be seen that the enhancement of field intensity is
more if the conducting object is spherical is shape.

Induced surface charge density on the surface of the conducting cylinder may be obtained as
follows
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=—2E,c0s0, or, o, = —2¢,E,Cc0s0 .... 10.57

Dielectric Cylinder in Uniform Field

Potential function valid for the region within the cylinder having dielectric of permittivity &
is

Vi(r,e):Cli+[%+C3irjcose ....10.58

and the potential function valid for the region outside the cylinder having dielectric of
permittivity & is

V,(r,0)=C,+ (%+C3erjcose .... 10.59

The potential at large distance r (r>>a) from the cylinder

V(r,0)=V,+E,rcosé .... 10.60
where, Vo is the potential at the location of the axis of the cylinder due to the external field.
Comparing egns.(10.59) and (10.60) for r—»x, C,=V,, C,.=E,.

Hence, eqn.(10.59) can be rewritten as V,(r,8)=V, + (%-{- Eorjcose ....10.61

Inside the dielectric cylinder electric potential must be finite at all the points. Hence, from
egn.(10.58) C, =V,, C,;=0. Hence, eqn.(10.58) can be rewritten as

V,(r,0)=V,+C,rcosd .... 10.62
At any point on the dielectric cylinder surface, i.e. for r=a, electric potential as may be

obtained from eqgns.(10.61) and (10.62) must be unique. Hence,

C;e +E,a=C, a ... 10.63

From the boundary condition of normal component of electric flux density at r=a

v, oV,
—&| = ==&
(ar jr_a [ or jr_a

or, &C, =ge(— (;22 +E0j ... 10.64

From eqns.(10.63) and (10.64)

Ee & 2
C,.= a’E,
&, t¢&

and C;, = 2%,

E

g+

Therefore, the complete solutions for potential functions inside and outside the dielectric
cylinder are given by

V.(r,6)=V, +—2%_E, rcoso ....10.65
€e+€i
— 2
and ve(r,9)=v0+(r+“;e g'a—]Eocose ....10.66
E,+g I

As rcosé=x, potential function inside the dielectric cylinder can be written as
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Vi(%,y)=V, +—25

E, X ... 10.67

e i
Hence, electric potential within the dielectric cylinder varies in only x-direction, i.e. the
direction of the external field. Electric field intensity within the dielectric cylinder will
therefore have only the x-component, which is given by

L WL ....10.68
OX & &
Similar to the case of dielectric sphere in uniform field, Eqn.(10.68) shows that the
magnitude of electric field intensity within the dielectric cylinder is constant. Typical field
distribution on the x-y plane in and around a dielectric cylinder within a uniform external
field will be the same as that shown in Fig. 10.2.
As in the case of dielectric sphere in uniform field, for dielectric cylinder in uniform field

aIso|Ezi|> E, if a<e. If a cylindrical air bubble is trapped within a moulded solid insulation of

relative permittivity 4, then the magnitude of electric field intensity within the air bubble will
be 1.6E,, where Eo is the magnitude of electric field intensity in solid insulation at the
location of the air bubble. Comparing this result with the corresponding value in the case of
dielectric sphere, it may be seen that field enhancement is more if the gas cavity in liquid or
solid insulation is cylindrical in shape.
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Analytical Method

Field in cylinders, spheres, electrical cables etc, whose surfaces can be

mathematically represented might be solved analytically.

e Schwaigar’s Utilisation Factor

av

U= Avg.Stress  E
Max Stress E
E _2V

av X
g

Average stress is defined as the potential difference

max

- between the electrodes divided by the distance. In most of

X the cases, maximum stress is on the electrode surface and is

usually on the axis of symmetry, where the distance

v between the electrodes is minimum.

So, u<1 -- Inmost of the practical cases
ux1 — Foruniform field
u<<1l — For non-uniform field
u is @ measure of non-uniformity of a field. If its value is very low, then the field is highly

non-uniform. If u = 1, the field is uniform as in parallel plate arrangement.

Exception

Though the pt. b is on the axis of symmetry and

v

2 C

is at minimum distance from earth’s surface,
// b the maximum stress may take place at pt. a, for
the arrangement shown.

When u is known, Emax can be easily determined as E,, = V/X can be easily calculated
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In English literature, f _1 E
u E

av

1. Concentric Sphere

Let q be charge on the inner sphere.

The stress at P:E=4 q 2:2

’ TTEX &
S, R R dx
' V:jde:ij—2
r Adre v X

or, =

4re (1_1)
r R

The maximum stress occurs on the surface of the inner sphere, where x =r

501 Emax= q = v = v 2
Arex {1_1) o
r R R
and E,_, = v
R—r
v r(l_;j
Hence, u=—%= - =L
. R-r Vv R

So, when r approaches R, the field will be more uniform.

Capacitance of the System

dre  Amee,  Ar &, x107°

C:g: = =
v 1 1 1.1 37 1.1
r R r R r R
C= r x107°F



2. Concentric Cylinders

q - Charge on the inner cylinder per unit length

LN e_ a4
27X
x d V:?dezi ?d_X
r 27E v X
-2 )
on 272'6‘ Iniyi
3 v
Hence, E, ., = str_rm(l%)
and Easz
R-r
So. u_ E, _ V rln*y Inv
E,.x. R-Tr 7_1

r
Therefore, u is a function of (R/r).

So, if R/r ratio remains the same, u remains the same.

Capacitance of the system

2re . .
— F
= A] [capacitance per unit length]

g9

\Y InFy
_ 2rme, x107°
367z|nFy /
<9><109

18 Iny %n 18 Iny

C=

uF 1km
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Method of Images

Image of a Point Charge wrt a Grounded Conducting Sphere

Image of a charge is not necessarily to be taken wrt infinitely long plane only. It can also be
taken wrt curved surfaces like sphere, cylinder etc. To elaborate this issue, consider a point
charge +Q located at distance d from the center (O) of the sphere of radius a (a<d), as shown
in Fig.9.4. Consider also that the electric potential of the sphere is zero. The field due to the
point charge and the grounded sphere in the region outside the sphere could be determined by
replacing the grounded sphere by an image charge. From the symmetry of the system it is
evident that the image charge g will of negative polarity and will be located inside the sphere
on the line joining the center of the sphere and the point charge, as shown in Fig.9.4.
However, in this case the magnitude of g will not be equal to Q because such a pair of
charges will not result into a zero potential spherical surface of radius a as required by the
boundary condition.

