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Numerical Computation of Electric Field  
 
 
Introduction 
 
The design of the insulation of high voltage apparatus between phases and earth and also 
between the phases is based on the knowledge of electric field distribution and the dielectric 
properties of the combination of insulating materials used in the system. The principal aim is 
that the insulation should withstand the electric stresses with adequate reliability and at the 
same time the insulation should not be over dimensioned. 
It is well known that the withstand voltage of the external insulation of apparatus designed 
with non-self restoring insulation is determined by the maximum value of electric field 
intensity within the insulation system. Further, corona discharges are eliminated by proper 
design of high voltage shielding electrodes. Thus a comprehensive study of the electric field 
distribution in and around high voltage equipment is of great practical importance. 
High voltage equipments, in practice, are in most of the cases subjected to a.c. field of 
frequency 50Hz or 60Hz. These fields may be approximated as quasi-static as the wavelength 
is much longer compared to the dimension of the components involved. Because of this, the 
electrostatic field calculation is possible by the different methods in use. 
 
Mathematically, an electric field calculation problem may be formulated as follows: 
 
The purpose is to determine, at each point within the field region of interest, the value of 
potential φ(x,y,z) and that of the electric field intensity ),,( zyxE


are to be determined, which 

are related as 
φ∇−=


),,( zyxE          …. 13.1 
In order to do that either the Laplace’s Equation for systems without any source of charge in 
the field region, 

02 =∇ φ


          …. 13.2 
or, the Poisson’s Equation for systems with sources of charge in the field region, 

ε
ρφ v−=∇2


          …. 13.3 

are required to be solved. 
 
The solutions of these equations are called Boundary Value problems, whereby the boundary 
conditions are specified by means of the given potential of electrode (Dirichlet’s Problem) or 
by the given value of electric field intensity (Neumann’s Problem). 
 
Methods of Determination of Electric Field Distribution 
 
The methods that are employed for determination of electric field are detailed in Fig.13.1. 
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Methods for determination of electric field distribution

Methods based on experimental techniques

Graphical Method

Analytical Methods

Numerical Methods

Differential Equation Techniques

Finite Difference Method (FDM)

Finite Element Method (FEM)

Monte Carlo Techniques

Fixed Random Walk Method

Floating Random Walk Method

Integral Equation Techniques

Charge Simulation Method (CSM)

Surface Charge Simulation Method (SCSM)

Boundary Element Method (BEM)

Fig. 13.1 Different methods for determination of electric field distribution 
 
The analytical methods can only be applied to the cases, where the electrode or dielectric 
boundaries are of simple geometrical forms such as cylinders, spheres etc. In other words, in 
this method the boundaries are required to be defined exclusively by known mathematical 
functions. The results obtained are very accurate. But, as it is obvious, this method cannot be 
applied to complex problems. However, the results obtained by analytical methods for 
standard configurations are used still today to validate the results obtained by some other 
approximate methods such as numerical methods. 
Earlier the experimental as well as the graphical methods were used to get a fair idea about 
the nature of field distribution in some practical cases. However, these methods are greatly 
limited in their areas of usage and the errors involved are usually very high for any complex 
problem to be taken directly for design purposes. 
In more and more engineering problems now-a-days, it is found that it is necessary to obtain 
approximate numerical solutions rather than exact closed-form solutions. The governing 
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equations and boundary conditions for these problems could be written without too much 
effort, but it may be seen immediately that no simple analytical solution can be found. The 
difficulty in these engineering problems lies in the fact that either the geometry or some other 
feature of the problem is irregular. Analytical solutions to this type of problems seldom exist; 
yet these are the kinds of problems that engineers need to solve. 
There are several alternatives to overcome this dilemma. One possibility is to make 
simplifying assumptions ignoring the difficulties to reduce the problem to one that can be 
easily handled. Sometimes this approach works; but, more often than not, it leads to serious 
inaccuracies. With the availability of computers today, a more viable alternative is to retain 
the complexities of the problem and find an approximate numerical solution. 
Several approximate numerical analysis methods have evolved over the years as shown in 
Fig.13.1.  For each practical field problem, depending upon the dielectric properties, 
complexity of contours and boundary conditions, one or the other numerical method is more 
suited. 
 
Uniqueness Theorem 
 
It states that once any method of solving Poisson’s or Laplace’s equations subject to given 
boundary conditions has been found, the problem has been solved once and for all. No other 
method can ever give a different solution. 
 
