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Numerical Computation of Electric Field  
 
 
Introduction 
 
The design of the insulation of high voltage apparatus between phases and earth and also 
between the phases is based on the knowledge of electric field distribution and the dielectric 
properties of the combination of insulating materials used in the system. The principal aim is 
that the insulation should withstand the electric stresses with adequate reliability and at the 
same time the insulation should not be over dimensioned. 
It is well known that the withstand voltage of the external insulation of apparatus designed 
with non-self restoring insulation is determined by the maximum value of electric field 
intensity within the insulation system. Further, corona discharges are eliminated by proper 
design of high voltage shielding electrodes. Thus a comprehensive study of the electric field 
distribution in and around high voltage equipment is of great practical importance. 
High voltage equipments, in practice, are in most of the cases subjected to a.c. field of 
frequency 50Hz or 60Hz. These fields may be approximated as quasi-static as the wavelength 
is much longer compared to the dimension of the components involved. Because of this, the 
electrostatic field calculation is possible by the different methods in use. 
 
 
 
Mathematically, an electric field calculation problem may be formulated as follows: 
 
The purpose is to determine, at each point within the field region of interest, the value of 
potential φ(x,y,z) and that of the electric field intensity ),,( zyxE


are to be determined, which 

are related as 
φ∇−=


),,( zyxE          …. 13.1 
In order to do that either the Laplace’s Equation for systems without any source of charge in 
the field region, 

02 =∇ φ


          …. 13.2 
or, the Poisson’s Equation for systems with sources of charge in the field region, 

ε
ρφ v−=∇2


          …. 13.3 

are required to be solved. 
 
The solutions of these equations are called Boundary Value problems, whereby the boundary 
conditions are specified by means of the given potential of electrode (Dirichlet’s Problem) or 
by the given value of electric field intensity (Neumann’s Problem). 
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Methods of Determination of Electric Field Distribution 
 
The methods that are employed for determination of electric field are detailed in Fig.13.1. 

Methods for determination of electric field distribution

Methods based on experimental techniques

Graphical Method

Analytical Methods

Numerical Methods

Differential Equation Techniques

Finite Difference Method (FDM)

Finite Element Method (FEM)

Monte Carlo Techniques

Fixed Random Walk Method

Floating Random Walk Method

Integral Equation Techniques

Charge Simulation Method (CSM)

Surface Charge Simulation Method (SCSM)

Boundary Element Method (BEM)
 

Fig. 13.1 Different methods for determination of electric field distribution 
 
The analytical methods can only be applied to the cases, where the electrode or dielectric 
boundaries are of simple geometrical forms such as cylinders, spheres etc. In other words, in 
this method the boundaries are required to be defined exclusively by known mathematical 
functions. The results obtained are very accurate. But, as it is obvious, this method cannot be 
applied to complex problems. However, the results obtained by analytical methods for 
standard configurations are used still today to validate the results obtained by some other 
approximate methods such as numerical methods. 
Earlier the experimental as well as the graphical methods were used to get a fair idea about 
the nature of field distribution in some practical cases. However, these methods are greatly 
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limited in their areas of usage and the errors involved are usually very high for any complex 
problem to be taken directly for design purposes. 
In more and more engineering problems now-a-days, it is found that it is necessary to obtain 
approximate numerical solutions rather than exact closed-form solutions. The governing 
equations and boundary conditions for these problems could be written without too much 
effort, but it may be seen immediately that no simple analytical solution can be found. The 
difficulty in these engineering problems lies in the fact that either the geometry or some other 
feature of the problem is irregular. Analytical solutions to this type of problems seldom exist; 
yet these are the kinds of problems that engineers need to solve. 
There are several alternatives to overcome this dilemma. One possibility is to make 
simplifying assumptions ignoring the difficulties to reduce the problem to one that can be 
easily handled. Sometimes this approach works; but, more often than not, it leads to serious 
inaccuracies. With the availability of computers today, a more viable alternative is to retain 
the complexities of the problem and find an approximate numerical solution. 
Several approximate numerical analysis methods have evolved over the years as shown in 
Fig.13.1.  For each practical field problem, depending upon the dielectric properties, 
complexity of contours and boundary conditions, one or the other numerical method is more 
suited. 
 
Uniqueness Theorem 
 
It states that once any method of solving Poisson’s or Laplace’s equations subject to given 
boundary conditions has been found, the problem has been solved once and for all. No other 
method can ever give a different solution. 
 
Proof: 
Consider a volume V bounded by a surface S. Also consider that there is a charge density ρv 
throughout the volume V, and the value of the scalar electric potential on the surface S is φs. 
Assume that there are two solutions of Poisson’s equation, viz. φ1 and φ2. Then 

ε
ρφ v−=∇ 1

2


    and    
ε
ρφ v−=∇ 2

2


 

So,  ( ) 021
2 =−∇ φφ


         …. 13.4 
Now, each solution must also satisfy the boundary conditions. It is to be noted here that one 
particular point can not have two different electric potentials, as the work done to move a unit 
positive charge from infinity to that point is unique. Let, the value of φ1 on the boundary is 
φ1s and the value of φ2 on the boundary is φ2s and they must be identical to φs. 
Therefore,   φ1s = φ2s = φs 
 or,  φ1s – φ2s = 0  
For any scalar φ and any vector D


, the following vector identity can be written. 

( ) ( ) DDD


.. φφφ ∇+∇≡∇         …. 13.5 
 
Consider the scalar as (φ1 – φ2) and the vector as ( )21 φφ −∇


. Then from identity (13.5), 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )212121212121 ... φφφφφφφφφφφφ −∇−∇+−∇∇−≡−∇−∇


  .… 13.6 
Now, integrating throughout the volume V enclosed by the boundary surface S, 
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( ) ( )[ ] ( ) ( )[ ] ( ) ( )

( ) ( )[ ] ( )[ ]∫∫

∫∫∫
−∇+−∇−≡

−∇−∇+−∇∇−≡−∇−∇

VV

VVV

dvdv

dvdvdv

2
2121

2
21

212121212121 ...

φφφφφφ

φφφφφφφφφφφφ





 …. 13.7 

Applying divergence theorem to the L.H.S of identity (13.7), 
( ) ( )[ ] ( ) ( ) 0. 21212121 =−∇−=−∇−∇ ∫∫ dsdv

S
SS

V

φφφφφφφφ


    …. 13.8 

as φ1s = φ2s on the specified surface S. 
 
On the RHS of identity (13.7), ( ) 021

2 =−∇ φφ


from eqn.(13.4). Hence, identity (13.7) reduces 
to 

( )[ ] 02
21 =−∇∫ dv

V

φφ


         …. 13.9 

Since, ( )[ ]2
21 φφ −∇


cannot be negative, hence the integrand must be zero everywhere so that 

the integral may be zero. 
Hence, 

( )[ ] 02
21 =−∇ φφ


 or, ( ) 021 =−∇ φφ


      …. 13.10 

Again, if the gradient of (φ1 – φ2) is zero everywhere, then 
  φ1 – φ2 = Constant       .… 13.11 
This constant may be evaluated by considering a point on the boundary surface S. So that, 
  φ1 – φ2 = φ1s – φ2s = 0 
 or, φ1 = φ2 
which means that the two solutions are identical. 
However, in practice if the same problem is solved by using different numerical techniques 
the results are not exactly the same. This is due to the fact that the errors in a particular 
numerical method are often problem dependent and hence the results are not exactly same in 
all the methods. So, this is not a violation of the Uniqueness theorem. 
 
Procedural Steps in Numerical Electric Field Computation 
 
The following are the procedural steps that need to be followed not only for FDM but for 
most of the numerical electric field computation methods.  
At first, the Region of Interest (ROI) needs to be identified. ROI is the region where the 
solution for electric field is to be obtained. For example, normally the field solution is not 
needed within the electrode volume or below the earth surface. Hence, for an isolated 
electrode and the earth surface, the ROI will be region between the electrode surface and the 
earth surface as shown in Fig.13.2. Before the ROI is identified, the geometries of the 
components that comprise the field system need to be defined. This step is now-a-days done 
with the help of CAD software. 
The subsequent procedural step is to discretize the entire ROI or the boundaries to create the 
nodes where the solution of field will be obtained. Ideally one should find the field solution at 
each and every point within the ROI. But it will result in immense computational burden and 
hence the field solution is obtained at discrete nodes. This step is called Discretization and is 
often done with the help of mesh generators, which are software modules that create the mesh 
within the entire ROI or on the boundaries.  In order that the electric field solution can be 
obtained at any specific location within the ROI, a pre-defined variation of electric field 
between successive nodes is assumed. In fact, this assumption is a root cause of inaccuracy of 
the numerical method.  
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HV Electrode

Earth

Region of Interest

 
Fig. 13.2 Depiction of Region of Interest for Electric Field Computation 

 
The next step is to create the system of equations based on the numerical method that is being 
employed. Subsequently, the system of equations is solved using a suitable solver. The solver 
needs to be chosen depending upon the nature of the coefficient matrix that is being created 
by the specific numerical method. This solution gives the results for the unknown field 
quantities at the pre-defined nodes. Finally the results at any desired location is computed 
using the assumed variation of electric field between the nodes, which is termed as post 
processing of results. The procedural steps are depicted in Fig.13.3. 
 

Definition of Geometries

Identification of ROI

Discretization of ROI

Creation of System of Equations

Solution of System of Equations

Post-Processing of Results
 

Fig. 13.3 Procedural steps in numerical electric field computation 
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FINITE DIFFERENCE METHOD 
 
A) Two Dimensional System with equal nodal distance: 
 

In a 2-D system, V is independent of one of the axis directions, e.g. in the case of cable V 

is taken to be independent of z-direction, where z is along the length of the cable. Then 

the Laplace's equation is written as - 

 
  y 
 
 
                                      2 
 
                   3                  0            1                  h 
 
                             b          a                              h 
 
                                       4 
                                                                        x 
 
                             h             h 

 

In FDM Vo is expressed in terms of the 

potentials of the connected nodes, i.e. 

V1, V2, V3 and V4, such that Laplace's 

equation is satisfied at the point "0". 

 
Let, a and b be the mid-points between 0 & 1 and 3 & 0 respectively. Then according to 

mean value theorem 

 

 

Again, 0 being the mid-point between a and b, 
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Now, satisfying Laplace's equation at "0" 

 

Proof applying Taylor's Series: 

Taylor's Series 

 

Applying this series between the nodes 0 and 1, i.e. a=h and b=0, 

Similarly, between the nodes 3 and 0, i.e. a = - h and b = 0. So, 
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Neglecting higher powers of h, as h is small and adding (8) and (9), 

 

Similarly, applying Taylor's series between the nodes 2, 0 and 4, it can be proved that 

 

Then, satisfying Laplace's equation at "0", it may be obtained that  

 

Simple Example 

100 110 140 190

180
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FDM equations 

V1= ¼ (V2 + V3 + 90 + 110) 

V2= ¼ (V1 + V4 + 60 + 20) 

V3= ¼ (V1 + V4 + 140 + 180)  and  

V4= ¼ (V2 + V3 + 50 + 150) 
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Acceleration of Convergence by over-relaxation: 
 

 It has been found that successive over-relaxation proposed independently by Frankel 

and Young can have very rapid convergence, e.g. a problem that may require 840 iterations 

by simple Gauss- Seidal method will take only about 70 iteration by this acceleration 

technique. This technique proposes that 

 V = Vcalc + ( a - 1) (Vcalc  - Vold)          (13) 

Vcalc  is the calculated value from Laplace's equation 

Vold  is the value from previous iteration 

a  is the acceleration factor 

V  is the value of the node potential. 

The value of a is always 2 > a > 1. 

Equation (13) can be rewritten as 

 V = Vold + a (Vcalc - Vold)                                               (14) 

Equation (14) thus implies that if there is a tendency of a node potential to increase from the 

value of the earlier iteration, then node potential to be taken in this iteration is above the 

calculated value by a certain fraction of the increment, as 2 > a > 1. 

 At the final iteration, where the convergence criterion is met, the difference from the 

previous iteration will be very small and, hence, there will be negligible deviation from the 

calculated value.  However, the number of iterations required to achieve convergence 

depends heavily on the choice of acceleration factor. 

 For Laplace's equation empirical results show that optimum value of acceleration 

factor "a" for a square field region with (p+1) nodes along each side is given by 
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For rectangular region with (p+1) x (q+1) nodes 

 

where , p and q are greater than 15. 

For p = q > 15, 

 

Equation (17) also follows from equation (15), because π/p being small, 
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Problem 

100 110 140 190

180

150

90

60

10 20 50 100

1

2

3

4

 

  

V1
calc = ¼ (V2 + V3)+50 

V2
calc = ¼ (V1 + V4)+20 

V3
calc = ¼ (V1 + V4)+80  

V4
calc = ¼ (V2 + V3)+50 

 

 

Here, p+1 = 4  or, p = 3 

For iteration 1: 

 

 

and so on. 
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B)  Two-dimensional system with unequal nodal distance: 

Near electrode or dielectric boundaries, the nodal distances may not be equal. As shown 

in the diagram  

S1, S2, S3, S4 < 1. 
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Similarly, 

 

As per Laplace's equation at "0" 

 

Problem 

 
    100kV 
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S2 = 0.5, other constants are 1.  Because of symmetry, it may be written that V1 = ¼ (100 + 
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or, 

 

Again, 

 

C) 3-D System with equal nodal distance: 
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    5 
     3 
 
 
  4    2 
    0 
 
       1 
    6 
 

 

 

 
Thus, satisfying Laplace's Eqn. at "0", 
 

 
 
D) Axi-symmetric System with Equal Nodal Distance 
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For axi-symmetric system, if the values of r and z are kept constant, then the potential 

remains same for any value of θ. Thus the potential is a function of r and z only, where z is 

the axis of symmetry. 