AX

Grounded

I

|
|
|
Dilg g |
h g

Fig.9.4 Point charge near a grounded sphere

Consider that the image charge is located at a distance s from the center of the sphere as
shown in Fig.9.4. Now the problem is to determine the magnitude as well as the location of
the image charge that satisfies the zero potential boundary condition for the spherical surface.
With reference to Fig.9.4, the potential at the point P due to the point charge and its image is
given by

=t (9—3] 9.9
Are, \ T,

Imposition of the boundary condition ¢, =0 leads to

a_%_, ....9.10

Q

If ais kept constant, then % —constant is the equation of a sphere. Hence, the problem now is
r-l

to find the constant «.

For the point 1 as shown in Fig.9.4 a=T=27%
rr d-a
and for the point 2 as shown in Fig.9.4 q=l2=87%
n d+a
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S0, a=2=""="""_"_2(hy componendo-dividendo) ...9.11
a

Since, the radius of the sphere and the location of the point charge are known, hence the
constant « can be computed from the ratio of a and d, as given by eqn.(9.11).

Therefore, the magnitude of the image charge is given by q:SQ ... 912

2
and the location of the image charge is given by s:% ... 9.13

Considering the line joining the point charge and its image passing through the center of the
sphere to be along the z-axis and the center of the sphere to be the origin as shown in Fig.9.4,
and also taking into account the spherical symmetry of the configuration, the field can be
expressed in spherical coordinates as follows.

With reference to the point P of Fig.9.4,

rl:‘FP —To|= (a2 +d*-2ad cos@)“z, where @is the angle between a and d at the point P

r, :‘FP - f_q‘z (a2 +s° —2asc056’)“2
Similarly, for any point in the field region for which r is the distance of the point from the
origin, i.e. the center of the sphere, and @is the angle between r and d

rl:‘f —To|= (r2 +d*-2rd cosé’)”2 and
4 2 242 | a4 2
rZ:‘F—f_q‘:(r2+sz—2rscos¢9)“2{r%%—Zr%cos@j”zz(r d"+a d22rda cose]m
So, electric potential at any point due to the point charge and its image is given by
Q 1 a
r,0)= — ....9.14
#r.6) 4re,| (r?+d?—2rdcosd)'? (r’d? +a’ - 2rda®cosd)"'?

..9.15

2.2
S0, Er(aﬁ):—M r=a— > 2 2d 2 312
or 47rgoa(a +d —2adcos€)
Now, r-component of electric field intensity is the normal component on the sphere surface.
So, assuming the induced surface charge density on the sphere surface to be oz, the normal

component of electric field intensity is equal toﬁjust off the sphere surface. Equating this
&o
expression with the one given by eqn.(9.15), the induced surface charge density on the
grounded sphere surface is given by
d2_a2
o, = — Q > 377 ....9.16
4ra(a®+d*-2ad coso)

Method of Successive Images

Sphere gap arrangements are very commonly used in high voltage system for voltage
measurement. As shown in Fig.9.5, in this arrangement two spheres of identical radii are
separated by a specific distance s, where one sphere is charged while the other is earthed. The
field within the sphere gap due to the two spheres could be analyzed with the help of image
charges as described in section 9.3. The live sphere of potential V is at first replaced by a
charge of magnitude Q,=4r¢,aV located at the center of the live sphere. Then to keep the

potential of the grounded sphere at zero, -q; is introduced within the grounded sphere which
is the image of Qa, as shown in Fig.9.5. The magnitude and location of qg; are given by
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a a
0=—Q, and s =— ... 9.17
d d
Live Grounded
Sphere Sphere

Fig.9.5 Method of successive imaging as applied to sphere gap arrangement

But the introduction of -q; will make the potential of live sphere different from V. So to keep
the potential of live sphere equal to V, +q, which is the image of —q;, is introduced within
the live sphere such that the potential of live sphere due to +q, and —g; will be zero. As a
result, the potential of live sphere due to +Qa, -q: and +q, will be again V. The magnitude and
location of g are given by
a a

d—slql d(d —s, d-s

But the introduction of +q, will make the potential of grounded sphere different from zero. So
—(Qs is introduced within the grounded sphere as the image of +g, to make the potential of the
grounded sphere equal to zero. Further, introduction of —qs warrants introduction of +qs
within the live sphere and so on. In this way there will be an infinite series of charges within
the two spheres: positive charges such as +Qa, +02, +04 Within the live sphere and negative
charges such as —q;, —q3 within the grounded sphere. This method of taking successive image
charges within the two spheres is known as method successive imaging. It may be seen from
eqns.(9.17) and (9.18) that each successive image charge is smaller in magnitude and
gradually shifts towards the surface of the sphere within which it is located. In all practicality
it is adequate to take the first few images within the two spheres to achieve reasonably good
accuracy in the computation of electric field. In the sphere gap arrangement, maximum value
of electric field intensity occurs at the so called sparking tips of the spheres, viz. points A and
B as shown in Fig.9.5. This maximum electric field intensity can be obtained as

v Sy (S+lj2+8
E_=v|2 a ...9.19
S 4

2

..9.18

Q,= )QA and § =

As discussed in section 4.7, E_, =\L
S

a a
4

Sy (s+lj ’+8

So, field factor (f) for sphere gap arrangement = B = ..9.20

av
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Variation of field factor (f) with gap distance (s) in the case of sphere gap arrangement is
presented in Table 9.1. It may be seen from Table 9.1 that the deviation from uniform field
(f=1) for s/a=0.2 is 6.8% while that for s/a=1.0 is 36.6%. Accuracy of voltage measurement
by sphere gap depends significantly on the degree of field non-uniformity between the two
spheres. Hence, it is recommended in practice that the gap distance should not be made more
than the radius of the spheres.

Table 9.1

Variation of field factor with gap distance for sphere gap
sla| 0.2 0.4 0.6 0.8 1.0

f | 1.068 |1.139|1.212 | 1.288 | 1.366

Problem 9.1

Two spheres of 25cm diameter have a gap distance of 2.5cm between them. Determine the
breakdown voltage of the sphere gap in air at STP.