Proof: 
Consider a volume V bounded by a surface S. Also consider that there is a charge density ρv 
throughout the volume V, and the value of the scalar electric potential on the surface S is φs. 
Assume that there are two solutions of Poisson’s equation, viz. φ1 and φ2. Then 

ε
ρφ v−=∇ 1

2


    and    
ε
ρφ v−=∇ 2

2


 

So,  ( ) 021
2 =−∇ φφ


         …. 13.4 
Now, each solution must also satisfy the boundary conditions. It is to be noted here that one 
particular point can not have two different electric potentials, as the work done to move a unit 
positive charge from infinity to that point is unique. Let, the value of φ1 on the boundary is 
φ1s and the value of φ2 on the boundary is φ2s and they must be identical to φs. 
Therefore,   φ1s = φ2s = φs 
 or,  φ1s – φ2s = 0  
For any scalar φ and any vector D


, the following vector identity can be written. 

( ) ( ) DDD


.. φφφ ∇+∇≡∇         …. 13.5 
 
Consider the scalar as (φ1 – φ2) and the vector as ( )21 φφ −∇


. Then from identity (13.5), 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )212121212121 ... φφφφφφφφφφφφ −∇−∇+−∇∇−≡−∇−∇


  .… 13.6 
Now, integrating throughout the volume V enclosed by the boundary surface S, 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )

( ) ( )[ ] ( )[ ]∫∫

∫∫∫
−∇+−∇−≡

−∇−∇+−∇∇−≡−∇−∇

VV

VVV

dvdv

dvdvdv

2
2121

2
21

212121212121 ...

φφφφφφ

φφφφφφφφφφφφ





 …. 13.7 

 
Applying divergence theorem to the L.H.S of identity (13.7), 
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( ) ( )[ ] ( ) ( ) 0. 21212121 =−∇−=−∇−∇ ∫∫ dsdv
S

SS
V

φφφφφφφφ


    …. 13.8 

as φ1s = φ2s on the specified surface S. 
 
On the RHS of identity (13.7), ( ) 021

2 =−∇ φφ


from eqn.(13.4). Hence, identity (13.7) reduces 
to 

( )[ ] 02
21 =−∇∫ dv

V

φφ


         …. 13.9 

Since, ( )[ ]2
21 φφ −∇


cannot be negative, hence the integrand must be zero everywhere so that 

the integral may be zero. 
Hence, 

( )[ ] 02
21 =−∇ φφ


 or, ( ) 021 =−∇ φφ


      …. 13.10 

Again, if the gradient of (φ1 – φ2) is zero everywhere, then 
  φ1 – φ2 = Constant       .… 13.11 
This constant may be evaluated by considering a point on the boundary surface S. So that, 
  φ1 – φ2 = φ1s – φ2s = 0 
 or, φ1 = φ2 
which means that the two solutions are identical. 
However, in practice if the same problem is solved by using different numerical techniques 
the results are not exactly the same. This is due to the fact that the errors in a particular 
numerical method are often problem dependent and hence the results are not exactly same in 
all the methods. So, this is not a violation of the Uniqueness theorem. 
 
Procedural Steps in Numerical Electric Field Computation 
 
The following are the procedural steps that need to be followed not only for FDM but for 
most of the numerical electric field computation methods.  
At first, the Region of Interest (ROI) needs to be identified. ROI is the region where the 
solution for electric field is to be obtained. For example, normally the field solution is not 
needed within the electrode volume or below the earth surface. Hence, for an isolated 
electrode and the earth surface, the ROI will be region between the electrode surface and the 
earth surface as shown in Fig.13.2. Before the ROI is identified, the geometries of the 
components that comprise the field system need to be defined. This step is now-a-days done 
with the help of CAD software. 
The subsequent procedural step is to discretize the entire ROI or the boundaries to create the 
nodes where the solution of field will be obtained. Ideally one should find the field solution at 
each and every point within the ROI. But it will result in immense computational burden and 
hence the field solution is obtained at discrete nodes. This step is called Discretization and is 
often done with the help of mesh generators, which are software modules that create the mesh 
within the entire ROI or on the boundaries.  In order that the electric field solution can be 
obtained at any specific location within the ROI, a pre-defined variation of electric field 
between successive nodes is assumed. In fact, this assumption is a root cause of inaccuracy of 
the numerical method.  
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HV Electrode

Earth

Region of Interest

 
Fig. 13.2 Depiction of Region of Interest for Electric Field Computation 

 
The next step is to create the system of equations based on the numerical method that is being 
employed. Subsequently, the system of equations is solved using a suitable solver. The solver 
needs to be chosen depending upon the nature of the coefficient matrix that is being created 
by the specific numerical method. This solution gives the results for the unknown field 
quantities at the pre-defined nodes. Finally the results at any desired location is computed 
using the assumed variation of electric field between the nodes, which is termed as post 
processing of results. The procedural steps are depicted in Fig.13.3. 
 