Laplace’s equation is cylindrical co-ordinates (r,θ,z): 

 

In axi-symmetric system, V is independent of θ, so that Eqn.(24) reduces to 
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so, 

 
 
Again, subtracting (27) from (26), 
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For the node "0" on the axis of symmetry: 
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E) Axi-symmetric System with Unequal Nodal Distance 
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Thus, 
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Now, putting Eqns. (37), (39) and (40) in Laplace's Eqn. 
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or, 
 

or, 
 

 
 
Unequal Nodal Distance for the Node on the Axis 
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Laplace's Eqn. for the node on the axis: 
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or, 

 
or. 

 
 
Putting Eqns. (42) and (40) in Laplace's Eqn, 
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For the node "3" 

 
Then from Eqn.(41) 

 

 
Calculation of ‘Sx’ for circular Boundaries: 
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F. 2-D Multi-dielectric System 
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The boundary condition is that the normal component of flux density remains constant in 

both the sides of the dielectric interface. 

 

Now, nodes 2 and 4 are on the dielectric interface, so the potential and its derivative along y-

direction must be same on both sides of the interface. 

Moreover, Laplace's equation has to be satisfied on both the sides of interface. 
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Now, Laplace's Eqns.- 
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Thus, from Eqns. (49), (53) and (55), 
 

 
Again from Eqns.(50), (54) & (55), 
 

 
From Eqns. (56) and (57), 
 

 
which is the same equation as derived earlier for 2-D single-dielectric system. 
 
 
 
 
 
 
 
 
 

(55)                                                           
2

2

2

2
42

2

2

y
V

h
VVV

y
V o

∂
′∂

=
−+

=
∂
∂

(56)                                             0
2

2

2
42

2

1
=

−+
+∂

∂
−−

h
VVV

h
x
VhVV

o
o

(57)                                             0
2

2

2
42

2

3
=

−+
+∂

∂
−−

h
VVV

h
x
VKhVV

o
o

(58)                                               
4

1
2

1
2

4321 VV
K

VV
K

K

Vo

+
+

++
+=

.1K  system, dielectric singleFor 
2

1 ==
ε
ε

( )43214
1  Eqn.(58), from Thus VVVVVo +++=



 29  

Problem: 
           100kV 
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It is a cylindrical system, i.e. 2D arrangement, 
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So, from Eqn.(22) 
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For the node "8" from Eqn. (58), 
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Numerical Computation of HV Field by Finite Element Method (FEM) 
 
Introduction 
 
The Finite Element Method (FEM) is a numerical analysis technique to obtain solutions to 
the differential equations that describe, or approximately describe a wide variety of physical 
problems ranging from solid, fluid and soil mechanics, to electromagnetism or dynamics. The 
underlying premise of the FEM is that a complicated region of interest can be sub-divided 
into a series of smaller sub-regions in which the differential equations are approximately 
solved. By assembling the set of equations for each sub-region, the behavior over the entire 
region of interest is determined. 
It is difficult to state the exact origin of the FEM, because the basic concepts have evolved 
over a period of 100 or more years. The term finite element was first coined by Clough in 
1960. In the early 1960s, FEM was used for approximate solution of problems in stress 
analysis, fluid flow, heat transfer, and some other areas. In the late 1960s and early 1970s, 
application of FEM was extended to much wider variety of engineering problems. Significant 
advances in mathematical treatments, including the development of new elements, and 
convergence studies were made in 1970s. Most of the commercial FEM software packages 
originated in the 1970s and 1980s. The FEM is one of the most important developments in 
computational methods to occur in the 20th century.  The method has evolved from one with 
applications in structural engineering at the beginning to a widely utilized and richly varied 
computational approach for many scientific and technological areas at present. 
 
Basics of Finite Element Method 
 
Using the finite element method, the region of interest is discretized into smaller sub-regions 
called elements as shown in Fig. 15.1, and the solution is determined in terms of discrete 
values of some primary field variables, e.g. electric potential, at the nodes. The governing 
equation, e.g. Laplace’s or Poisson’s equation, is now applied to the domain of a single 
element. At the element level, the solution to the governing equation is replaced by a 
continuous function approximating the distribution of the field variable φ over the element 
domain, expressed in terms of the unknown nodal values φ1, φ2 and φ3 of the solution φ. A 
system of equations in terms of φ1, φ2 and φ3 can then be formulated for the element. Once the 
element equations have been determined, the elements are assembled to form the entire 
region of interest. Assembly is accomplished using the basic rule that the value of the field 
variable at a node must be the same for each element that shares that node. The solution φ to 
the problem becomes a piecewise approximation, expressed in terms of the nodal values of φ. 
The assembly procedure results in a system of linear algebraic equations.  
Several approaches can be used to transform the physical formulation of the problem to its 
finite element discrete analogue. If the physical formulation of the problem is known as a 
differential equation, e.g. Laplace’s or Poisson’s equation, then the most popular method of 
its finite element formulation is the Galerkin method. If the physical problem can be 
formulated as minimization of a functional then variational formulation of the finite element 
equations is usually used. For problems in high voltage fields, the functional turns out to be 
the energy stored in the electric field. 
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Fig. 15.1 Depiction of Region of interest, element and nodes for FEM formulation 

 
A third and even more versatile approach to deriving element properties is known as the 
weighted residuals approach. The weighted residuals approach begins with the governing 
equations of the problem and proceeds without relying on a variational statement. This 
approach is advantageous because it makes it possible to extend the finite element method to 
problems where no functional is available. 
 
Procedural Steps in FEM 
 
In general terms, the main steps of the finite element solution procedure are as follows. 

1. At the beginning the region of interest is discretized into finite elements.  
2. Suitable functions are considered to interpolate the field variables over the element. 
3. The matrix equation for the finite element is formed relating the nodal values of the 

unknown field variables to other physical parameters. 
4. Global equation system is formed for the entire region of interest by assembling all 

the element equations. Element connectivities are used for the assembly process. 
Boundary conditions, which are not accounted in element equations, are imposed 
before the solution of equations. 

5. The finite element global equation system is solved to get the nodal values of the 
sought field variables. 

6. In many cases additional parameters need to be calculated after the solution of global 
equation system. For example, in high voltage field problems electric field intensity, 
electric flux density and charges are of interest in addition to electric potential, which 
are obtained after solution of the global equation system. 

 
Variational Approach towards FEM Formulation 
 
For high voltage field problems, the principle of minimum potential energy is used in this 
approach. The principle of minimum potential energy can be stated as: Out of all possible 
potential functions φ(x,y,z) the one which minimizes the total potential energy is the potential 
solution that will satisfy equilibrium, and will be the actual potential due to the applied field 
forces. 



 33 

Thus, a potential function that will minimize the functional, i.e potential energy, is desired. 
Minimization of functionals falls within the field of variational calculus. In most cases an 
exact function is impossible to determine, necessitating the use of approximate numerical 
methods. The minimization of potential energy in a finite element formulation is carried out 
using the energy approach. The finite element method develops the equations from simple 
element shapes, in which the unknowns of the solution are the potentials at the nodes. The 
calculus of variations enables the energy equation to be reduced to a set of simultaneous 
equations with the nodal potentials as the unknown quantities. 
 
FEM Formulation in 2-D System with Single Dielectric Medium 
 
The potential energy in a two-dimensional electric field is given by 
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where, E = electric field intensity, φ = electric potential, l = length normal to the area A 
(usually considered as unity for 2-D field), εo = permittivity of free space and εr = relative 
permittivity of dielectric. 
The integration of eqn. 15.1 must be carried out over the area A, which is identical to the field 
region under consideration as shown in Fig. 15.1. Since, this area must be finite, FEM cannot 
be applied to the problems with “open fields” without modifications. 
To apply FEM, the region of interest is to be discretized by so-called finite elements as 
shown in Fig. 15.1. If a region of interest is divided into elements such that continuity of 
electric potential between elements is enforced, then the total potential energy is equal to the 
sum of the individual energies of each element. For N number of elements, the total potential 
energy can then be stated as: 
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To minimize the total potential energy, U, of the entire region of interest, U(e) must be 
minimized for each element. Seeking a set of nodal potentials for each element will minimize 
U(e). Observe that the functional, U(e) is a function only of the nodal potentials. Using 
calculus of variations, an extremization of U(e) occurs when the vector of the first partial 
derivatives with respect to φ is zero. 
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Fig. 15.2 Linear Triangular Element 
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The simplest 2-D element is the linear triangular element as shown in Fig. 15.2. For this 
element there are three nodes at the vertices of the triangle, which are numbered around the 
element in anti-clockwise direction. Electric potential φ is assumed to be varying linearly 
within the element such that 
             yx 321 αααφ ++=                                                                                          …. 15.4 
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x
VEx


    and    3α−=

∂
∂

−=
y
VEy


                                                    …. 15.5 

Thus, for this element electric field intensity components are constant throughout the 
element. As a result, this type of element is also known constant stress element (CST). 
 
Now, considering a triangular element as shown in Fig. 15.2 
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So, from eqn.3.6 
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The magnitude of the electric field intensity within an element T, 
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Hence, the electric potential energy in an element T 
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For electric potential energy in an element to be minimum, 
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Eqn. 15.12 is to be applied to every node where the unknown potential is to be determined. It 
may be noted here that the node under consideration may belong to more than one element. 
Then Eqn. 15.12 is to be applied for all such elements considering the node under 
consideration as node-1 and the other two nodes of the element being node-2 and node-3 
taken in anti-clockwise direction.  
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So, from eqn. 15.12 

          
( ) ( )[ ] 0..

2
1,

02..
22

1

233322

23
3

32
2

=−+−

=



 −

+
−

xxyylor

D
xx

D
yylD

ro

ro

ααεε

ααεε
                                                   …. 15.13 

Hence, from eqns. 15.7, 15.9 and 15.13 
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In eqn. 15.16, subscript T denotes the element number, DT is twice the area of the element as 
given by eqn. 15.8 and εrT is the permittivity of the dielectric within the element. 
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Fig. 15.3 Nodal connectivity – a) 6-element (Hexagonal), b) 8-element (Octagonal) 

 
Discretization using triangular elements is usually done is such a way that one particular node 
is connected to either 6 other nodes in hexagonal connectivity as shown in Fig. 15.3(a) or to 8 
other nodes in octagonal connectivity as shown in Fig. 15.3(b). For hexagonal connectivity, 
an equation may be formed involving potentials of all the six nodes surrounding the node “0” 
applying eqn. 15.15. In such case, for every element, node-0 of Fig. 15.3 is considered to be 
node-1 of eqn. 15.15 and the other two nodes are considered to be node-2 and node-3 in anti-
clockwise direction. Application of eqn. 15.15 thus results in six simultaneous linear 
equations, the summation of which may be represented as follows. 
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Application of eqn. 15.17 to all the nodes having unknown potential will generate the FEM 
system of simultaneous linear equations, which needs to be solved for determining the node 
potentials. Eqns. 15.17 and 15.18 could be suitably modified for octagonal nodal 
connectivity. Here, it may also be noted that FEM formulation as described above 
automatically takes into account the unequal elemental sizes as the coefficients as in eqn. 
15.18 are all computed in terms of nodal coordinates that may have any numerical values. 
 
FEM Formulation in 2-D System with Multi-Dielectric Media 
 
For computing electric field in a multi-dielectric media, triangular elements are so positioned 
that any given triangular element comprises only one dielectric medium. In other words, a set 
of nodal points are to be placed on the interface between two dielectrics as shown in Fig. 
15.4. Hence, the coefficients K1T, K2T and K3T for any node are to be calculated depending on 
its nodal position (i.e. 1, 2 or 3) in an element considering the proper value of εr. 
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Fig. 15.4 Elemental discretization for multi-dielectric media 

 
While applying eqn. 15.17 for the nodal connectivity shown in Fig. 15.4, the following 
modifications need to be made for F2, F5 and F0 keeping the others unchanged. 

          ∑
=

=+=+=
6

1
10)4(3)5(25)1(3)2(22   and,

T
TTTTT KFKKFKKF  

where, 

           ( )( ) ( )( )[ ]03323023
2

2
)2(2 yyyyxxxx

D
K

T

r
T −−+−−=

ε  



 37 

           ( )( ) ( )( )[ ] 10210112
1

1
)1(3 yyyyxxxx

D
K

T

r
T −−+−−=

ε  

           ( )( ) ( )( )[ ]06656056
5

1
)5(2 yyyyxxxx

D
K

T

r
T −−+−−=

ε  

           ( )( ) ( )( )[ ] 40540445
4

2
)4(3 yyyyxxxx

D
K

T

r
T −−+−−=

ε  

For the computation of F0, K1T is to be calculated considering εr1 for the elements 1, 5 and 6 
and considering εr2 for the elements 2, 3 and 4, using eqn. 15.16. For example, for elements 
T3 and T6, respectively, the expressions for K1T will be as follows. 
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Here, it may be noted that no separate formulation is required for multi-dielectric media in 
FEM in contrast to FDM. 
 