Solution

Given, s =2.5cm and a = (25/2) = 12.5cm

So, 2: %:0.2 Correspondingly, field factor (f) = 1.068

Emax corresponding to breakdown of air at STP is 30kV,/cm.

So, E,, =cme— 30 58 09kv,/em

f 1.068

But, E,, Y Hence,%:28.09, or, V =70.22 kV,.
S :

Two Infinitely Long Parallel Cylinders

Electric field due to two parallel cylindrical transmission line conductors is the same as the
field due to two infinitely long parallel cylinders. The cross-sectional view of the
arrangement is shown in Fig.9.9. Electric field for this arrangement is two-dimensional in
Cartesian coordinates, because the field does not vary along the z-axis, which is along the
length of the cylinders. Electric field varies only on the cross-sectional plane which is taken
as the x-y plane. As discussed in section 9.4, these two parallel cylinders having potential +V
and -V could be replaced by two infinitely long line charges of uniform line charge density
+/; and -4, located within the respective cylinders as shown in Fig.9.9. These two line
charges together will create two cylindrical equipotential surfaces of radius a having the
prescribed potentials +V and -V. The charges will be located at a distance s from the axis of
the respective cylinders. So the problem is to find the location of these charges.

Fig.9.9 Two infinitely long parallel cylinders replaced by two infinitely long line charges
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With reference to Fig.9.9, the potential of the point P on the surface of the cylinder is
[/ :Lln&
2rg, R
For the cylinder surface to be equipotential the ratio of R, to Ry must be constant.
Considering the point 1 on the cylinder surface as shown in Fig.9.9,
4 A In d+a-s
21 &, a+s
and for the point 2 on the cylinder surface as shown in Fig.9.9,

g——t1 jpd=acs ...9.30
21 &, a-s

.. 9.29

d+a-s d-a-s _d-s

But, ¢1=¢. Hence, _a (by componendo-dividendo)
S

a+s a-s a
Therefore, s?—sd +a?=0
d?-4a?
or, S:%iT ....931

In the solution of s as given by eqn.(9.31), the additive expression has to be neglected,
because in that case the image charge will be located outside the cylinder. Therefore,

d +/d?-4a?
=
2 2
For transmission lines, d>>a and hence s=0, i.e. the line charges are placed on the axes of the

two cylinders.
Now, the potential at the point 2 on the cylinder surface, as shown in Fig.9.9, is +V. Hence,
4= A In d —a—s=V

21, a-s

_ 2rgV

o A= as
In

a-s
Eqgn.(9.33) gives the magnitude of the uniform line charge density.
In the arrangement shown in Fig.9.9, maximum electric field intensity (Emax) Occurs at the
point 2, which is given by

Emax=21(l+lj= v (1+1j ....9.34
2zg,\a-s d-a-s) d-a-sla-s d-a-s

a-s
RHS of eqn.(9.34) is in terms of the physical dimensions of the arrangement and the electric
potential of the cylinders and hence can be computed in a straightforward manner.

... 9.32

..9.33

Again, for the physical arrangement of Fig.9.9, E_, = 5 2\/2
—2a
Therefore, field factor (f) = By __ (4 =22) ( 1,1 j ....9.35
av 2|nm a-s d-a-s
a-s

Putting the value of s from eqn.(9.32) in eqn.(9.35) and upon simplification it may be written
that
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2
)
a ....9.36

(s

For transmission lines, egn.(9.36) is often modified by putting d=X+2a, which yields

2
B
fo a a ...9.37

2
2In L+1+1 (Xj +4£
2a 2\ a a

Eqn.(9.37) represents the field factor as a function of the ratio of the gap distance between the
two transmission line conductors (X) and the radius of the conductors (a).

For high voltage transmission lines, d>>a. As a result the field factor as given by eqn.(9.36)
reduces to

f=

__d ] ...9.38
2a In—
a
and E,, = 2v zﬁ
d-2a d
Hence, E_. =E xf:Z—Vx d = v ....9.39
max av d d
2aln— aln—
a a

Capacitance per unit length between the two parallel cylinders can be obtained from
eqn.(9.32) and (9.33) as follows
TE, TE,

co A _ _ ....9.40
o, d-a-s q d 2
_ Inf —+./| —| -1
a-s 2a (Zaj
Since, In(x ++/X° —1):cosh‘1 x , hence for x>1 eqn.(9.40) can be written as
&,

cosh‘l[dj
2a

Problem 9.2

A long conductor of negligible radius is at a height 5m from earth surface and is parallel to it.
It has a uniform line charge density of +1nC/m. Find the electric potential and field intensity
at a point 3m below the line.

Solution

The arrangement of the problem is shown in Fig.9.10. Since the conductor is considered to
have negligible radius, hence the line charge is located on the axis of the conductor.

C= .. 941
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+1nc/m

—_——— ,—

R;=3m
P
5m ()_ A
IZm
5m R,=7m
— ‘_ — — -
-1Inc/m

Fig.9.10 Pertaining to Problem 9.2
With reference to eqn.(9.25), 4=1nc/m, R1=3m and R,=7m.
-9
So, ¢, = 10 - In1:15.23v
271x8.854x10 3

Electric field intensity components at the point P are obtained from eqn.(9.26) as follows:
ExP =O

=-856V/m

_ 107 (2—5_2+5j
o 27x8.854x10\ 7

Problem 9.3

Determine the breakdown voltage in air at STP of a 20cm diameter cylindrical electrode
placed horizontally with its axis 20cm above earth surface.

Solution

The arrangement of the problem is shown in Fig.9.11.

4=V

@ a=10m

I

40m

d=

a=10m
$=-v

Fig.9.11 Pertaining to Problem 9.3

With reference to eqn.(9.36)
d = 40cm and a = 10cm. Hence, (d/2a) = 2

V27 -1

So, f=——+—F——=1315

In(2++/22 -1)

Emax corresponding to breakdown of air at STP is 30kV,/cm.