Definition of Geometries

Identification of ROI

Discretization of ROI

Creation of System of Equations

Solution of System of Equations

Post-Processing of Results
 

Fig. 13.3 Procedural steps in numerical electric field computation 
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Numerical Computation of HV Field by Finite Difference Method (FDM) 
 
Introduction 
 
The principle of Finite Difference Method (FDM) is to discretize the entire region under 
study and solve for unknown potentials a set of coupled simultaneous linear equations which 
approximate Laplace’s or Poisson’s equation. In fact this is the objective of most of the 
numerical field computation techniques that are being used at present. 
In Finite Difference Method, for two-dimensional system the entire region of interest is 
discretized using either rectangles or squares. In 3-dimensional system, the discretization is 
done using either rectangular parallelepipeds or cubes. Most commonly electric potential is 
assumed to vary linearly between two successive nodes. However, this is not mandatory. Any 
other type variation, e.g. quadratic or polynomial, may also be assumed. But, a complex 
nature of potential variation increases the computational burden greatly and may not always 
give improved accuracy. If the electric potential is assumed to vary linearly, as it is 
commonly considered, then the nodes need to be closely spaced where the field varies 
significantly in space. This is generally the case near the electrodes or dielectric boundaries, 
particularly in the cases of contours having sharp corners. On the other hand, in the region 
away from the electrodes or dielectric boundaries, where the field does not change rapidly in 
space, the nodes may be spaced relatively widely apart. 
For multi-dielectric problems, care should be taken during discretization to make sure that 
only one dielectric is present between two consecutive nodes. This is achieved by arranging 
one layer of nodes along the dielectric-dielectric interface. This aspect will be taken up in 
more details in a later section in this chapter. 
 
FDM Equations in 3-D System for Single Dielectric Medium 
 
As stated earlier, in three-dimensional system, discretization is done using either rectangular 
parallelepipeds or cubes. In such cases, one particular node is connected to six neighboring 
nodes as shown in Fig. 14.1. As it is assumed that electric potential varies linearly between 
two successive nodes, it is obvious that potential of that particular node will be related to 
potentials of the six connected nodes. FDM equation for any unknown node potential is 
developed in terms of potentials of the connected nodes by satisfying the Laplace’s equation. 
The FDM equation thus developed is a linear equation, which is an approximation of the 
Laplace’s equation that is a second order partial differential equation. 
Since the nodal distances in a practical system are unequal, the following approach is 
normally taken for development of the FDM equations. After discretization, the largest nodal 
distance (h) is identified within the ROI. Then all the other nodal distances are represented as 
a fraction of that largest nodal distance as sxh, where sx<1. This is done because the factor sx 
is a dimensionless quantity and the FDM equation is developed in terms of potentials of the 
six connected nodes and the dimensionless factors sx. Therefore, the developed FDM 
equation becomes a linear equation involving electric potential only. 
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Fig. 14.1 Unequal nodal distances for FDM equation development in 3-D system 

 
As shown in Fig. 14.1, the unknown potential of node-0 will be formulated in terms of 
potentials of the six connected nodes 1 through 6. Electric potential being a continuous 
function within the ROI and the nodal distances being not large, Taylor series can be applied 
for the determination of potential of any one connected node from the potential of node-0. 
Taylor series in 3-D system is expressed as follows: 

( ) ( ) ( ) ( ) ( )
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         ... 14.1 

Applying Taylor series expansion between the nodes 1 and 0 considering the potential of 
node-0 (V0) as f(x,y,z) and the node potential of node-1 (V1) as f(x+a,y+b,z+c) so that a=s1h, 
b=c=0 and neglecting higher order terms, 

               ( )
0

2

22
1

0
101 2 x

Vhs
x
VhsVV

∂
∂

+
∂
∂

+=                                                                  … 14.2 

Similarly, applying Taylor series expansion between the nodes 0 and 3, such that a= -s3h, 
b=c=0. 