FEM Formulation in Axi-symmetric System 
 
As already discussed, electric potential energy in a triangular element is 
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where, (A.l) is the volume of the element. 
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Fig. 15.5 Triangular element for axi-symmetric formulation 

 
For axi-symmetric system, this volume is created due to the rotation of a triangular element 
around the axis of symmetry. The area of the triangle being A, l should then be the mean 
length of rotation, i.e. 2π times the radial distance of the centroid of the triangle. 
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Putting this expression for l in eqn. 15.14b 
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So, from eqn. 15.21 in axi-symmetric system 
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and           ( )321 rrrR ++=  
For axi-symmetric system with multi-dielectric media, the modifications to be brought in are 
the same as those described for two-dimensional formulation discussed in section 15.4.2. 
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Numerical Computation of HV Field by Charge Simulation Method (CSM) 
 
Introduction 
 
The principle of FDM and FEM is to provide the entire region of interest into a large number 
of sub-regions, and solve for unknown potentials a set of coupled simultaneous linear 
equations which approximate Laplace’s or Poisson’s equation. Compared to these two 
methods, only boundary surfaces, i.e. electrode surfaces and dielectric interfaces, are 
subdivided and charges are taken as unknowns in CSM. It follows, firstly, that the amount of 
human time and effort needed for subdivision is greatly reduced in CSM. Secondly, the 
electric field strength can be given explicitly in CSM without any numerical differentiation of 
the potential, which results in significant reduction in error. The second characteristic is very 
important because the field strength is usually more important for the design of an insulating 
system than electric potential. 
The earlier attempts for numerical field solutions employing CSM were reported by Loeb et 
a1 in 1950 and then by Abou-Seada and Nasser (IEEE-PAS, 1969, pp1802-1814). 
Subsequently, in a comprehensive paper Singer, Steinbigler and Weiss presented the details 
of CSM (IEEE-PAS, 1974, pp1660-1668). Since then many refinements to the original 
method have been proposed and CSM has evolved into a very powerful and efficient tool for 
computing electric fields in HV equipments. CSM is very simple and applicable to systems 
having more than one dielectric medium. This method is also suitable for 3-D fields with or 
without symmetry. 
 
CSM Formulation for Single Dielectric Medium 
 
The basic principle of conventional CSM is very simple. For the calculation of electric fields, 
the distributed charges on the surface of the electrode are replaced by N number of fictitious 
charges placed inside the electrode as shown in Fig.16.1. The fictitious charges are placed 
inside the electrode to avoid singularity problem. In general, the fictitious charges are to be 
always placed outside the region of interest (ROI), as the field is ideally required to be 
determined at all the points within the ROI. If the fictitious charges are placed within the 
ROI, then at the location of the fictitious charges singularity arises because at these points the 
distance between the charge and the point at which the field solution is required becomes 
zero.  
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x Fictitious Charges : j=1,…..,N

 
Fig. 16.1 Fictitious charges and contour points for CSM formulation in single dielectric 

medium 
The types and positions of these fictitious charges are predetermined, i.e. user-defined, but 
their magnitudes are unknown. In order to determine their magnitude some collocation 
points, which are called contour points, are selected on the surface of electrode. In the 
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conventional CSM the number of contour points is chosen to be equal to the number of 
fictitious charges. Then it is required that at any one of these contour points the potential 
resulting from superposition of effects all the fictitious charges is equal to the known 
electrode potential. Let, Qj be the jth fictitious charge and φ be the known potential of the 
electrode. Then according to the superposition principle 
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where, Pij  is the potential coefficient, i.e. the potential at the point i due to a unit charge at the 
location j, which can be evaluated  analytically for different types of fictitious charges by 
solving Laplace’s equation. When Eqn. 16.1 is applied to N no. of contour points, it leads to 
the following system of N linear equations for N unknown fictitious charges 
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In matrix form, Eqn 16.2 can be written as  
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where,  [P] = potential coefficient matrix, [φ] = column vector of known potential of contour 
points.  
Eqn. 16.3 is solved for the unknown fictitious charges. As soon as the required fictitious 
charge system is determined, the potential and the field intensity at any point within the ROI 
can be calculated. While the potential is found by Eqn. 16.1, the electric field intensities are 
calculated by superposition of all the stress vector components. For example, in Cartesian co-
ordinate system, the three superimposed field components at any point i are given as follows.  
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where,   Fx,ij , Fy,ij and Fz,ij  are the electric field intensity coefficients in the x, y and z 
directions, respectively, i.e. the components in the x, y and z directions, respectively, of 
electric field intensity at the point i for a unit charge at the location j.  
In many cases the effect of the ground plane is to be considered for electric field calculation. 
This plane can be taken into account by the introduction of image charge.  
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Formulation for Floating Potential Electrodes 
 
Floating potential conductors are often present in high voltage system, the most common 
example being condenser bushings.  If floating   electrodes are present, whose potentials are 
constant but unknown, then the boundary condition that is imposed for field computation is 
given below. 
              1,....,1,01 −==−+ Niforii φφ                                                                         …. 16.7 
Moreover, a supplementary condition is included such that the sum of fictitious charges for 
each floating electrode is zero. 
Then the system of equation that is obtained will be as follows 
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If the floating electrode has a net charge, then the supplementary condition is included such 
that the sum of its fictitious charges is equal to the known net charge value (QE). In Eqn. 16.8 
the first row is then modified as follows 
              ENj QQQQQ =+++++ ..........21                                                                       …. 16.9 
 
CSM Formulation for Multi-Dielectric Media 
 
The field computation for a multi-dielectric system is somewhat complicated due to the fact 
that the dipoles are realigned in dielectric media under the influence of the applied voltage. 
Such realignment of dipoles produces a net surface charge on the dielectric interface. Thus in 
addition to the electrodes, each dielectric interface needs to be simulated by fictitious 
charges. Here, it is important to note that the dielectric boundary does not correspond to an 
equipotential surface. Moreover, it must be possible to calculate the electric field on both 
sides of the dielectric boundary. 
It has been mentioned earlier that the fictitious charges should be outside the ROI. In the case 
of electrodes this has been achieved by placing the charges within the electrodes. But, for 
dielectric-dielectric interface, both the sides are within the ROI. Hence, any fictitious charge 
placed on either side of the interface would cause singularity problem. This issue is solved by 
placing two charges for every contour point on the dielectric –dielectric interface. For solving 
the field within the dielectric-A, the set of charges placed within dielectric-B are considered 
and vice-versa. 
In the simple example shown in Fig. 16.2, there are N1 number of charges and contour points 
to simulate the electrode, of which NA are on the side of dielectric-A and (N1-NA) are on the 
side of dielectric-B. These N1 charges are valid for field calculation in both the dielectrics. At 
the dielectric interface there are N2 contour points  sequentially numbered from 
(N1+1,…..,N1+N2),   with  N2 charges (N1+1,…..,N1+N2) in dielectric-A valid for dielectric-B 
and N2 charges (N1+N2+1,….., N1+2N2) in dielectric-B valid for dielectric-A. Altogether 
there are (N1+N2) number of contour points and (N1+ 2N2) number of fictitious charges. 
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Fig. 16.2 Arrangement of fictitious charges for multi-dielectric media 

 
In order to determine the fictitious charges, a system of equations is formulated by imposing 
the following boundary conditions. 
i) At each contour point on the electrode surface the potential must be equal to the known 
electrode potential. This condition is also known as Dirichlet’s condition on the electrode 
surface. 
ii) At each contour point on the dielectric interface, the potential and the normal component 
of flux density must be same when computed from either side of the boundary. 
 
Thus the application of the first boundary condition to contour points 1 to N1 yields the 
following equations. 
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Again the application of the second boundary condition for potential and normal flux density 
to contour points N1+1 to N1+N2 on the dielectric interface results into the following 
equations.  
From potential continuity condition: 
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From continuity condition of normal flux density Dn : 
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Eqn. 16.13 can be expanded as follows.   
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where, Fn,ij  is the field coefficient in the normal direction to the dielectric boundary at the 
respective contour point and εA & εB are the permittivities of dielectric A and B, respectively. 
Eqns. 16.10 to 16.14 are solved to determine the unknown fictitious charges. These equations 
can be presented in matrix form as detailed below. 
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Types of Fictitious Charges 
 
The successful application of the CSM requires a proper choice of the types of fictitious 
charges. Point and line charges of infinite and semi-infinite lengths were used in the initial 
works on this method. Steinbigler et al introduced ring charges and finite length line charges. 
Subsequently, a large variety of different charge configurations have been proposed.   These 
other types of charge configurations include elliptic cylindrical charge, axi-spheroidal charge, 
plane sheet charge, disk charge, ring segment charge, volume charges, shell and annular plate 
charges as well as variable density line charge. 
In general, the choice of type of fictitious charge to be used depends upon the complexity of 
the physical system and the available computational facilities. The potential and field 
coefficients for point and line charges are given by simple expressions and require very small 
computation time. For complex charge configuration, such coefficients may have to be 
computed numerically. On the other hand, a smaller number of charges may be used if 
complex charge configurations are employed, which reduces the overall memory requirement 
and computation time. In practice, most of the HV systems can be successfully simulated by 
using point, line and ring charges or a suitable combination of these charges. 
 
Accuracy Criteria 
 
If the fictitious charges completely satisfy the boundary conditions, then these charges give 
the correct field distribution not only on the boundary but also everywhere outside it. But in 
the CSM, the fictitious charges are required to satisfy the boundary conditions only at a 
selected number of contour points. Again the number of contour points is kept small in order 
to reduce the computer memory and computation time. Hence, it is essential to ensure that the 
simulation is accurate. To determine the simulation accuracy, the following criteria can be 
used. 

i) The “potential error” on the electrode can be computed at a number of control 
points on the electrode surface between two contour points. The potential error is 
defined as the difference between the known potential of the electrode and the 
computed potential at the control point.  

ii) Compared to the potential error the “deviation angle” on the electrode surface is a 
more sensitive indicator of the simulation accuracy. The deviation angle is defined 
as the angular deviation of the electric field intensity vector at the control point on 
the electrode surface from the direction of the normal to its surface. 
Another very severe accuracy criterion is to check that the derivative of the 
potential gradient perpendicular to the electrode surface at the control point 
divided by the gradient itself is equal to the curvature at this point or not. This is 
especially applicable for simulation of areas of the electrode with a small radius of 
curvature.  
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iii) In multi-dielectric systems the “potential discrepancy” can be computed at a 
number of control points for each dielectric interface. The potential discrepancy is 
defined as the difference in the value of potential at the control point when 
computed from both the sides of the dielectric interface. Alternatively, the 
discrepancy in the tangential electric stress at the control points on the dielectric 
interface can also be computed. Another criterion for checking the simulation 
accuracy is to compute the discrepancy in the normal flux density at the control 
point on the dielectric interface.  

For a good simulation all the above discrepancies should be small. 
 

Factors Affecting Simulation Accuracy 
 
The simulation accuracy in the CSM depends upon the types and number of fictitious charges 
as well as locations of fictitious charges and contour points. In general, the simulation error 
can be reduced by increasing the number of charges. However, it has been found that 
increasing the number of fictitious charges beyond a certain limit does not necessarily 
improve the simulation accuracy. Generally, the “assignment factor” (λ) defined as the ratio 
of the distance between a contour point and the corresponding charge (a2) to the distance 
between two successive contour points (a1), as shown in Fig. 16.14, considerably affects the 
simulation accuracy. Steinbigler et al (IEEE-PAS, 1974) suggested that this factor should be 
between 1.0 and 2.0. Several others suggest a range of 0.7<λ<1.5. 
In a good simulation, potential error values as low as 0.001% are possible. However, for 
sharp corners and thin electrodes, such low values are difficult to achieve. Since the electric 
field intensity error is an order of magnitude higher than the potential error, potential error 
values of about 0.1% are considered reasonable. For multi-dielectric systems, if the dielectric 
boundary has a complex shape, comparatively large potential discrepancy values of the order 
of 1% are usually acceptable.  
 
 

x

x

x

x

x

a1a2

x Fictitious charge

Contour Point

λ = a2/a1

 
Fig. 16.14 Definition of assignment factor 

 
Manufacturing tolerances of the conductors define the practical limit for the accuracy of the 
simulation of electrodes. In the same way, the accuracy of the determination of dielectric 
constants of the involved media puts the practical limit on the accuracy of the simulation of 
dielectrics. 
 