So, E,, :ﬁ:i:ZZ.Sl kVp/cm
f 1315

&l Hence,zl=22.81, or, V =228.1kV,.
d-2a 20

But, E,, =
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Conformal Mapping

Introduction

Analytical solutions to many field problems, particularly Dirichlet problems, can be obtained
using methods like Fourier Series and integral transforms. These methods are applicable only
for simple regions and the solutions are either infinite series or improper integrals, which are
difficult to evaluate. Closed form solutions to many Dirichlet problems can be obtained using
conformal mapping, which is a similarity transformation. If a function is harmonic, i.e. it

satisfies Laplace's equation V2 f =0, then the transformation of such a function via conformal

mapping is also harmonic. Hence, equations in relation to any field that can be represented by
a potential function can be solved with the help of conformal mapping. However, conformal
mapping can only be employed in two dimensional fields. If the solution for potential field is
required in three dimensional cases, then conformal mapping is applicable to only those
configurations where the potential field is translationally invariant along any one of the three
axes. The two dimensional potential fields that can be solved by conformal mapping are static
electric fields, static magnetic fields, static electric flow fields, stationary thermal flow fields,
stationary hydrodynamic flow fields to name a few. According to Riemann Mapping
Theorem any two regions with same connectivity may be conformally mapped to one
another. But in practical applications conformal mapping is used only in those cases where
the maps take simpler, explicit forms, so that one may carry out actual calculations with those
maps.

As the application of conformal mapping is limited to variables which solve the Laplace's
equation for two dimensional fields, one such variable of practical interest is the electrostatic
potential in a region of space that is free of charges. This chapter, therefore, focuses on
application of conformal mapping to determine electrostatic potential field by solving two
dimensional Laplace’s equation.

Basic Theory of Conformal Mapping

Conformal transformation is based on the properties of analytic functions. Let, z=x+iybe a

complex variable such that the real and imaginary parts x and y are real valued variables, and
f(2) =u(z)+iv(z)=u(x,y)+iv(x,y)be a complex valued function such that the real and

imaginary parts u and v are real and single valued functions of real valued variables x and y.

If the derivative of f(z) exists at a point z, then the partial derivatives of u and v exist at that
point and obey the Cauchy-Riemann equations as follows.
ou ov ou ov

—=—and—=- —

OX oy oy OX

A function f(z) is analytic at a point zo if its derivative f'(z)exists not only at zo but at every
point in the neighborhood of z,. It can also be shown that if f(z) is analytic, the partial
derivatives of u and v of all orders exist and are continuous functions of x and y. So,

@_Q(a_uj_i ov)_ oY _i(ﬂj_i _ou)_ o
ox2 ox\ox) ox\ay) oxoy oylox) oyl oy) %y

or, —+——=0 .. 112
X

L 111
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oV o

In the same way one may get, —-+—=0 ... 11.3

y y 9 PYPEYE
Egns.(11.2) and (11.3) show that both the functions u(x,y) and v(x,y) satisfy Laplace’s
equation.

Any function that has continuous second order partial derivatives and satisfies Laplace's
equation is called a Harmonic function. Thus both the real part, u(x,y), and imaginary part,
v(x,y), of the complex function f(z) are harmonic functions. If the function f(z) =
u(x,y)+iv(x,y) is analytic, then u(x,y) and v(x,y) are conjugate harmonic functions. If one of
two harmonic functions is known, then the other can be found using Cauchy-Riemann
equations.

Thus both the conjugate harmonic functions u(x,y) and v(x,y) can be used to find the potential
since they satisfy Laplace's equation.

Mapping of Shapes

From a different point of view, the complex function f(z) can be considered as a tool for
change of variables, i.e. a transformation from the complex z-plane to the complex w-plane,
as shown in Fig.11.1, where

Z=X+1y and W=U+iv

It can also be shown that if the function f is analytic at a point z=z, on the z-plane, where the
first order derivative f'(z,)is non-zero, there exists a neighborhood of the point wp in the w-
plane in which the function w=f(z) has a unique inverse z=F(w). The functions f(z) and F(w),
therefore, define a change of variables from (x,y) to (u,v) and from (u,v) to (x,y), respectively.

AY AY

z-plane or, w-plane or,
X-y plane u-v plane
® Wo
® Zp
> '
X u

Fig.11.1 Mapping between z-plane and w-plane

On the z-plane, dz=dx+idy and on the w-plane dw=du+idv

So, |dz|2:dx2+dy2 L. 114
and [dw|’ =du? +dv? 115
Then, on the z-plane, square of the length element can be written as

dI?=dx? +dy? =|dZ|’ ... 116
and, on the w-plane, square of the length element can be written as

dL?=du? +dv? =|dw]’ 117
Therefore, from egns.(11.6) and (11.7), it may be written that

aL _Jaw 118
dl |dz

Thus, in the neighborhood of each point in z-plane, if w(z) is analytic and have a non-zero
derivative, i.e. finite slope at that point, then the ratio of length elements in two planes
remains constant. The net result of this transformation is to change the dimensions in equal
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proportions and rotate each infinitesimal area in the neighborhood of that point. In general, a
linear transformationw= f(z)=az+b, where a and b are complex numbers, rotates by

arg(a) in the anti-clockwise direction, dilates or compresses by |a| and translates by b. Thus

the ratio of linear dimensions, which may also be represented as the angle, is preserved. As a
result, conformal mapping is isogonic because it preserves angles. Hence, all curves in the z-
plane that intersect each other at particular angles are mapped into curves in the w-plane that
intersect each other at exactly the same angles. This property is most useful for electric field
analysis as the equipotentials and the field lines, which are normal to each other in z-plane,
are mapped to corresponding curves in w-plane, which are also mutually orthogonal.

dw|| dz

dz ||[dw
conformal. Because of this uniqueness and conformal property of inverse mapping, solution
obtained in the w-plane can be mapped back to z-plane.

When infinitesimally small region is considered, then every shape in the z-plane is
transformed into a similar shape in the w-plane, e.g. a rectangle in the z-plane remains a
rectangle in w-plane. However, shape will not be preserved in general, particularly in a large

dw . . o
—— may vary considerably at different points in the z-plane. As a result
z

Furthermore, f'(z) F'(w)= =1, which means that the inverse mapping is also

scale as the value of

rotation and scaling will vary from one point in the z-plane to its neighboring point and hence
the similarity of shape is not achieved for large regions.

At this juncture, it is pertinent to mention that conformal mapping does not provide a solution
to any arbitrary problem. Another question that arises is why one should use conformal
mapping instead of numerical methods. The answer to this question is two-fold: firstly
analytical solutions to field problems provides insight and secondly it provides useful
approximations to difficult problems, which in many cases is valuable to practicing
engineers.