              ( )
0

2

22
3

0
303 2 x

Vhs
x
VhsVV

∂
∂

+
∂
∂

−=                                                                  … 14.3 

Eliminating 
x
V

∂
∂ from eqns. (14.2) and (14.3),  
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Similarly, between the nodes 2 and 4 in the y-direction,  
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and between the nodes 5 and 6 in the z-direction,  
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Now, Laplace’s equation in Cartesian coordinates at node-0, 
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So, from eqns. (14.4) through (14.7), eliminating h, the FDM equation for the unknown node 
potential V0 is obtained as 
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For equal nodal distances in 3-D system, s1 = s2 = s3 = s4 = s5 = s6 = 1. So eqn.(14.8) reduces 
to 

                   ( )6543210 6
1 VVVVVVV +++++=                                                             … 14.9 

For 2-D system with unequal nodal distances, the FDM equation of (14.8) reduces to 
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Fig. 14.2 Unequal nodal distances for FDM equation development in 2-D system 

 
For equal nodal distances in 2-D system, the FDM equation of (14.10) reduces to 

                  ( )43210 4
1 VVVVV +++=                                                                           … 14.11 

 
 
 



 9 

Problem 14.1 
Consider the 3-D arrangement with single-dielectric having six given planes a,b,c,d,e,f as 
shown in Fig. 14.3. Write the FDM equations for the unknown node potentials V01 and V02. 
Given h2=0.6 h1. 

 
Fig. 14.3 3-D arrangement with two nodes having unknown potentials 

Solution: 
In this case, for both the nodes 01 and 02, s1= s2= s3 = s4=1 and s5= s6=(h2/h1)=0.6. 
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Problem 14.2 
For the 2-D system with single-dielectric as shown in Fig. 14.4, write the FDM equations for 
the unknown node potentials. Boundary node potentials are given in the figure. 

r

εr=1 (air) 1

2

3

4

70kV

52kV

36kV

h h

5

100kV

h
h

h

 
Fig. 14.4 2-D arrangement with nodes having unknown potentials 

 
Solution: 
From Fig. 14.4 it may be seen that for the nodes 1, 2, 4 and 5 the nodal distances are equal, 
i.e. h = r/2. For the node 3, s1= s3= s4= 1 and s2 can be computed trigonometrically as 0.268, 
as ( ).sin)cos(2 rhandrrhs =−= θθ  Moreover, for the nodes 1 and 2, symmetry wrt the 
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central plane is to be considered, such that for the node 1 another node on the LHS has to be 
considered whose potential will be equal to V4 and similarly for node-2. 
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FDM Equations in Axi-symmetric System for Single Dielectric Medium 
 
When the field is expressed in cylindrical co-ordinates (r,θ,z) and the field distribution is 
independent of ‘θ’, then the field distribution is said to be axi-symmetric or rotationally 
symmetric, e.g. insulators, bushings etc. A typical diagram of an axi-symmetric object is 
shown in Fig. 14.5. 
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Fig. 14.5 Typical Axi-symmetric insulator geometry 

 
To determine the electric field distribution in axi-symmetric system, Laplace’s equation in 
cylindrical coordinates, as given below, needs to be solved. 
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In axi-symmetric system, V is independent of θ, so that eqn.(14.15) reduces to 
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FDM equation for a node lying away from the axis of symmetry 
 
In Finite Difference Method, for axi-symmetric system the ROI is discretized using either 
rectangles or squares. In such cases, one particular node is connected to four neighboring 
nodes as shown in Fig. 14.6. As it is assumed that electric potential varies linearly between 
two successive nodes, it is obvious that the potential of that particular node will be related to 
potentials of the four connected nodes. FDM equation for any unknown node potential is 
developed in terms of potentials of the connected nodes by satisfying the Laplace’s equation 
in cylindrical coordinates. Fig. 14.6 shows the node-0 with unknown potential lying at a 
certain distance away from the axis of symmetry. In such a case, the radial distance of the 
node-0 from the axis of symmetry is also taken as multiple (sh) of the largest nodal distance 
h. 