Solution of System of Equations in CSM 
 
The application of CSM for numerical field calculation involves solutions of linear systems 
of equations as explained in earlier sections. In the conventional CSM, for a single dielectric 
case, the matrix of the linear system of equations to be solved is in general asymmetrical 
without a zero term as detailed in section 16.2. In such cases, the equations could be solved 
using the Gaussian elimination technique with or without partial or complete pivoting. 
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In multi-dielectric systems, the matrix of systems of equations to be solved is rather 
heterogeneous and is not symmetrical as detailed in section 16.3. Due to bad   conditioning of 
the matrix, it is preferable to solve it by using a direct method, e.g. Gaussian elimination 
technique, to avoid non-convergence problem, which may arise in the case of iterative 
methods. However, for complicated problems the size of the matrix becomes too large. In 
such cases, iterative methods such as Gauss-Seidel method or the successive over relaxation 
method with varying values of acceleration factor have also been found to be successful. 
 
Comparison of CSM with FEM 
 
Both the FEM and CSM are extensively used for numerical calculation of electric field in 
high voltage engineering. 
In FEM, the entire region of interest is subdivided into a large number of sub-regions and a 
set of coupled simultaneous linear equations, which minimize the electrostatic energy in the 
field region, are solved for unknown node potentials. On the other hand, in CSM only 
boundary surface, i.e. electrode surface and dielectric interfaces, are subdivided with 
fictitious charges which are taken as unknowns. Therefore, it follows that the amount of time 
and effort needed for subdivision is greatly reduced in CSM. Moreover, the system of 
equations thus obtained by discretization is of smaller dimension in CSM. 
FEM is useful for two-dimensional and also three-dimensional systems with or without 
symmetry and is advantageous for the calculation of fields where the boundaries have 
complicated shapes. However, for computing field distribution at a large distance from the 
HV electrodes by FEM, a large number of nodes and hence excessive computation time and 
computer memory space are required. Thus, FEM is more suited for problems where the 
space is bounded. On the contrary, application of CSM is easy with high precision for field 
problems having infinity extended unbounded region and for relatively simple boundary 
geometries but not so for fields with complex electrode configurations.  
In FEM exact field intensity at any point cannot be obtained. Instead average field intensity 
between two nodes is to be calculated from the known values of node potentials or numerical 
differentiation of the potential has to be done. But, in CSM the electric field intensity can be 
obtained explicitly with the fictitious charges without resorting to numerical differentiation of 
the potential, which results in significant reduction in error. With proper positioning of the 
fictitious charges and the contour points and with the optimum number of fictitious charges, 
the potential and stress errors can be made less than 0.01% and 0.1%, respectively, in CSM. 
Though FEM is more suited for multiple dielectric problems, CSM can also be effectively 
employed for fields with many dielectrics. 
A major disadvantage of CSM was that the electric field is difficult to calculate in systems 
having very thin electrodes because fictitious charges have to be placed within the electrodes. 
However, this disadvantage is obviated by the application of Region Oriented CSM in recent 
years. Further, CSM is usually, more accurate and less trouble-some in computing Laplacian 
fields than FEM, but is difficult to use for non-Laplacian fields, e.g. Poissonian fields. 
However, CSM with complex fictitious charges has been developed for calculating 
Poissonian field including volume and surface resistance providing very accurate results. 
Again, CSM is not suited for specific fields containing space charges where FEM can be 
employed very effectively. But, now-a-days suitable boundary conditions have been 
postulated for use in connection with CSM for computing spacer surface fields in compact 
GIS as modified by the charges accumulated on the spacer surface. 
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Sphere or Cylinder in Uniform External Field  
 
Introduction 
 
Conducting and dielectric components are integral parts of any electrical equipment. If the 
size of the conducting or dielectric object is very small compared to dimensions of the field 
region where the object is located, then the object contributes to the field only in the domain 
near the object. In many cases, such objects are present as stray bodies in high voltage 
insulation arrangement. As practical examples one may cite a small piece of conductor or 
dielectric floating in liquid insulation of large volume in transformers, metallic dust particles 
floating in gaseous insulation within gas insulated system etc. It is important to understand 
how the presence of a conducting or dielectric object modifies the external field in the 
vicinity of the object, because any enhancement of electric field intensity due to the 
conducting or dielectric object may lead to unwanted discharge or in the worst case failure of 
the insulation system. 
If it is assumed that the source charges (in practical arrangement, the electrodes or conductors 
with specific potentials) that produce the external field is located far away from the object 
under consideration, then they are unaffected by the presence of the object. Consequently, the 
field due to the source charges may be considered to be uniform at the location of the object. 
If the object is such that its shape is defined by well known mathematical functions, e.g. 
cylinders or spheres, then the complete solution for electric field due to the source charges 
located at far away positions and the induced charges on the surface of the object could be 
obtained by solving Laplace’s equation considering the field region to be free from any 
volume charge. However, in order to get the complete solution appropriate boundary 
conditions on the surface of the object, whether it is conducting or dielectric, need to be 
satisfied. One of the common methods of getting the analytical solution for cylinder or sphere 
in uniform external field is the method of separation of variables as described in this chapter. 
 
Sphere in Uniform External Field 
 
Consider a spherical object of radius a within a uniform external field as shown in Fig.10.1. 
Since the boundary is a sphere of r=constant, hence the system is best described in spherical 
coordinates as shown in Fig.10.1. The uniform external field is given by zuEE ˆ00 −=


 and the 

potential at any point due to the external field is given by zErE 00 cos =θ  with respect to the 
center of the sphere. In order to get the complete solution for electric field in this system, 
Laplace’s equation in spherical coordinates as given in eqn.(10.1) needs to be solved. 
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Fig.10.1 Sphere in uniform external field 

 
The field system has azimuthal symmetry wrt the z-axis, i.e. the field system does not change 
with the rotation around the z-axis. So z-axis is made the polar axis in the spherical 
coordinate system. Then the field is independent of coordinate φ and the Laplace’s equation 
reduces to 
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In order to separate the terms of the LHS of eqn.(10.2) into functions of only one variable, 
eqn.(10.2) may be rewritten by multiplying r2 as  
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Then LHS of eqn.(10.3) is the sum of two terms which are functions of only one variable 
each, i.e. the first term is function of r only while the second term is function of θ only. The 
solution to eqn.(10.3) can be obtained as the product of two functions of which one is 
dependent only on r while the other is dependent only on θ. 
Let the assumed solution be  )()(),( θθ NrMrV =     …. 10.4 
The assumed solution is convenient as the boundary lies at r=constant. 
Combining eqn.(10.3) and (10.4) 
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The partial derivatives become total derivatives in eqn.(10.5) as each term is dependent on 
only one coordinate.  
The sum of two terms of the LHS of eqn.(10.5) could be zero only when the two terms are 
separately equal to opposite and equal constant terms as given in eqn.(10.6). 
Equal and opposite separation constant solution: 
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where, p is a positive constant. 
Another solution is obtained when the separation constant is zero. Hence,  
Zero separation constant solution: 
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Each of the above-mentioned two solutions is to be obtained separately.  
Determination of the zero separation constant solution: 
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Next the second term of eqn.(10.7) is 0)(sin
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Eqn.(10.9) becomes undefined for θ=π. But this is not feasible in the given system as 
potential must be a continuous function. So, A10 should be zero in eqn.(10.9). Therefore, 
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Then from eqns.(10.4), (10.8) and (10.10), the zero separation constant solution can be 
obtained as 
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where, C1=A20C10 and C2=A20C20. 
Determination of the equal and opposite separation constant solution: 
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Putting θθ cos)( BN = in eqn.(10.14), ( ) θθθ
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From eqns.(10.4) and (10.15), 

θθ cos),( 2
4

3 





 +=

r
CrCrV         …. 10.16 

where, BCC ′=3 and BCC ′′=4 . 
The complete solution for potential function is uniquely given as a linear combination of the 
two solutions given by eqns.(10.11) and (10.16). 
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where, the constants are determined by satisfying the boundary conditions. 
It is evident from eqn.(10.17) that the first term corresponds to a net charge on the sphere and 
the second term to a finite potential. 
 
Conducting Sphere in Uniform Field 
 
Consider that the sphere is a conducting one and is isolated and uncharged. Further, consider 
that the potential at the location of the center of the sphere due to the external field is V0.  
Since the perturbing action of the sphere is negligible at a large distance from the sphere, the 
potential at a large distance from the sphere (r>>a) is given by 
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If the sphere is charged with a finite amount of charge Q, then 
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In practical systems, floating metallic particles are usually not charged and hence eqn.(10.18) 
is taken here for further discussion. 
Comparing eqns.(10.17) and (10.18) for r→∞, 0302 , ECVC == . C1 will be zero for 
uncharged sphere. 
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On the conductor surface, i.e. for r=a, θθ cos),( 2
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But conducting sphere surface is an equipotential and hence electric potential is independent 
of θ on the conductor surface. 
So, from eqn.(10.21), 3

04 aEC −=  
Hence, the complete solution for electric potential in the domain r>a is given by 

θθ cos),( 2

3

00 







−+=

r
arEVrV        …. 10.22 

The r and θ components of electric field intensity could be obtained as follows 
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On the conducting sphere surface, tangential component of electric field intensity must be 
zero as it is an equipotential surface. Eqn.(10.24) shows that for r=a, Eθ is zero, which in turn 
validates the solution obtained. 
Again, on the conducting sphere surface, Er is the normal component of electric field 
intensity, which is given by θcos3 0EE

arr −=
=

. Thus the maximum value of electric field 
intensity on the surface of the conducting sphere is 3E0, i.e. three times the strength of 
uniform external field. 
This is the reason why metallic dust particles should be avoided at all costs for gas insulated 
systems. Because presence of metallic dust particles will increase the local electric field 
intensity three times, which will result into partial discharge within the GIS that is very 
detrimental for GIS operation. 
Induced surface charge density on the surface of the conducting sphere may be obtained as 
follows 
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As stated earlier, the sphere may be charged with an additional charge Q, which is distributed 
uniformly on the sphere surface and its effect on the field could be found by superposition. 
 
Dielectric Sphere in Uniform Field 
 
In the case of dielectric sphere present in a uniform external field, there will be two solutions 
to potential function, Vi valid for the region within the sphere having dielectric of permittivity 
εi and Ve valid for the region outside the sphere having dielectric of permittivity εe. So from 
eqn.(10.17) 
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The potential at large distance r (r>>a) from the sphere  
θθ cos),( 00 rEVrV +=         …. 10.28 

where, V0 is the potential at the location of the center of the sphere due to the external field. 
Comparing eqns.(10.27) and (10.28) for r→∞, 0302 , ECVC ee == . C1e will be zero as a 
dielectric sphere is not considered to have any free charge. 

Hence, eqn.(10.27) can be rewritten as θθ cos),( 2
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Inside the dielectric sphere electric potential must be finite at all the points. Hence, from 
eqn.(10.26) 0241 ,0 VCCC iii === . Hence, eqn.(10.26) can be rewritten as 
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At r=a, both eqns.(10.29) and (10.30) should yield the same electric potential. Therefore, 
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On the dielectric-dielectric boundary the normal component of electric field intensity should 
be same on both sides of the boundary. For the spherical boundary, r-component of electric 
field intensity is the normal component on the boundary. Hence,  
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From eqns.(10.31) and (10.32) 
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Therefore, the complete solutions for potential functions inside and outside the dielectric 
sphere are given by 
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Noting that rcosθ=z, potential function inside the dielectric sphere can be written as 
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Hence, electric potential within the dielectric sphere varies in only z-direction, i.e. the 
direction of the external field. Electric field intensity within the dielectric sphere will 
therefore have only the z-component, which is given by 
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Fig.10.2 Electric field in and around dielectric sphere in uniform field 

 
Eqn.(10.36) shows that the magnitude of electric field intensity within the dielectric sphere is 
constant. Typical field distribution in and around a dielectric sphere within a uniform external 
field is shown in Fig. 10.2. 
Eqn.(10.36) also shows that if εi<εe, then 0EEzi > . Consider the case of a spherical air bubble 
trapped within a moulded solid insulation of relative permittivity 4. If the magnitude of 
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electric field intensity in solid insulation at the location of the air bubble is E0, then the 
magnitude of electric field intensity within the air bubble will be 1.33E0. The operating 
electric field intensity within solid insulation is usually kept at a higher value as the solid 
insulation has a higher dielectric strength and hence such increase in field intensity within the 
air bubble often causes partial discharge within the air bubble as the dielectric strength of air 
is much lower than solid insulation. 
 