Preservation of Angles in Conformal Mapping

As shown in Fig.11.2, two curves A and B intersect each other at an angle « at the point z; in
the z-plane. With the help of the tangent vectors to the curves, the angle between the curves
could be computed. Let, t,4 and t,g be the tangent vectors to the curves A and B, respectively.
Then from the law of cosines it may be written that

a=cos™ o+l s ~t| ... 119
20t [t

The corresponding transformed curves A" and B’ intersect at an angle £ in the w-plane. Let,

t', and t/; be the tangent vectors to the curves A’ and B', respectively. Then g can be

obtained as

ﬂ:cos-1 |t;VA|2+|'[;VB|’2_|'f;vA_t;vB|2 ....11.10
2[tofte|
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z-plane

Fig.11.2 Preservation of angles in conformal mapping

Let, a curve is parameterized in z-plane by z=z(p) and the complex analytic function
w=f(z(p)) defines the mapped curve in the w-plane. Then application of chain rule to
w=f(z(p)) gives t/,=f'(z(p))t,(p). Since the curves intersect in z-plane at z=z;, then

t,=1'(z)t,and t ;= f'(z)t; . Since f'(z,)#0, hence eqn.(11.10) can be re-written as

ﬁzcos*l |f,(zi)tZA|2 +| f ’(Zi)tzB|2_| f l(zi)tzA_ f’(zi)tzB| ? 11.11
2| f'(z)) ]| f'(z) ] 11

2 .
f’(zi)| cancels from the numerator and denominator and

In egn.(11.11), the absolute value
eqn.(11.11) gets reduced to
2 2 2
tal +tal —[,—t
ﬂzcosfl | ZA| | ZB| | ZA ZB| . 11.12
2fts]
From eqgns.(11.9) and (11.10), « = S, which proves that angles are preserved in conformal
mapping.

Problem 11.1

For the point z=1+i in the z-plane, find the mapped point in the w-plane under the linear
transformation w=(1+i)z +(2 +2i).

Solution

The given transformation functionw = f(z) = 1+i)z +(2+2i) = J2e' iz + (2+2i)

Hence, the transformation of the point (1+i) in the z-plane to the corresponding point in the
w-plane can be obtained in three steps as shown in Fig.11.3.

Step-1: The length OP Qz|) is multiplied by |1+i|:\/§to get the length AB as shown in
Fig.11.3(b).

Step-2: The length AB is rotated by an angle (#/4) in the anti-clockwise direction to get the
length AC, as shown in Fig.11.3(c).

Step-3: The point C is then translated by (2+2i) to get the point P’'(2+4i) in the w-plane
which is the conformally mapped point corresponding to the point P in the z-plane.
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p'
| (2+4i)
Multiplication Rotation I
Y A by by /4 |
C & — L 1|
B 4
P / Translation
— A A+H) % T4, By 2+2i
I
o > A > Al > 5 v
(a) (b) (c) (d)

Fig.11.3 Pertaining to Problem 11.1

Problem 11.2

Let Q be the rectangular region in the z-plane bounded by x=1, y=1, x=3 and y=2. Find the
mapped region Q' in the w-plane under the linear transformation w=(1+i)z +(2 +2i).
Solution

Given, w=f(z)=(1+1)z + (2+2i) = (1+i)(x+1y) + (2+2i) = (x-y+2) + i (x+y+2)

Hence, u = x-y+2 and v = x+y+2

Therefore, for x=1, u = -y+3 and v = y+3 or, u+v = 6, i.e. the line x=1 in the z-plane is
mapped to the straight line u+v=6 in the w-plane.

Similarly, fory=1,u=x+1andv =x+3 or, u-v=-2

Forx=3,u=-y+5andv=y+5 or,u+v=10

Fory=2,u=xandv=x+4 or,u-v=-4

So, the four straight lines in the z-plane defined by x=1, y=1, x=3 and y=2 are mapped to
four straight lines defined by u+v = 6, u-v = -2, u+v = 10 and u-v = -4, respectively, in the
w-plane. The mapping is shown in Fig.11.4. Under the linear transformation w=az+b, where
a=1+i and b=2+2i, it may be seen that the rectangular region Q in the z-plane is translated
by b(=2+2i), rotated by an angle 45° (=arg(a)=arg(1+i)) in the anti-clockwise direction and

dilated by V2(=[a|=[L+1|) to another rectangular region Q' in the w-plane.
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Concept of Complex Potential

Let, #(X,y)be a harmonic function in a domainQ. It is possible to define a harmonic
conjugate function,y(x,y), uniquely by Cauchy-Riemann equations in the same domain.
Thus an analytic function of z=x+1iy in the domain Q can be written as

F(2)=¢(x,y)+iy(X,Y) ... 11.13
Consequently, F(z) conformally maps the curves in the z-plane onto the corresponding curves
in the w—plane and vice-versa preserving the angles during mapping.

Since, both the real and imaginary parts of F(z), viz.¢(x,y)andw(X,y), are harmonic
functions, they satisfy Laplace’s equation and hence either one of these two could be used to
find potential. Thus the complex analytic function F(z) is known as complex potential.
Laplace’s equation is one of the most important partial differential equations in engineering
and physics. The theory of solutions of Laplace’s equation is known as Potential Theory. The
concept of complex potential relates potential theory closely to complex analysis.

If @(x,y)is considered to be real potential, then ¢(x, y) =const represents equipotential lines

in the z-plane. Since, ¢(x,y)and w(x,y)are orthogonal, hence, w(X,y)=const represents

electric field lines in the z-plane. For example, consider the complex potential function
asF(z)=Az+B=Ax+B+iAy. Then the equipotential lines corresponding to

#(X,y) = Ax+ B =const are straight lines parallel to y-axis and the electric field lines
corresponding to (X, y) = Ay=const are straight lines parallel to x-axis.

The introduction of the concept of complex potential is advantageous in the following ways:
1) it is possible to handle equipotential and electric field lines simultaneously and ii) Dirichlet
problems with difficult geometry of boundaries could be solved by conformal mapping by
finding an analytic function F(z) which maps a complicated domain € in the z-plane onto a
simpler domain Q' in the w-plane. The complex potential F'(w) is solved in the w-plane by

satisfying Laplace’s equation along with the boundary conditions. Then the complex potential
in the z-plane can be obtained by inverse transform from which the real potential is obtained
as ¢(x,y)=Re{F(z)}. This is a practicable way of solution as harmonic functions remain

harmonic under conformal mapping.