1

2

3

4

s1hs3h
s 2

h
s 4

h0

sh

r

z

A
xi

s 
of

 s
ym

m
et

ry

 
Fig. 14.6 Unequal nodal distances for FDM equation development in axi-symmetric system 

for a node lying away from the axis of symmetry 
 
From Taylor series expansion between the nodes 1 and 0 in the r-direction, neglecting higher 
order terms, 
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Similarly, from Taylor series expansion between the nodes 0 and 3 in the r-direction, 

                     ( )
0

2

22
3

0
303 2 r

Vhs
r
VhsVV

∂
∂

+
∂
∂

−=                                                                 … 14.18 

Eliminating 
r
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Considering the fact that the radial distance of node-0 from the axis of symmetry is r = sh, 
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Similarly, between the nodes 2 and 4 in the z-direction,  
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Putting the relevant expressions from eqns. (14.19), (14.21) and (14.22) in the Laplace’s 
equation of (14.16), the FDM equation for the unknown node potential V0 can be obtained as 
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For an axi-symmetric arrangement with equal nodal distances, i.e. s1 = s2 = s3 = s4 = 1, eqn. 
(14.23) reduces to 
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VVVVVVVo
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It may be seen from the above equation that for a node lying on the axis of symmetry, i.e. for 
s=0, eqn. (14.24) is not valid. Hence, the FDM equation for a node lying on the axis of 
symmetry needs to be developed separately. 
 
FDM equation for a node lying on the axis of symmetry 
 
Fig. 14.7 shows an axi-symmetric nodal arrangement with unequal nodal distances where the 
node-0 having unknown node potential is lying on the axis of symmetry. 
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Fig. 14.7 Axi-symmetric system with unequal nodal distances with a node lying on the axis 

of symmetry 
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For an axi-symmetric system, along the axis of symmetry the electric flux lines are tangent to 

the axis. In other words, as 0,0 →
∂
∂

→
r
Vr . 

So, applying L-Hospital’s rule, 2
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1
r
V
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r
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r ∂
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=
∂
∂

→
. 

Hence, for a node lying on the axis of symmetry, Laplace’s equation of (14.16) is modified to 
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From Taylor series expansion between the nodes 1 and 0 in the r-direction, neglecting higher 
order terms, 
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But, as 0,0 →
∂
∂

→
r
Vr . So, from eqn. (14.26) 
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Following eqn. (14.22) applying Taylor series between the nodes 2, 0 and 4 in the z-direction,  
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Then satisfying the Laplace’s equation of (14.25) with the help of eqns. (14.27) and (14.28), 
the FDM equation for a node lying on the axis of symmetry can be obtained as follows 
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For equal nodal distances, i.e. for s1 = s2 = s4 = 1, eqn. (14.29) reduces to 
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Problem 14.3 
For the axi-symmetric arrangement with equal nodal distances as shown in Fig. 14.8, write 
the FDM equations for the unknown node potentials. 
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Fig. 14.8 Nodal arrangement pertaining to problem 14.3 
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Solution: 
It may be noted from Fig. 14.8 that the nodes 1 and 2 lie on the axis of symmetry, while the 
nodes 3, 4, 5 and 6 lie away from the axis of symmetry. 
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Problem 14.4 
For the axi-symmetric system with single-dielectric as shown in Fig. 14.9, write the FDM 
equations for the unknown node potentials. Boundary node potentials are given in the figure. 
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Fig. 14.9 Nodal arrangement pertaining to problem 14.4 

Solution: 
It may be noted from Fig. 14.9 that for the nodes 1,2,4 and 5 the nodal distances are equal, 
out of which the nodes 1 and 2 lie on the axis of symmetry. Nodes 3, 4 and 5 lie away from 
the axis of symmetry, out of which the nodal distances for node-3 are unequal such that s1 = 
s3 = s4 = 1 and s2 = 0.268. 
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FDM Equations in Three-Dimensional System for Multi-Dielectric Media 
 