Cylinder in Uniform External Field 
 
Consider a long cylindrical object of radius a within a uniform external field as shown in 
Fig.10.3. Since the boundary is a circle of r=constant on the x-y plane, hence the system is 
best described in cylindrical coordinates as shown in Fig.10.3. The uniform external field is 
given by iEE ˆ

00 −=


 and the potential at any point due to the external field is given 
by xErE 00 cos =θ with respect to the axis of the cylinder. In order to get the complete solution 
for electric field in this system, Laplace’s equation in cylindrical coordinates as given in 
eqn.(10.37) needs to be solved. 
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Fig.10.3 Cylinder in uniform external field 

 
For this arrangement electric field distribution does not vary along the length of the cylinder, 
i.e. along z-coordinate. Hence, Laplace’s equation reduces to 
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Separating the terms of the LHS into functions of only one variable by multiplying r2 with 
eqn.(10.38), it may be written that 
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The two terms on the LHS of eqn.(10.39) are functions of only one variable each, i.e. the first 
term is function of r only while the second term is function of θ only. The solution to 
eqn.(10.39) can be obtained as the product of two functions of which one is dependent only 
on r while the other is dependent only on θ. 
Let the assumed solution be  )()(),( θθ NrMrV =     …. 10.40 
The assumed solution is convenient as the boundary lies at r=constant. 
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Combining eqns.(10.39) and (10.40), 
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Dividing by M(r)N(θ), 
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The partial derivatives become total derivatives in eqn.(10.41) as each term is dependent on 
only one coordinate.  
As in the case of sphere in uniform field, zero separation constant solution and equal and 
opposite separation constant solution are to be obtained separately in this case, too. 
Determination of the zero separation constant solution: 

The first term of eqn.(10.41) is 0)(
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Integrating and incorporating constants of integration 
2010 ln)( CrCrM +=          …. 10.42 

Next the second term of eqn.(10.41) is 0)(
)(

1
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=
θ
θ

θ d
Nd

N
, where N(θ) is non-zero. So 

2010)( AAN += θθ          …. 10.43 
But, from eqns.(10.42) and (10.43), it can be seen that there is discontinuity of potential at 
r=0 and θ=∞, which are not feasible in the given arrangement as potential must be a 
continuous function. Hence, 01010 == AC  in eqns.(10.42) and (10.43). 
Therefore, 12020),( CACrV ==θ        …. 10.44 
Determination of the equal and opposite separation constant solution: 

The first term of eqn.(10.41) is p
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Substituting nCrrM =)( in eqn.(10.45), it may be obtained that 
pnnn =+− )1( , or, pn ±=  

Hence, p
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Again, the second term of eqn.(10.41) is p
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Substituting θθ aeN =)( in eqn.(10.47), it may be obtained that 
θθ aa epea −=2 , or, pia ±=  

Hence, ( )αθθ += pBN cos)(        …. 10.48 
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Eqns.(10.46) and (10.48) lead to 
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where, BCC ′=2 and BCC ′′=3  
From eqns.(10.44) and (10.49), the complete solution for potential function at all values of r 
and θ can be obtained as 
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The potential at large distance r (r>>a) from the cylinder is given by 
θθ cos),( 00 rEVrV +=         …. 10.51 

Matching eqns.(10.50) and (10.51), 1=p and α=0. 
Hence, the complete solution as given by eqn.(10.50) reduces to 
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Conducting Cylinder in Uniform Field 
 
Comparing eqns.(10.51) and (10.52), C1=V0 and C3=E0. 
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On the conductor surface, i.e. for r=a, θθ cos),( 0
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But conducting cylinder surface is an equipotential and hence electric potential is 
independent of θ on the conductor surface. 
So, from eqn.(10.53), 2

02 aEC −=  
Hence, the complete solution for electric potential in the domain r>a is given by 
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The r and θ components of electric field intensity could be obtained as follows 
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Eqn.(10.56) shows that for r=a, Eθ is zero, i.e. the tangential component of electric field 
intensity is zero on the cylindrical conductor surface as it is an equipotential surface.  
Again, on the conducting cylinder surface, Er is the normal component of electric field 
intensity, which is given by θcos2 0EE

arr −=
=

. Thus the maximum value of electric field 
intensity on the surface of the conducting cylinder is 2E0, i.e. twice the magnitude of uniform 
external field. Comparing this maximum electric field intensity with the value obtained for 
conducting sphere in uniform field, it may be seen that the enhancement of field intensity is 
more if the conducting object is spherical is shape.  
Induced surface charge density on the surface of the conducting cylinder may be obtained as 
follows 



 55 

θ
ε
σ cos2 0

0

EE
ar

r
s −==

=
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Dielectric Cylinder in Uniform Field 
 
Potential function valid for the region within the cylinder having dielectric of permittivity εI 
is 
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and the potential function valid for the region outside the cylinder having dielectric of 
permittivity εe is 
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The potential at large distance r (r>>a) from the cylinder  
θθ cos),( 00 rEVrV +=         …. 10.60 

where, V0 is the potential at the location of the axis of the cylinder due to the external field. 
Comparing eqns.(10.59) and (10.60) for r→∞, 0301 , ECVC ee == . 

Hence, eqn.(10.59) can be rewritten as θθ cos),( 0
2

0 





 ++= rE

r
CVrV e

e   …. 10.61 

Inside the dielectric cylinder electric potential must be finite at all the points. Hence, from 
eqn.(10.58) 0, 201 == ii CVC . Hence, eqn.(10.58) can be rewritten as 

θθ cos),( 30 rCVrV ii +=         …. 10.62 
At any point on the dielectric cylinder surface, i.e. for r=a, electric potential as may be 
obtained from eqns.(10.61) and (10.62) must be unique. Hence, 
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From the boundary condition of normal component of electric flux density at r=a 
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From eqns.(10.63) and (10.64) 
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Therefore, the complete solutions for potential functions inside and outside the dielectric 
cylinder are given by 
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As rcosθ=x, potential function inside the dielectric cylinder can be written as 
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Hence, electric potential within the dielectric cylinder varies in only x-direction, i.e. the 
direction of the external field. Electric field intensity within the dielectric cylinder will 
therefore have only the x-component, which is given by 
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Similar to the case of dielectric sphere in uniform field, Eqn.(10.68) shows that the 
magnitude of electric field intensity within the dielectric cylinder is constant. Typical field 
distribution on the x-y plane in and around a dielectric cylinder within a uniform external 
field will be the same as that shown in Fig. 10.2. 
As in the case of dielectric sphere in uniform field, for dielectric cylinder in uniform field 
also 0EEzi >  if εi<εe. If a cylindrical air bubble is trapped within a moulded solid insulation of 
relative permittivity 4, then the magnitude of electric field intensity within the air bubble will 
be 1.6E0, where E0 is the magnitude of electric field intensity in solid insulation at the 
location of the air bubble. Comparing this result with the corresponding value in the case of 
dielectric sphere, it may be seen that field enhancement is more if the gas cavity in liquid or 
solid insulation is cylindrical in shape. 
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Analytical Method 
 
 Field in cylinders, spheres, electrical cables etc, whose surfaces can be 

mathematically represented might be solved analytically. 

• Schwaigar’s Utilisation Factor 

    +V 

Average stress is defined as the potential difference 

between the electrodes divided by the distance. In most of 

the cases, maximum stress is on the electrode surface and is 

usually on the axis of symmetry, where the distance 

between the electrodes is minimum. 

 So, u < 1  --  In most of the practical cases 

  u ≈ 1  –   For uniform field 

  u << 1   For non-uniform field 

u is a measure of non-uniformity of a field. If its value is very low, then the field is highly 

non-uniform. If u = 1, the field is uniform as in parallel plate arrangement. 

 
Exception 
 

      a 
   
       b 
 
 
 
When u is known, Emax can be easily determined as Eav = V/X can be easily calculated 

X
2VE          

E
E

StressMax 
Stress Avg.

av

max

av

=

==u

Though the pt. b is on the axis of symmetry and 

is at minimum distance from earth’s surface, 

the maximum stress may take place at pt. a, for 

the arrangement shown. 

u
EEas av=max 

x 

-V  



 58 

 

1. Concentric Sphere 
 

           V 

   P  r      R  

        dx  x 

 

 

 

The maximum stress occurs on the surface of the inner sphere, where x = r 

 

So, when r approaches R, the field will be more uniform. 

 

Capacitance of the System 
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2. Concentric Cylinders 
 

            
          V           R         
  r         
 
            x  dx 
 
 
 
 
 
 

Therefore, u is a function of (R/r). 

So, if R/r ratio remains the same, u remains the same.  

Capacitance of the system 
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( )r
Rq

x
dxqEdxV

x
qE

R

r

R

r

ln  
2

             

  
2

2

πε

πε

πε

=

==

=

∫∫  

( )

( )

1

lnln
So,

and

ln2
Hence,

ln2
    or,

max

max

−
=

⋅
⋅

−
==

−
=

==

=

r
R

r
R

V
r

Rr

rR
V

E
E

u

rR
VE

r
Rr

V
r

qE

r
R
Vq

av

av

πε

πε

[ ]

kmF
r

Rm
F

r
R

m
F

r
R

m
F

r
RV

qC

rr

r

/  
ln  18

  
ln  18
10          

   
ln36

102          

lengthunit per ecapacitanc      
ln
2

9

9

µεε

π
πε

πε

=
×

=

×
=

==

−

−



 60 

Method of Images  
 
Image of a Point Charge wrt a Grounded Conducting Sphere 
 
Image of a charge is not necessarily to be taken wrt infinitely long plane only. It can also be 
taken wrt curved surfaces like sphere, cylinder etc. To elaborate this issue, consider a point 
charge +Q located at distance d from the center (O) of the sphere of radius a (a<d), as shown 
in Fig.9.4. Consider also that the electric potential of the sphere is zero. The field due to the 
point charge and the grounded sphere in the region outside the sphere could be determined by 
replacing the grounded sphere by an image charge. From the symmetry of the system it is 
evident that the image charge q will of negative polarity and will be located inside the sphere 
on the line joining the center of the sphere and the point charge, as shown in Fig.9.4. 
However, in this case the magnitude of q will not be equal to Q because such a pair of 
charges will not result into a zero potential spherical surface of radius a as required by the 
boundary condition.  

XO

s
d

+Q
-q

P

12
a r1r2

φ = 0

Grounded 
Sphere

z

y

x

θ

 
Fig.9.4 Point charge near a grounded sphere  

 
Consider that the image charge is located at a distance s from the center of the sphere as 
shown in Fig.9.4. Now the problem is to determine the magnitude as well as the location of 
the image charge that satisfies the zero potential boundary condition for the spherical surface. 
With reference to Fig.9.4, the potential at the point P due to the point charge and its image is 
given by 
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Imposition of the boundary condition 0=Pφ  leads to  
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If α is kept constant, then 
1

2

r
r =constant is the equation of a sphere. Hence, the problem now is 

to find the constant α. 
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So, 
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2α  (by componendo-dividendo)   …. 9.11 

Since, the radius of the sphere and the location of the point charge are known, hence the 
constant α can be computed from the ratio of a and d, as given by eqn.(9.11). 

Therefore, the magnitude of the image charge is given by Q
d
aq=    …. 9.12 

and the location of the image charge is given by 
d
as
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=     …. 9.13 

Considering the line joining the point charge and its image passing through the center of the 
sphere to be along the z-axis and the center of the sphere to be the origin as shown in Fig.9.4, 
and also taking into account the spherical symmetry of the configuration, the field can be 
expressed in spherical coordinates as follows. 
With reference to the point P of Fig.9.4,  
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Similarly, for any point in the field region for which r is the distance of the point from the 
origin, i.e. the center of the sphere, and θ is the angle between r and d 
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So, electric potential at any point due to the point charge and its image is given by  
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Now, r-component of electric field intensity is the normal component on the sphere surface. 
So, assuming the induced surface charge density on the sphere surface to be σs, the normal 

component of electric field intensity is equal to
0ε

σ s just off the sphere surface. Equating this 

expression with the one given by eqn.(9.15), the induced surface charge density on the 
grounded sphere surface is given by 
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Method of Successive Images 
 
Sphere gap arrangements are very commonly used in high voltage system for voltage 
measurement. As shown in Fig.9.5, in this arrangement two spheres of identical radii are 
separated by a specific distance s, where one sphere is charged while the other is earthed. The 
field within the sphere gap due to the two spheres could be analyzed with the help of image 
charges as described in section 9.3. The live sphere of potential V is at first replaced by a 
charge of magnitude VaQA 04 επ= located at the center of the live sphere. Then to keep the 
potential of the grounded sphere at zero, -q1 is introduced within the grounded sphere which 
is the image of QA, as shown in Fig.9.5. The magnitude and location of q1 are given by 
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Fig.9.5 Method of successive imaging as applied to sphere gap arrangement 

 
But the introduction of -q1 will make the potential of live sphere different from V. So to keep 
the potential of live sphere equal to V, +q2, which is the image of –q1, is introduced within 
the live sphere such that the potential of live sphere due to +q2 and –q1 will be zero. As a 
result, the potential of live sphere due to +QA, -q1 and +q2 will be again V. The magnitude and 
location of q2 are given by 
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But the introduction of +q2 will make the potential of grounded sphere different from zero. So 
–q3 is introduced within the grounded sphere as the image of +q2 to make the potential of the 
grounded sphere equal to zero. Further, introduction of –q3 warrants introduction of +q4 
within the live sphere and so on. In this way there will be an infinite series of charges within 
the two spheres: positive charges such as +QA, +q2, +q4 within the live sphere and negative 
charges such as –q1, –q3 within the grounded sphere. This method of taking successive image 
charges within the two spheres is known as method successive imaging. It may be seen from 
eqns.(9.17) and (9.18) that each successive image charge is smaller in magnitude and 
gradually shifts towards the surface of the sphere within which it is located. In all practicality 
it is adequate to take the first few images within the two spheres to achieve reasonably good 
accuracy in the computation of electric field. In the sphere gap arrangement, maximum value 
of electric field intensity occurs at the so called sparking tips of the spheres, viz. points A and 
B as shown in Fig.9.5. This maximum electric field intensity can be obtained as 
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As discussed in section 4.7, 
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So, field factor (f) for sphere gap arrangement = 
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Variation of field factor (f) with gap distance (s) in the case of sphere gap arrangement is 
presented in Table 9.1. It may be seen from Table 9.1 that the deviation from uniform field 
(f=1) for s/a=0.2 is 6.8% while that for s/a=1.0 is 36.6%. Accuracy of voltage measurement 
by sphere gap depends significantly on the degree of field non-uniformity between the two 
spheres. Hence, it is recommended in practice that the gap distance should not be made more 
than the radius of the spheres. 
 