Procedural Steps in Solving Problems using Conformal Mapping

1) Find an analytic function w=F(z) to map the original regionQin the z-plane to the
transformed region Q' in the w-plane. The region Q'should be a region for which explicit
solutions to the problem at hand are known.

2) Transfer the boundary conditions from the boundaries of the regionQ in the z-plane to
the boundaries of the transformed region Q2" in the w-plane.

3) Solve the problem and find the complex potential F'(w) for the transformed region Q'in

the w-plane.
4) Map the solution F'(w) for the region Q'in the w-plane back to the complex potential

F(z) for the region Q in the z-plane through inverse mapping.
The steps are schematically shown in Fig.11.5. The most important step is to find an

appropriate mapping function w=F(z), which fits the problem at hand. Once the right
mapping function has been found, the problem is as good as solved.
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Boundary Condition:

(x,y)=const Boundary Condition:

¢'(u,v)=const

Mapped back Complex Potential €———— Sollved Colmplex _Po|tentia|
F(2) = o(x,y)+ i w(x.y) F(w) = ¢'(u,v)+ i y'(u,v)

Fig.11.5 Schematic representation of solution of potential problem by conformal mapping

Applications of Conformal Mapping in Electrostatic Potential Problems

Conformal mapping is a powerful method for solving boundary value problems in two-
dimensional potential theory through transformation of a complicated region into a simpler
region. Electric potential satisfies Laplace’s equation in charge free region. Therefore,
electrostatic field that satisfies Laplace’s equation in a two-dimensional region in xy-plane,
will also satisfy Laplace’s equation in any plane to which the region may be transformed by
an analytic complex potential function F(z). For each value of complexz=x+1y, there is a

corresponding value of complexw=F(z). In other words, for every point in the z-plane,

there is a corresponding point in the w-plane. As a result, the locus of any point in the z-plane
will trace another path in w-plane. Let, the locus in the z-plane maps onto a path
¢'(u,v) =const in the w-plane, which corresponds to an equipotential and may also be the

surface of a conductor. Then the problem can be solved in the w-plane incorporating the
appropriate boundary condition, i.e. the value of the conductor potential, and the results can
be mapped back to z-plane to get the real potential and then the electric field lines can be
obtained from the conjugate harmonic function. This section discusses some of the
applications of conformal mapping in solving two-dimensional electrostatic potential
problems.

Conformal Mapping of Co-Axial Cylinders

The cross-sectional view of a single-core cable is shown in Fig.11.6, where the co-axial
cylindrical conductors are of infinite length in the direction normal to the plane of the paper.
Hence, the field varies only in the cross-sectional plane and is translationally invariant in the
direction of the length of the cable. Let, the cross-sectional plane of the cable be the x-y plane
or the z-plane. Then the field in the region between the two cylindrical conductors can be
found by conformal mapping. Let, the radii of the inner and the outer conductors be ry and rp,
respectively, and the potential of the inner and the outer conductors be V and zero
respectively.

Consider the complex analytical function for conformal mapping be

w=u+iv=C, In(z) + C, ... 1114

where, z=x+iy = re'’ such that r=4/x*>+ y? and #=tan*(y/x)
So, u+iv=C,In(re")+C, =C,Inr+C,+iC,#
or, u=C,In(r)+C,and v=C, ¢ ....11.15
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Fig.11.6 Conformal mapping of co-axial cylinders

For the inner conductor, x>+y?=r;% and hence it maps to a straight line u, = const parallel to v-
axis in the w-plane. Similarly, the outer conductor for which x?+y*=r,* maps to another
straight lineu, = const parallel to v-axis in the w-plane, as shown in Fig.11.6. In other words,

the field within the two cylindrical conductors in the z-plane is conformally mapped to field
between two infinitely long parallel plates, i.e. the field within a parallel-plate capacitor, in
the w-plane. From Fig.11.6 it may be seen that the orthogonality of the equipotentials in the
form of circles and electric field lines in the form of radial lines in the z-plane are maintained
in the w-plane, where the equipotentials are straight lines parallel to v-axis and the electric
field lines are straight lines parallel to u-axis.

From the boundary conditions on the conductor surfaces

C,Inr,+C,=V ... 11.16
and C,Inr,+C,=0 ... 1117
From eqns. (11.16) and (11.17),
C=——Y and =Y ...11.18
r r
In-2 In-2
n n
The potential at any radius r is given byu=C, Inr + C, . Correspondingly, in the z-plane
r
Vin-%
B0, y)=—2 ";r Y '”rrz -t ... 11.19
In2  In2 In2
n n n
Then, E, (X, y)=—% -V . ... 11.20
o rint
rl

Eqgn.(11.20) gives the value of electric field intensity at any radius r, which is the same as the
one given by eqn.(4.30).
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Graphical Field Plotting

Introduction

Most of the practical problems have such complicated geometry that no exact method of
finding the electric field is possible or feasible and approximate techniques are the only ones
which can be used. Out of the several approximate techniques, numerical techniques are now
extensively used to determine electric field distribution with high accuracy. Numerical
techniques, which are widely used, will be discussed in details in the later chapters. In this
chapter, experimental and graphical field mapping methods are discussed. Experimental field
mapping involve special equipments such as electrolytic tank, a device for fluid flow,
conducting paper and associated measuring system. The other mapping method is a graphical
one and needs only paper and pencil. In both these methods, the exact value of the field
quantities could not be determined, but accuracy level which is sufficient for practical
engineering applications could be achieved. Graphical field plotting is economical compared
to experimental method and is also capable of providing good accuracy when used with skill.
Accuracy of the order of 5 to 10% in capacitance determination could be achieved even by a
non-expert simply by following the rules.

Experimental Field Mapping

Experimental method of field mapping is based on the analogy of stationary current field with
static electric field, as presented in Table 12.1, rather than directly on measurement of electric
field. If the medium between electrodes is isotropic, then volume conductivity and dielectric
constant do not vary with position. Then current density (J) in stationary current field and
electric field intensity (E) and electric flux density (D) in static electric field will be in the
same direction. In other words, current density and electric field lines are the same. Thus for
a given electrode system, if a slightly conducting material, e.g. conducting paper or an
electrolyte, is placed instead of a dielectric material between the electrodes, then electric field
lines and equipotential lines will remain the same.