Table 9.1 
Variation of field factor with gap distance for sphere gap 

s/a 0.2 0.4 0.6 0.8 1.0 
f 1.068 1.139 1.212 1.288 1.366 

 
Problem 9.1 
Two spheres of 25cm diameter have a gap distance of 2.5cm between them. Determine the 
breakdown voltage of the sphere gap in air at STP. 
Solution 
Given, s = 2.5cm and a = (25/2) = 12.5cm 

So, 2.0
5.12
5.2
==

a
s   Correspondingly, field factor (f) = 1.068 

Emax corresponding to breakdown of air at STP is 30kVp/cm. 

So, 09.28
068.1
30max ===

f
EEav kVp/cm 

But, 
s
VEav =  Hence, 09.28

5.2
=

V , or, V = 70.22 kVp. 

 
Two Infinitely Long Parallel Cylinders 
 
Electric field due to two parallel cylindrical transmission line conductors is the same as the 
field due to two infinitely long parallel cylinders. The cross-sectional view of the 
arrangement is shown in Fig.9.9. Electric field for this arrangement is two-dimensional in 
Cartesian coordinates, because the field does not vary along the z-axis, which is along the 
length of the cylinders. Electric field varies only on the cross-sectional plane which is taken 
as the x-y plane. As discussed in section 9.4, these two parallel cylinders having potential +V 
and –V could be replaced by two infinitely long line charges of uniform line charge density 
+λl and -λl located within the respective cylinders as shown in Fig.9.9. These two line 
charges together will create two cylindrical equipotential surfaces of radius a having the 
prescribed potentials +V and –V. The charges will be located at a distance s from the axis of 
the respective cylinders. So the problem is to find the location of these charges. 

O 21

P

a

d

s

−λl

x

y

+λl

R2

R1

s

a

X

φ = +V φ = -V

 
Fig.9.9 Two infinitely long parallel cylinders replaced by two infinitely long line charges 
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With reference to Fig.9.9, the potential of the point P on the surface of the cylinder is 

1

2

0

ln
2 R

Rl
P επ

λφ =  

For the cylinder surface to be equipotential the ratio of R2 to R1 must be constant. 
Considering the point 1 on the cylinder surface as shown in Fig.9.9, 

sa
sadl

+
−+

= ln
2 0

1 επ
λφ          …. 9.29 

and for the point 2 on the cylinder surface as shown in Fig.9.9, 

sa
sadl

−
−−

= ln
2 0

2 επ
λφ         …. 9.30 

But, φ1=φ2. Hence, 
s
a

a
sd

sa
sad

sa
sad

=
−

=
−
−−

=
+
−+  (by componendo-dividendo) 

Therefore, 022 =+− asds  

or, 
2

4
2

22 adds
−

±=          …. 9.31 

In the solution of s as given by eqn.(9.31), the additive expression has to be neglected, 
because in that case the image charge will be located outside the cylinder. Therefore, 

2
4

2

22 adds
−

−=          …. 9.32 

For transmission lines, d>>a and hence s≈0, i.e. the line charges are placed on the axes of the 
two cylinders. 
Now, the potential at the point 2 on the cylinder surface, as shown in Fig.9.9, is +V. Hence, 

V
sa

sadl =
−
−−

= ln
2 0

2 επ
λφ  

or, 

sa
sad

V
l

−
−−

=
ln

2 0επλ          …. 9.33 

Eqn.(9.33) gives the magnitude of the uniform line charge density. 
In the arrangement shown in Fig.9.9, maximum electric field intensity (Emax) occurs at the 
point 2, which is given by 









−−
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−
−
−−

=




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−
=
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V
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E l 11
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11
2 0

max επ
λ    …. 9.34 

RHS of eqn.(9.34) is in terms of the physical dimensions of the arrangement and the electric 
potential of the cylinders and hence can be computed in a straightforward manner. 

Again, for the physical arrangement of Fig.9.9, 
ad

VEav 2
2
−

=  

Therefore, field factor (f) = 





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−−
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−
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−
=
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sa
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E
E
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11

ln2

)2(max    …. 9.35 

Putting the value of s from eqn.(9.32) in eqn.(9.35) and upon simplification it may be written 
that 
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
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For transmission lines, eqn.(9.36) is often modified by putting d=X+2a, which yields 
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       …. 9.37 

Eqn.(9.37) represents the field factor as a function of the ratio of the gap distance between the 
two transmission line conductors (X) and the radius of the conductors (a). 
For high voltage transmission lines, d>>a. As a result the field factor as given by eqn.(9.36) 
reduces to 

a
da

df
ln2

=           …. 9.38 

and 
d
V

ad
VEav

2
2

2
≈

−
=  

Hence, 

a
da

V

a
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d
d
VfEE av

lnln2

2
max =×=×=       …. 9.39 

Capacitance per unit length between the two parallel cylinders can be obtained from 
eqn.(9.32) and (9.33) as follows 
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C l επεπλ       …. 9.40 

Since, ( ) xxx 12 cosh1ln −=−+ , hence for x>1 eqn.(9.40) can be written as 









=
−

a
d

C

2
cosh 1

0επ          …. 9.41 

 
Problem 9.2 
A long conductor of negligible radius is at a height 5m from earth surface and is parallel to it. 
It has a uniform line charge density of +1nC/m. Find the electric potential and field intensity 
at a point 3m below the line. 
Solution 
The arrangement of the problem is shown in Fig.9.10. Since the conductor is considered to 
have negligible radius, hence the line charge is located on the axis of the conductor.  
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+1nc/m

-1nc/m

P
5m

5m

2m

R1=3m

R2=7m

 
Fig.9.10 Pertaining to Problem 9.2 

With reference to eqn.(9.25), λl=1nc/m, R1=3m and R2=7m. 

So, VP 23.15
3
7ln

10854.82
10

12

9

=
××

= −

−

π
φ  

Electric field intensity components at the point P are obtained from eqn.(9.26) as follows: 
0=xPE  

mVEyP /56.8
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52
3

52
10854.82

10
2212
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−
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××
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Problem 9.3 
Determine the breakdown voltage in air at STP of a 20cm diameter cylindrical electrode 
placed horizontally with its axis 20cm above earth surface. 
Solution 
The arrangement of the problem is shown in Fig.9.11.  
 

a=10m

φ = V

φ = -V
a=10m

d=
40

m

 
Fig.9.11 Pertaining to Problem 9.3 

 
With reference to eqn.(9.36) 
d = 40cm and a = 10cm. Hence, (d/2a) = 2 

So, 315.1
)122(ln

12
2

2

=
−+

−
=f  

Emax corresponding to breakdown of air at STP is 30kVp/cm. 

So, 81.22
315.1
30max ===

f
EEav kVp/cm 

But, 
ad

VEav 2
2
−

=  Hence, 81.22
20
2

=
V , or, V = 228.1 kVp. 
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Conformal Mapping  
 
Introduction 
 
Analytical solutions to many field problems, particularly Dirichlet problems, can be obtained 
using methods like Fourier Series and integral transforms. These methods are applicable only 
for simple regions and the solutions are either infinite series or improper integrals, which are 
difficult to evaluate. Closed form solutions to many Dirichlet problems can be obtained using 
conformal mapping, which is a similarity transformation. If a function is harmonic, i.e. it 
satisfies Laplace's equation 02 =∇ f


, then the transformation of such a function via conformal 

mapping is also harmonic. Hence, equations in relation to any field that can be represented by 
a potential function can be solved with the help of conformal mapping. However, conformal 
mapping can only be employed in two dimensional fields. If the solution for potential field is 
required in three dimensional cases, then conformal mapping is applicable to only those 
configurations where the potential field is translationally invariant along any one of the three 
axes. The two dimensional potential fields that can be solved by conformal mapping are static 
electric fields, static magnetic fields, static electric flow fields, stationary thermal flow fields, 
stationary hydrodynamic flow fields to name a few. According to Riemann Mapping 
Theorem any two regions with same connectivity may be conformally mapped to one 
another. But in practical applications conformal mapping is used only in those cases where 
the maps take simpler, explicit forms, so that one may carry out actual calculations with those 
maps. 
As the application of conformal mapping is limited to variables which solve the Laplace's 
equation for two dimensional fields, one such variable of practical interest is the electrostatic 
potential in a region of space that is free of charges. This chapter, therefore, focuses on 
application of conformal mapping to determine electrostatic potential field by solving two 
dimensional Laplace’s equation. 
 
Basic Theory of Conformal Mapping 
 
Conformal transformation is based on the properties of analytic functions. Let, iyxz += be a 
complex variable such that the real and imaginary parts x and y are real valued variables, and 

),(),()()()( yxviyxuzvizuzf +=+= be a complex valued function such that the real and 
imaginary parts u and v are real and single valued functions of real valued variables x and y. 
If the derivative of f(z) exists at a point z, then the partial derivatives of u and v exist at that 
point and obey the Cauchy-Riemann equations as follows. 
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A function f(z) is analytic at a point z0 if its derivative )(zf ′ exists not only at z0 but at every 
point in the neighborhood of z0. It can also be shown that if f(z) is analytic, the partial 
derivatives of u and v of all orders exist and are continuous functions of x and y. So, 
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In the same way one may get, 02

2

2

2

=
∂
∂

+
∂
∂

y
v

x
v       …. 11.3 

Eqns.(11.2) and (11.3) show that both the functions u(x,y) and v(x,y) satisfy Laplace’s 
equation. 
Any function that has continuous second order partial derivatives and satisfies Laplace's 
equation is called a Harmonic function. Thus both the real part, u(x,y), and imaginary part, 
v(x,y), of the complex function f(z) are harmonic functions. If the function f(z) = 
u(x,y)+iv(x,y) is analytic, then u(x,y) and v(x,y) are conjugate harmonic functions. If one of 
two harmonic functions is known, then the other can be found using Cauchy-Riemann 
equations.  
Thus both the conjugate harmonic functions u(x,y) and v(x,y) can be used to find the potential 
since they satisfy Laplace's equation.  
 
Mapping of Shapes 
 
From a different point of view, the complex function f(z) can be considered as a tool for 
change of variables, i.e. a transformation from the complex z-plane to the complex w-plane, 
as shown in Fig.11.1, where  

iyxz +=  and  ivuw +=  
It can also be shown that if the function f is analytic at a point z=z0 on the z-plane, where the 
first order derivative )( 0zf ′ is non-zero, there exists a neighborhood of the point w0 in the w-
plane in which the function w=f(z) has a unique inverse z=F(w). The functions f(z) and F(w), 
therefore, define a change of variables from (x,y) to (u,v) and from (u,v) to (x,y), respectively.  

x

y
z-plane or,
x-y plane

u

v
w-plane or,
u-v plane

z0

w0

 
Fig.11.1 Mapping between z-plane and w-plane 

 
On the z-plane, dyidxdz += and on the w-plane dvidudw +=  

So, 222 dydxdz +=          …. 11.4 

and 222 dvdudw +=          …. 11.5 
Then, on the z-plane, square of the length element can be written as  

2222 dzdydxdl =+=          …. 11.6 
and, on the w-plane, square of the length element can be written as 

2222 dwdvdudL =+=          …. 11.7 
Therefore, from eqns.(11.6) and (11.7), it may be written that 

dz
dw

dl
dL

=           …. 11.8 

Thus, in the neighborhood of each point in z-plane, if w(z) is analytic and have a non-zero 
derivative, i.e. finite slope at that point, then the ratio of length elements in two planes 
remains constant. The net result of this transformation is to change the dimensions in equal 
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proportions and rotate each infinitesimal area in the neighborhood of that point. In general, a 
linear transformation bzazfw +== )( , where a and b are complex numbers, rotates by 
arg(a) in the anti-clockwise direction, dilates or compresses by a  and translates by b. Thus 
the ratio of linear dimensions, which may also be represented as the angle, is preserved. As a 
result, conformal mapping is isogonic because it preserves angles. Hence, all curves in the z-
plane that intersect each other at particular angles are mapped into curves in the w-plane that 
intersect each other at exactly the same angles. This property is most useful for electric field 
analysis as the equipotentials and the field lines, which are normal to each other in z-plane, 
are mapped to corresponding curves in w-plane, which are also mutually orthogonal. 

Furthermore, 1)()( ==′′
dw
dz

dz
dwwFzf , which means that the inverse mapping is also 

conformal. Because of this uniqueness and conformal property of inverse mapping, solution 
obtained in the w-plane can be mapped back to z-plane.  
When infinitesimally small region is considered, then every shape in the z-plane is 
transformed into a similar shape in the w-plane, e.g. a rectangle in the z-plane remains a 
rectangle in w-plane. However, shape will not be preserved in general, particularly in a large 

scale as the value of 
dz
dw may vary considerably at different points in the z-plane. As a result 

rotation and scaling will vary from one point in the z-plane to its neighboring point and hence 
the similarity of shape is not achieved for large regions.  
At this juncture, it is pertinent to mention that conformal mapping does not provide a solution 
to any arbitrary problem. Another question that arises is why one should use conformal 
mapping instead of numerical methods. The answer to this question is two-fold: firstly 
analytical solutions to field problems provides insight and secondly it provides useful 
approximations to difficult problems, which in many cases is valuable to practicing 
engineers. 
 
Preservation of Angles in Conformal Mapping 
 
As shown in Fig.11.2, two curves A and B intersect each other at an angle α at the point zi in 
the z-plane. With the help of the tangent vectors to the curves, the angle between the curves 
could be computed. Let, tzA and tzB be the tangent vectors to the curves A and B, respectively. 
Then from the law of cosines it may be written that  
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The corresponding transformed curves A′  and B′  intersect at an angle β in the w-plane. Let, 
wAt′  and wBt′  be the tangent vectors to the curves A′  and B′ , respectively. Then β can be 

obtained as  
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Fig.11.2 Preservation of angles in conformal mapping 

 
Let, a curve is parameterized in z-plane by z=z(p) and the complex analytic function 
w=f(z(p)) defines the mapped curve in the w-plane. Then application of chain rule to 
w=f(z(p)) gives )())(( ptpzft zw ′=′ . Since the curves intersect in z-plane at z=zi, then 

zAiwA tzft )(′=′ and zBiwB tzft )(′=′ . Since 0)( ≠′ izf , hence eqn.(11.10) can be re-written as 
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In eqn.(11.11), the absolute value 2)( izf ′ cancels from the numerator and denominator and 
eqn.(11.11) gets reduced to 
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From eqns.(11.9) and (11.10), α = β, which proves that angles are preserved in conformal 
mapping. 
 
Problem 11.1 
For the point z=1+i in the z-plane, find the mapped point in the w-plane under the linear 
transformation w=(1+i)z +(2 +2i).  
Solution 

The given transformation function )22(2)22()1()( 4 izeizizfw
i

++=+++==
π

 
Hence, the transformation of the point (1+i) in the z-plane to the corresponding point in the 
w-plane can be obtained in three steps as shown in Fig.11.3. 
Step-1: The length OP ( )z  is multiplied by 21 =+ i to get the length AB as shown in 
Fig.11.3(b). 
Step-2: The length AB is rotated by an angle (π/4) in the anti-clockwise direction to get the 
length AC, as shown in Fig.11.3(c).  
Step-3: The point C is then translated by (2+2i) to get the point P′ (2+4i) in the w-plane 
which is the conformally mapped point corresponding to the point P in the z-plane. 
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Fig.11.3 Pertaining to Problem 11.1 

 
Problem 11.2 
Let Ω  be the rectangular region in the z-plane bounded by x=1, y=1, x=3 and y=2. Find the 
mapped region Ω′  in the w-plane under the linear transformation w=(1+i)z +(2 +2i). 
Solution 
Given, w=f(z)=(1+i)z + (2+2i) = (1+i)(x+iy) + (2+2i) = (x-y+2) + i (x+y+2) 
Hence, u = x-y+2 and v = x+y+2 
Therefore, for x=1, u = -y+3 and v = y+3  or, u+v = 6, i.e. the line x=1 in the z-plane is 
mapped to the straight line u+v=6 in the w-plane. 
Similarly, for y=1, u = x+1 and v = x+3   or, u-v = -2 
For x=3, u = -y+5 and v = y+5   or, u+v = 10  
For y=2, u = x and v = x+4   or, u-v = -4  
So, the four straight lines in the z-plane defined by x=1, y=1, x=3 and y=2 are mapped to 
four straight lines defined by u+v = 6, u-v = -2, u+v = 10 and u-v = -4, respectively, in the 
w-plane. The mapping is shown in Fig.11.4. Under the linear transformation w=az+b, where 
a=1+i and b=2+2i, it may be seen that the rectangular region Ω  in the z-plane is translated 
by b(=2+2i), rotated by an angle 450 (=arg(a)=arg(1+i)) in the anti-clockwise direction and 
dilated by √2(= ia += 1 ) to another rectangular region Ω′  in the w-plane.  
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Fig.11.4 Pertaining to Problem 11.2 
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Concept of Complex Potential 
 
Let, ),( yxφ be a harmonic function in a domain Ω . It is possible to define a harmonic 
conjugate function, ),( yxψ , uniquely by Cauchy-Riemann equations in the same domain. 
Thus an analytic function of iyxz += in the domain Ω can be written as 

),(),()( yxiyxzF ψφ +=         …. 11.13 
Consequently, F(z) conformally maps the curves in the z-plane onto the corresponding curves 
in the w−plane and vice-versa preserving the angles during mapping. 
Since, both the real and imaginary parts of F(z), viz. ),( yxφ and ),( yxψ , are harmonic 
functions, they satisfy Laplace’s equation and hence either one of these two could be used to 
find potential. Thus the complex analytic function F(z) is known as complex potential. 
Laplace’s equation is one of the most important partial differential equations in engineering 
and physics. The theory of solutions of Laplace’s equation is known as Potential Theory. The 
concept of complex potential relates potential theory closely to complex analysis. 
If ),( yxφ is considered to be real potential, then ),( yxφ =const represents equipotential lines 
in the z-plane. Since, ),( yxφ and ),( yxψ are orthogonal, hence, ),( yxψ =const represents 
electric field lines in the z-plane. For example, consider the complex potential function 
as iAyBAxBAzzF ++=+=)( . Then the equipotential lines corresponding to 

constBAxyx =+=),(φ are straight lines parallel to y-axis and the electric field lines 
corresponding to constAyyx ==),(ψ are straight lines parallel to x-axis. 
The introduction of the concept of complex potential is advantageous in the following ways: 
i) it is possible to handle equipotential and electric field lines simultaneously and ii) Dirichlet 
problems with difficult geometry of boundaries could be solved by conformal mapping by 
finding an analytic function F(z) which maps a complicated domain Ω  in the z-plane onto a 
simpler domain Ω′  in the w-plane. The complex potential )(wF ′  is solved in the w-plane by 
satisfying Laplace’s equation along with the boundary conditions. Then the complex potential 
in the z-plane can be obtained by inverse transform from which the real potential is obtained 
as )}(Re{),( zFyx =φ . This is a practicable way of solution as harmonic functions remain 
harmonic under conformal mapping. 
 
Procedural Steps in Solving Problems using Conformal Mapping 
 
1) Find an analytic function w=F(z) to map the original region Ω in the z-plane to the 

transformed region Ω′ in the w-plane. The region Ω′should be a region for which explicit 
solutions to the problem at hand are known. 

2) Transfer the boundary conditions from the boundaries of the region Ω  in the z-plane to 
the boundaries of the transformed region Ω′  in the w-plane.  

3) Solve the problem and find the complex potential )(wF ′ for the transformed region Ω′ in 
the w-plane.  

4) Map the solution )(wF ′ for the region Ω′ in the w-plane back to the complex potential 
F(z) for the region Ω in the z-plane through inverse mapping. 

 
The steps are schematically shown in Fig.11.5. The most important step is to find an 
appropriate mapping function w=F(z), which fits the problem at hand. Once the right 
mapping function has been found, the problem is as good as solved. 
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Solved Complex Potential
F'(w) = φ'(u,v)+ i ψ'(u,v)

Ω'

Ω
w=F(z)

x

y v

w

z=x+iy
w=u+iv

Mapped back Complex Potential
F(z) = φ(x,y)+ i ψ(x,y)

Boundary Condition:
φ(x,y)=const Boundary Condition:

φ'(u,v)=const

 
Fig.11.5 Schematic representation of solution of potential problem by conformal mapping 

 
Applications of Conformal Mapping in Electrostatic Potential Problems 
Conformal mapping is a powerful method for solving boundary value problems in two-
dimensional potential theory through transformation of a complicated region into a simpler 
region. Electric potential satisfies Laplace’s equation in charge free region. Therefore, 
electrostatic field that satisfies Laplace’s equation in a two-dimensional region in xy-plane, 
will also satisfy Laplace’s equation in any plane to which the region may be transformed by 
an analytic complex potential function F(z). For each value of complex iyxz += , there is a 
corresponding value of complex )(zFw = . In other words, for every point in the z-plane, 
there is a corresponding point in the w-plane. As a result, the locus of any point in the z-plane 
will trace another path in w-plane. Let, the locus in the z-plane maps onto a path 

constvu =′ ),(φ  in the w-plane, which corresponds to an equipotential and may also be the 
surface of a conductor. Then the problem can be solved in the w-plane incorporating the 
appropriate boundary condition, i.e. the value of the conductor potential, and the results can 
be mapped back to z-plane to get the real potential and then the electric field lines can be 
obtained from the conjugate harmonic function. This section discusses some of the 
applications of conformal mapping in solving two-dimensional electrostatic potential 
problems. 
 
Conformal Mapping of Co-Axial Cylinders 
 
The cross-sectional view of a single-core cable is shown in Fig.11.6, where the co-axial 
cylindrical conductors are of infinite length in the direction normal to the plane of the paper. 
Hence, the field varies only in the cross-sectional plane and is translationally invariant in the 
direction of the length of the cable. Let, the cross-sectional plane of the cable be the x-y plane 
or the z-plane. Then the field in the region between the two cylindrical conductors can be 
found by conformal mapping. Let, the radii of the inner and the outer conductors be r1 and r2, 
respectively, and the potential of the inner and the outer conductors be V and zero 
respectively. 
Consider the complex analytical function for conformal mapping be 

21 )ln( CzCivuw +=+=         …. 11.14 

where, z=x+iy = reiθ such that 22 yxr += and )/(tan 1 xy−=θ  

So, θθ
12121 ln)ln( CiCrCCreCivu i ++=+=+  

or, 21 )ln( CrCu += and θ1Cv =        …. 11.15 
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Fig.11.6 Conformal mapping of co-axial cylinders 

 
For the inner conductor, x2+y2=r1

2 and hence it maps to a straight line constu =1 parallel to v-
axis in the w-plane. Similarly, the outer conductor for which x2+y2=r2

2 maps to another 
straight line constu =2 parallel to v-axis in the w-plane, as shown in Fig.11.6. In other words, 
the field within the two cylindrical conductors in the z-plane is conformally mapped to field 
between two infinitely long parallel plates, i.e. the field within a parallel-plate capacitor, in 
the w-plane. From Fig.11.6 it may be seen that the orthogonality of the equipotentials in the 
form of circles and electric field lines in the form of radial lines in the z-plane are maintained 
in the w-plane, where the equipotentials are straight lines parallel to v-axis and the electric 
field lines are straight lines parallel to u-axis. 
From the boundary conditions on the conductor surfaces 

VCrC =+ 211 ln          …. 11.16 
and 0ln 221 =+CrC          …. 11.17 
From eqns. (11.16) and (11.17), 

1

2
1

ln
r
r

VC −=  and  

1

2

2
2

ln

ln

r
r
rVC =        …. 11.18 

The potential at any radius r is given by 21 ln CrCu += . Correspondingly, in the z-plane 

1

2

2

1

2

2

1

2 ln

ln

ln

ln

ln

ln),(

r
r

r
rV

r
r
rV

r
r

rVyx =+−=φ        …. 11.19 

Then, 

1

2ln
),(

r
rr

V
r

yxEr =
∂
∂

−=
φ        …. 11.20 

Eqn.(11.20) gives the value of electric field intensity at any radius r, which is the same as the 
one given by eqn.(4.30). 
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Graphical Field Plotting   
 
Introduction 
 
Most of the practical problems have such complicated geometry that no exact method of 
finding the electric field is possible or feasible and approximate techniques are the only ones 
which can be used. Out of the several approximate techniques, numerical techniques are now 
extensively used to determine electric field distribution with high accuracy. Numerical 
techniques, which are widely used, will be discussed in details in the later chapters. In this 
chapter, experimental and graphical field mapping methods are discussed. Experimental field 
mapping involve special equipments such as electrolytic tank, a device for fluid flow, 
conducting paper and associated measuring system. The other mapping method is a graphical 
one and needs only paper and pencil. In both these methods, the exact value of the field 
quantities could not be determined, but accuracy level which is sufficient for practical 
engineering applications could be achieved. Graphical field plotting is economical compared 
to experimental method and is also capable of providing good accuracy when used with skill. 
Accuracy of the order of 5 to 10% in capacitance determination could be achieved even by a 
non-expert simply by following the rules. 
 
 
Experimental Field Mapping 
 
Experimental method of field mapping is based on the analogy of stationary current field with 
static electric field, as presented in Table 12.1, rather than directly on measurement of electric 
field. If the medium between electrodes is isotropic, then volume conductivity and dielectric 
constant do not vary with position. Then current density (J) in stationary current field and 
electric field intensity (E) and electric flux density (D) in static electric field will be in the 
same direction. In other words, current density and electric field lines are the same. Thus for 
a given electrode system, if a slightly conducting material, e.g. conducting paper or an 
electrolyte, is placed instead of a dielectric material between the electrodes, then electric field 
lines and equipotential lines will remain the same.  
 