It is well known that if one travels along a line through an electric field and measures electric
scalar potential V as one goes, then the negative of the rate of change of V is equal to the
component of electric field intensity E in the direction of travel. In other words,

E:—ﬁa, ..121

al
If —a—IS maximum, then it gives the value of E itself. If electric potential does not change

with position, then the path of travel is at right angles to the electric field and is along an
equipotential. Thus electric field could be mapped by a voltmeter that will measure potential
difference and two metal rods acting as probes. The probes are connected to the terminals of
the voltmeter and are placed in various positions in an electric field to monitor the potential
differences between the positions of the two probes.

Table 12.1 Analogy between static electric field and stationary current field
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Static Electric Field Stationary Current Field
Electric Flux Electric Current
D=¢E J=kE
Dielectric constant VVolume conductivity
Q=j£f>.d§ |=§j.d§
S S

For the determination of equipotential lines one probe is kept still, while the other probe is
moved. In whichever position of the moving probe the voltmeter registers a zero reading; the
potential of the moving probe is same as that of the standstill probe. By marking each such
position, equipotentials could be traced.

For tracing electric field lines the two probes are kept at a constant separation distance and
one probe is rotated around the other. The position of the rotating probe where the voltmeter
registers a maximum reading, the electric field is changing at its maximum rate. Hence, the
electric field at that location of the rotating probe is parallel to the line joining the two probes.
By repeating this measurement process at several positions, the electric field could be
mapped.

Since a real-life voltmeter draws a current, however small it may be, measurement of the
potential differences using voltmeter could not be done with vacuum or air as the medium. In
practice, measurement is carried out for the electric field that is set up in a medium, which is
slightly conducting.

Commonly slightly conducting paper, e.g. paper impregnated with carbon, is used. Since the
paper is slightly conducting, the electric field due to the charged electrodes is almost the same
as the one that would be produced in air or vacuum with similar geometry. At the same time
the paper is sufficiently conducting to supply the small current needed by the voltmeter.
Alternately electrolytic tank setup is used which consists of a specially fabricated insulating
tray. A large sheet of laminated graph paper is pasted on the base plate of the tray. The tray is
then half-filled with an electrolyte and the height of the electrolyte is kept same throughout
the tray. Metallic electrodes are placed in the electrolytic tank, which are shaped to conform
to the boundaries of the problem, and appropriate potential difference between the electrodes
IS maintained.

Field Mapping using Curvilinear Squares

Field mapping by curvilinear squares is a graphical method based on the orthogonal property
of a pair of conjugate harmonic functions and also on the geometric considerations. This
method is suitable for mapping only those fields in which there is no variation of field in the
direction normal to the plane of the sketch, i.e. the field is two-dimensional in nature. Many
practical electric field problems may be considered as two dimensional, e.g. the co-axial
cylindrical system or a pair of long parallel wires. In these cases the field remains same in all
cross-sectional planes. It is a fact that no real system is infinitely long, but the idealization is
a useful one for electric field analysis and visualization.
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Fig.12.1 A typical curvilinear square

In this method the field region of interest is discretized into a network of curvilinear squares
formed by flux or field lines and equipotentials. Curvilinear square is a planar geometric
figure which is different from a true square as its sides are slightly curved and slightly
unequal, but which approaches a true square as its dimensions become small. A typical
curvilinear square is shown in Fig. 12.1. The field map thus obtained is unique for a given
problem and helps in understanding the behaviour of electric field through visualization. The
method of curvilinear square is capable of handling problems with complicated boundaries. A
curvilinear field map is also independent of field property coefficients and could be directly
applied from one physical field to another if an analogy exists between the concerned fields.
Theoretically curvilinear field mapping is based on Cauchy-Riemann relations, which ensures
that the Laplace’s equation is satisfied by a conjugate pair of harmonic functions in any
orthogonal coordinate system. Hence, this method utilizes the fieldline coordinate
representation of electric field such that electric field is always tangent to the fieldlines and
depends only on the distribution of fieldlines and equipotentials.

Foundations of Field Mapping

Construction of field map using curvilinear squares is based on some significant features of
electric field as described below:

i) A conductor boundary is one of the equipotentials.

ii) Equipotential and electric field intensity (or electric flux density) are normal to each other.
As a conductor boundary is an equipotential, hence electric field intensity and electric flux
density vectors are always perpendicular to the conductor boundaries.

iii) Electric flux lines (often termed as streamlines) originate and terminate on charges.
Hence, in the case of a homogeneous and charge free dielectric medium, electric flux lines
originate and terminate on conductor boundaries.

Fig.12.2 shows two coaxial cylindrical conductor boundaries having a specified potential
difference (V) and extending 1m into the plane of the paper. A field line is considered to
leave the boundary with more positive electric potential making an angle of 90° with the
boundary at the point X. If the line is extended following the rule that it is always
perpendicular to the equipotentials and if the dielectric medium is considered to be
homogeneous and charge free, then the fieldline will terminate normally on the boundary of
the less positive conductor at the point X' as shown in Fig.12.2. In a similar manner, another
fieldline could be drawn in such a way that it starts from the point Y on the more positive
conductor boundary and terminates on the point Y’ on the less positive conductor boundary.
As the fieldlines are drawn perpendicular to the equipotentials everywhere, electric field
intensity and hence electric flux density will be tangent to a fieldline everywhere on it.
Consequently, no electric flux can cross any fieldline thus drawn. Therefore, if there is a
charge of AQon the surface of the conductor between the points X and Y, then a flux of

Aw =AQ will originate in this region and must terminate on the surface of the other
conductor boundary between the points X'and Y'. Such a pair of fieldlines is known as a
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“flux tube” as it seems to carry flux from one conductor to the other without losing any flux
in between the two conductors. For simplification of interpretation of the field map, another
flux tube YZ may be drawn in such a way that the same amount of flux is carried in the flux
tubes XY and YZ. The method of determination of dimensions of the curvilinear square for
drawing such flux tubes is described in the next section.

Fig.12.2 Field map between two co-axial cylinders
Sketching of Curvilinear Squares

Considering the length of the line joining the points X and Y to be As, the flux in the tube XY
to be Ay and the depth of the tube to be 1m into the paper, the electric flux density at the

midpoint of this line is then given by

=AY 122
As

So, considering the permittivity of dielectric medium to be &, electric field intensity at the
midpoint of the line XY is then given by
g-LlAv ...12.3

g AS
Alternately, electric field intensity could also be determined from the potential difference
between the points X and X1 lying on the same fieldline on two equipotentials as shown in
Fig.12.2.
Considering the length of the line joining the points X and X1 to beAland the potential

difference between the two consecutive equipotentials to be A¢, electric field intensity at the
midpoint of the line X-X1 is then given by
E _Ad ... 124

Al
Considering Asand Al to be small, the two values of electric field intensity as given by eqns.
(12.3) and (12.4) may be taken to be equal. Hence,

1Ay _Ag

& AS Al

or, A—I = gA—¢ .. 125
AS Ay
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For sketching the field map, consider the following: a) homogeneous dielectric having a
constant permittivity &, ii) constant amount of electric flux per tube, i.e. Ay is constant, and
iii) constant potential difference between two consecutive equipotentials, i.e. A¢ is constant.

Al : .
Then from eqn.(12.5), A—:constant. In other words, the ratio of the distance between
S

fieldlines as measured along an equipotential and the distance between equipotentials as
measured along a fieldline must be maintained constant and not the individual lengths. The
simplest ratio of lengths that can be maintained is unity, so that Al=As . Then the field region

is divided into curvilinear squares by the fieldines and equipotentials.

The field map thus obtained is composed of curvilinear squares of the same kind such that
each square has the same potential difference across it and also has the same amount of flux
through it. For a givenAgandAy , the sides of a curvilinear square are thus inversely

proportional to electric field intensity. For a non-uniform field electric field intensity varies
with location and hence Al and As vary with the strength of electric field. In the region of
higher field strength, Al and As are to be kept small, i.e. the squares are to be made smaller in
size where the magnitude of the field intensity is high. On the other hand, the squares are
made larger in size in the field region where the field intensity is low.

It may be recalled that the product of electric charge and electric potential difference is the
energy of electric field. Moreover, electric charge and electric flux has a one to one
correspondence. Thus for a field map if Agand Ay are kept constant, then their product

remains constant and hence, energy of electric field remains constant. Therefore, curvilinear
squares having the same ratio as give by eqn.(12.5) have the same energy stored in electric
field regardless of the size of the square. A curvilinear square can thus be scaled up or down
keeping the energy stored in the curvilinear square unaltered as long as the ratio given by
eqn.(12.5) remains unaltered.

Construction of Curvilinear Square Field Map

The fieldines and equipotentials are typically drawn on the original sketch which shows the
conductor boundaries. Arbitrarily one fieldline is begun from a point on the surface of the
more positive conductor with a suitable value of Al and an equipotential is drawn
perpendicular to the fieldline with a value of As=Al. Then another fieldline is added to

complete the curvilinear square. The field map is then gradually extended throughout the
field region of interest. As the field map is extended, the condition of orthogonality of
fieldline and equipotential should be kept paramount, even if this results in some squares with
ratios other than unity. Construction of a satisfactory field map using curvilinear squares is a
trial and error process that involves continuous adjustment and refinement. Typically the field
maps are started as a course map having large curvilinear squares. Then the field map is fine
tuned through successive subdivisions to form a dense field map having higher accuracy. In
the process of subdivision, the lengths between consecutive fieldlines as well as
equipotentials are kept equal. Before starting the construction of a field map, it is a judicious
practice to examine the geometry of the system and take advantage of any symmetry that may
exist in the system under consideration. This is because of the fact the lines of symmetry
serve as boundaries with no flux crossing and thereby separate regions of similar field maps.

Capacitance Calculation from Field Map

Once the field map is drawn, it is possible to determine the capacitance per unit length
between the two conductors using the field map. It is well known that capacitance between
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two conductors having a potential difference of V is given byC:V, where Q is the charge on

the conductor. Applying Gauss’s law on a Gaussian surface enclosing the conductor having

more positive potential, Q=i , where  is the flux coming out of the conductor. Thus,C :%.

Ay
As Ab
Al

Fig.12.3 An isolated curvilinear rectangle

To calculate the capacitance with the help of curvilinear rectangle, consider first an isolated
curvilinear rectangle as shown in Fig.12.3. Let the flux through it be Ay and the potential

difference across it be Ag. Considering the curvilinear rectangle to be small, the flux density

may be assumed uniform within the curvilinear rectangle so that
Ay=¢EAsxl ... 12.6

where, the depth is taken to be 1m into the plane of the field map.
Electric field intensity (E) and the potential difference A¢ are related as

Ap=ExAl . 127
Combining eqns. (12.6) and (12.7)

Ag
Ay =g ASx ——
v Al

Therefore, the capacitance of the small curvilinear rectangle, which may be taken as a small
field cell, is given by
AC _AV & as

Ag Al
The total amount of flux () emanating from one conductor and terminating on the other
conductor may be obtained by adding all the small amounts of flux (A ) through each flux
tube so that
1//=ZA1//=NWA1// ...12.9

N

W

..12.8

where, Ay is assumed to be same for each flux tube and N, is the number of flux tubes in

parallel, i.e. the number of curvilinear rectangles in parallel.
The total potential difference between the two conductors (V) may be obtained by adding all
the small amounts of potential differences (A¢) between consecutive equipotentials starting

from one conductor and finishing at the other conductor, i.e.
V=) Ag=N,A¢ ...12.10
Ny

where, Agis assumed to be same between any two consecutive equipotentials and N, is the

number of equipotentials (including the two conductors) minus one, i.e. the number of
curvilinear rectangles in series between the two conductors.
Thus capacitance per unit length of the two conductors is given by
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Yy _SvAy _Tyeds Ny .. 1211
V. N, Ap N, Al N,
where, As=Al, considering the ratio of the lengths to be unity, i.e. considering curvilinear
squares.
Hence, determination of capacitance from the field map involves counting of curvilinear

squares in two directions, one in series between the two conductors and the other in parallel
around either conductor.
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