It is well known that if one travels along a line through an electric field and measures electric 
scalar potential V as one goes, then the negative of the rate of change of V is equal to the 
component of electric field intensity E in the direction of travel. In other words, 

lu
l
VE ˆ
∂
∂

−=


          …. 12.1 

If 
l
V
∂
∂

− is maximum, then it gives the value of E itself. If electric potential does not change 

with position, then the path of travel is at right angles to the electric field and is along an 
equipotential. Thus electric field could be mapped by a voltmeter that will measure potential 
difference and two metal rods acting as probes. The probes are connected to the terminals of 
the voltmeter and are placed in various positions in an electric field to monitor the potential 
differences between the positions of the two probes.  
 
 
 
 

Table 12.1 Analogy between static electric field and stationary current field 
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Static Electric Field Stationary Current Field 
Electric Flux Electric Current 

ED


ε=  EJ


κ=  
Dielectric constant Volume conductivity 

∫=
S

sdDQ 
.  ∫=

S

sdJI 
.  

 
For the determination of equipotential lines one probe is kept still, while the other probe is 
moved. In whichever position of the moving probe the voltmeter registers a zero reading; the 
potential of the moving probe is same as that of the standstill probe. By marking each such 
position, equipotentials could be traced.  
For tracing electric field lines the two probes are kept at a constant separation distance and 
one probe is rotated around the other. The position of the rotating probe where the voltmeter 
registers a maximum reading, the electric field is changing at its maximum rate. Hence, the 
electric field at that location of the rotating probe is parallel to the line joining the two probes. 
By repeating this measurement process at several positions, the electric field could be 
mapped.  
Since a real-life voltmeter draws a current, however small it may be, measurement of the 
potential differences using voltmeter could not be done with vacuum or air as the medium. In 
practice, measurement is carried out for the electric field that is set up in a medium, which is 
slightly conducting.  
Commonly slightly conducting paper, e.g. paper impregnated with carbon, is used. Since the 
paper is slightly conducting, the electric field due to the charged electrodes is almost the same 
as the one that would be produced in air or vacuum with similar geometry. At the same time 
the paper is sufficiently conducting to supply the small current needed by the voltmeter.  
Alternately electrolytic tank setup is used which consists of a specially fabricated insulating 
tray. A large sheet of laminated graph paper is pasted on the base plate of the tray. The tray is 
then half-filled with an electrolyte and the height of the electrolyte is kept same throughout 
the tray. Metallic electrodes are placed in the electrolytic tank, which are shaped to conform 
to the boundaries of the problem, and appropriate potential difference between the electrodes 
is maintained.  
 
Field Mapping using Curvilinear Squares 
 
Field mapping by curvilinear squares is a graphical method based on the orthogonal property 
of a pair of conjugate harmonic functions and also on the geometric considerations. This 
method is suitable for mapping only those fields in which there is no variation of field in the 
direction normal to the plane of the sketch, i.e. the field is two-dimensional in nature. Many 
practical electric field problems may be considered as two dimensional, e.g. the co-axial 
cylindrical system or a pair of long parallel wires. In these cases the field remains same in all 
cross-sectional planes. It is a fact that no real system is infinitely long, but the idealization is 
a useful one for electric field analysis and visualization.  
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Fig.12.1 A typical curvilinear square 

 
In this method the field region of interest is discretized into a network of curvilinear squares 
formed by flux or field lines and equipotentials. Curvilinear square is a planar geometric 
figure which is different from a true square as its sides are slightly curved and slightly 
unequal, but which approaches a true square as its dimensions become small. A typical 
curvilinear square is shown in Fig. 12.1. The field map thus obtained is unique for a given 
problem and helps in understanding the behaviour of electric field through visualization. The 
method of curvilinear square is capable of handling problems with complicated boundaries. A 
curvilinear field map is also independent of field property coefficients and could be directly 
applied from one physical field to another if an analogy exists between the concerned fields. 
Theoretically curvilinear field mapping is based on Cauchy-Riemann relations, which ensures 
that the Laplace’s equation is satisfied by a conjugate pair of harmonic functions in any 
orthogonal coordinate system. Hence, this method utilizes the fieldline coordinate 
representation of electric field such that electric field is always tangent to the fieldlines and 
depends only on the distribution of fieldlines and equipotentials.  
 
Foundations of Field Mapping 
 
Construction of field map using curvilinear squares is based on some significant features of 
electric field as described below: 
i) A conductor boundary is one of the equipotentials. 
ii) Equipotential and electric field intensity (or electric flux density) are normal to each other. 
As a conductor boundary is an equipotential, hence electric field intensity and electric flux 
density vectors are always perpendicular to the conductor boundaries. 
iii) Electric flux lines (often termed as streamlines) originate and terminate on charges. 
Hence, in the case of a homogeneous and charge free dielectric medium, electric flux lines 
originate and terminate on conductor boundaries. 
Fig.12.2 shows two coaxial cylindrical conductor boundaries having a specified potential 
difference (V) and extending 1m into the plane of the paper. A field line is considered to 
leave the boundary with more positive electric potential making an angle of 900 with the 
boundary at the point X. If the line is extended following the rule that it is always 
perpendicular to the equipotentials and if the dielectric medium is considered to be 
homogeneous and charge free, then the fieldline will terminate normally on the boundary of 
the less positive conductor at the point X ′ as shown in Fig.12.2. In a similar manner, another 
fieldline could be drawn in such a way that it starts from the point Y on the more positive 
conductor boundary and terminates on the point Y ′ on the less positive conductor boundary. 
As the fieldlines are drawn perpendicular to the equipotentials everywhere, electric field 
intensity and hence electric flux density will be tangent to a fieldline everywhere on it. 
Consequently, no electric flux can cross any fieldline thus drawn. Therefore, if there is a 
charge of Q∆ on the surface of the conductor between the points X and Y, then a flux of 

Q∆=∆ψ will originate in this region and must terminate on the surface of the other 
conductor boundary between the points X ′ and Y ′ . Such a pair of fieldlines is known as a 
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“flux tube” as it seems to carry flux from one conductor to the other without losing any flux 
in between the two conductors. For simplification of interpretation of the field map, another 
flux tube YZ may be drawn in such a way that the same amount of flux is carried in the flux 
tubes XY and YZ. The method of determination of dimensions of the curvilinear square for 
drawing such flux tubes is described in the next section. 
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Fig.12.2 Field map between two co-axial cylinders 

 
Sketching of Curvilinear Squares 
 
Considering the length of the line joining the points X and Y to be s∆ , the flux in the tube XY 
to be ψ∆ and the depth of the tube to be 1m into the paper, the electric flux density at the 
midpoint of this line is then given by  

s
D

∆
∆

=
ψ           …. 12.2 

So, considering the permittivity of dielectric medium to be ε, electric field intensity at the 
midpoint of the line XY is then given by  

s
E

∆
∆

=
ψ

ε
1           …. 12.3 

Alternately, electric field intensity could also be determined from the potential difference 
between the points X and X1 lying on the same fieldline on two equipotentials as shown in 
Fig.12.2.  
Considering the length of the line joining the points X and X1 to be l∆ and the potential 
difference between the two consecutive equipotentials to be φ∆ , electric field intensity at the 
midpoint of the line X-X1 is then given by 

l
E

∆
∆

=
φ           …. 12.4 

Considering s∆ and l∆ to be small, the two values of electric field intensity as given by eqns. 
(12.3) and (12.4) may be taken to be equal. Hence, 

ls ∆
∆

=
∆
∆ φψ

ε
1   

or, 
ψ
φε

∆
∆

=
∆
∆

s
l          …. 12.5 
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For sketching the field map, consider the following: a) homogeneous dielectric having a 
constant permittivity ε, ii) constant amount of electric flux per tube, i.e. ψ∆  is constant, and 
iii) constant potential difference between two consecutive equipotentials, i.e. φ∆  is constant. 

Then from eqn.(12.5), =
∆
∆

s
l constant. In other words, the ratio of the distance between 

fieldlines as measured along an equipotential and the distance between equipotentials as 
measured along a fieldline must be maintained constant and not the individual lengths. The 
simplest ratio of lengths that can be maintained is unity, so that sl ∆=∆ . Then the field region 
is divided into curvilinear squares by the fieldines and equipotentials.  
The field map thus obtained is composed of curvilinear squares of the same kind such that 
each square has the same potential difference across it and also has the same amount of flux 
through it. For a given φ∆ and ψ∆ , the sides of a curvilinear square are thus inversely 
proportional to electric field intensity. For a non-uniform field electric field intensity varies 
with location and hence l∆ and s∆ vary with the strength of electric field. In the region of 
higher field strength, l∆ and s∆ are to be kept small, i.e. the squares are to be made smaller in 
size where the magnitude of the field intensity is high. On the other hand, the squares are 
made larger in size in the field region where the field intensity is low. 
It may be recalled that the product of electric charge and electric potential difference is the 
energy of electric field. Moreover, electric charge and electric flux has a one to one 
correspondence. Thus for a field map if φ∆ and ψ∆ are kept constant, then their product 
remains constant and hence, energy of electric field remains constant. Therefore, curvilinear 
squares having the same ratio as give by eqn.(12.5) have the same energy stored in electric 
field regardless of the size of the square. A curvilinear square can thus be scaled up or down 
keeping the energy stored in the curvilinear square unaltered as long as the ratio given by 
eqn.(12.5) remains unaltered. 
 
Construction of Curvilinear Square Field Map 
 
The fieldines and equipotentials are typically drawn on the original sketch which shows the 
conductor boundaries. Arbitrarily one fieldline is begun from a point on the surface of the 
more positive conductor with a suitable value of l∆  and an equipotential is drawn 
perpendicular to the fieldline with a value of ls ∆=∆ . Then another fieldline is added to 
complete the curvilinear square. The field map is then gradually extended throughout the 
field region of interest. As the field map is extended, the condition of orthogonality of 
fieldline and equipotential should be kept paramount, even if this results in some squares with 
ratios other than unity. Construction of a satisfactory field map using curvilinear squares is a 
trial and error process that involves continuous adjustment and refinement. Typically the field 
maps are started as a course map having large curvilinear squares. Then the field map is fine 
tuned through successive subdivisions to form a dense field map having higher accuracy. In 
the process of subdivision, the lengths between consecutive fieldlines as well as 
equipotentials are kept equal. Before starting the construction of a field map, it is a judicious 
practice to examine the geometry of the system and take advantage of any symmetry that may 
exist in the system under consideration. This is because of the fact the lines of symmetry 
serve as boundaries with no flux crossing and thereby separate regions of similar field maps.  
 
Capacitance Calculation from Field Map 
 
Once the field map is drawn, it is possible to determine the capacitance per unit length 
between the two conductors using the field map. It is well known that capacitance between 
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two conductors having a potential difference of V is given by
V
QC = , where Q is the charge on 

the conductor. Applying Gauss’s law on a Gaussian surface enclosing the conductor having 

more positive potential, ψ=Q , where ψ is the flux coming out of the conductor. Thus,
V

C ψ
= . 

∆ψ
∆φ
∆l

∆s

 
Fig.12.3 An isolated curvilinear rectangle 

 
To calculate the capacitance with the help of curvilinear rectangle, consider first an isolated 
curvilinear rectangle as shown in Fig.12.3. Let the flux through it be ψ∆  and the potential 
difference across it be φ∆ . Considering the curvilinear rectangle to be small, the flux density 
may be assumed uniform within the curvilinear rectangle so that 

1×∆=∆ sEεψ          …. 12.6 
where, the depth is taken to be 1m into the plane of the field map. 
Electric field intensity (E) and the potential difference φ∆ are related as 

lE ∆×=∆φ           …. 12.7 
Combining eqns. (12.6) and (12.7) 

l
s

∆
∆

×∆=∆
φεψ  

Therefore, the capacitance of the small curvilinear rectangle, which may be taken as a small 
field cell, is given by 

l
sC

∆
∆

=
∆
∆

=∆ ε
φ
ψ          …. 12.8 

The total amount of flux (ψ ) emanating from one conductor and terminating on the other 
conductor may be obtained by adding all the small amounts of flux ( ψ∆ ) through each flux 
tube so that 

ψψψ ψ
ψ

∆=∆=∑ N
N

         …. 12.9 

where, ψ∆ is assumed to be same for each flux tube and ψN is the number of flux tubes in 
parallel, i.e. the number of curvilinear rectangles in parallel.  
The total potential difference between the two conductors (V) may be obtained by adding all 
the small amounts of potential differences ( φ∆ ) between consecutive equipotentials starting 
from one conductor and finishing at the other conductor, i.e. 

φφ φ
φ

∆=∆=∑ NV
N

         …. 12.10 

where, φ∆ is assumed to be same between any two consecutive equipotentials and φN is the 
number of equipotentials (including the two conductors) minus one, i.e. the number of 
curvilinear rectangles in series between the two conductors. 
Thus capacitance per unit length of the two conductors is given by 
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C =

∆
∆

=
∆
∆

==        …. 12.11 

where, ls ∆=∆ , considering the ratio of the lengths to be unity, i.e. considering curvilinear 
squares. 
Hence, determination of capacitance from the field map involves counting of curvilinear 
squares in two directions, one in series between the two conductors and the other in parallel 
around either conductor. 
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