Since the commonly used assumption in finite difference method is linear variation of electric 
potential between two successive nodes, hence it is imperative that there should not be two 
different dielectric media between two successive nodes. In other words, during discretization 
it should be ensured that one set of nodes will always be on the dielectric interface. Fig.14.10 
shows one such nodal distribution with unequal nodal distances. The y-z plane is considered 
to be the dielectric interface and one set of nodes is on the dielectric interface. For all the 
nodes that lie within either medium 1 or medium 2 there will be only that dielectric between 
any two successive nodes and hence the FDM equations for single-dielectric medium could 
be used for such nodes. But for the nodes lying on the dielectric interface it is not the case. As 
shown in Fig.14.10 between the nodes 0 and 1 there is medium-1 and between 0 and 3 there 
is medium-2. So FDM equation needs to be developed for the nodes that lie on the dielectric 
interface applying suitable boundary conditions.  
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Fig. 14.10 Nodal arrangement for FDM equation development in 3-D system with multi-

dielectric media 
 
For Laplacian field, i.e. considering that the dielectric boundary does not have any free 
charge present on it, the necessary boundary condition is that the normal component of flux 
density remains constant on both the sides of the dielectric interface. For the nodal 
arrangement shown in Fig. 14.10, the x-component of electric flux density is the normal 
component on the dielectric interface as the y-z plane is the dielectric interface. Hence, 
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Here, it is to be noted that two potential functions need to be considered on the two sides of 
the dielectric interface as shown in eqn. (14.31). The potential function V is valid for 
medium-1 and V ′ is valid for medium-2. 
Accordingly two Laplace’s equation, one with V and the other withV ′ , need to be satisfied in 
this case, as given in eqn. (14.32a) and (14.32b). Eqn. (14.32a) is valid for medium-1, while 
eqn. (14.32b) is valid for medium-2. 
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Now, from Taylor series expansion between the pair of nodes, the following expressions are 
obtained 
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It is to be mentioned here that the nodes 0, 2, 4, 5 and 6 lie on the dielectric interface. 
According to the boundary conditions on dielectric-dielectric interface, electric potential and 
tangential component of electric field remain constant on the dielectric interface. 

From eqn. (14.33a)             
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and from eqn. (14.33b)  
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From eqns. (14.33c) and (14.33d) along the y-direction on the y-z plane, 
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and from eqns. (14.33e) and (14.33f) along the z-direction on the y-z plane, 
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From eqn. (14.32a), i.e. the Laplace’s equation that is valid for medium-1, 
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and from eqn. (14.32b), i.e. the Laplace’s equation that is valid for medium-2, 
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Eliminating 
0x

V
∂
∂ from eqns. (14.38) and (14.39), 
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Eqn.(14.40) is the FDM equation for unknown potential of a node lying on the dielectric 
interface in three-dimensional system with unequal nodal distances. 
For equal nodal distances in three-dimensional multi-dielectric system, i.e. when s1 = s2 = s3 
= s4 = s5 = s6 = 1, eqn.(14.40) reduces to 
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For two-dimensional multi-dielectric system with unequal nodal distances, the FDM equation 
for unknown potential of a node lying on the dielectric interface will be as follows, where the 
dielectric interface is considered to be along the y-axis, as shown in Fig. 14.11. 
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Fig. 14.11 Nodal arrangement for FDM equation development in 2-D system with multi-

dielectric media 
 

For equal nodal distances in two-dimensional multi-dielectric system, i.e. when s1 = s2 = s3 = 
s4 = 1, eqn.(14.42) reduces to 
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Problem 14.5 
For the three-dimensional arrangement with two different dielectric media as shown in Fig. 
14.12, write the FDM equations for the nodes 1, 2 and 3. The known node potentials are as 
follows: V13=V23=V33=100V, V14=V24=V34=0V, V11=V21=V31=50V, V12=V22=V32=60V and 
V15=V35=55V. Given that ε1=4 and ε2=1. 
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Fig. 14.12 Nodal arrangement pertaining to Problem 14.5 

Solution: 
In this problem, the largest nodal distance is h.  
For node-1: s1=0.5, s3=1, s2= s4=0.333, s5=0.5 and s6=0.75. So as per eqn. 14.8 
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Similarly for node-3: s1=0.5, s3=1, s2= s4=0.333, s5=0.5 and s6=0.75. So as per eqn. 14.8 
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For node-2, as per eqn. 14.40, V1=V3, V3=V1, V2=V23=100V, V4=V24=0V, V5=V21=50V and 
V6=V22=60V and s1= s3=0.333, s2=0.5, s4=0.75, s5=0.5, s6=1 and K= (ε1/ε2)=4. 
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Problem 14.6 
For the 2-dimensional multi-dielectric configuration with series dielectric arrangement as 
shown in Fig. 14.13, write the FDM equations for the nodes having unknown potentials. 
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Fig. 14.13 Nodal arrangement pertaining to problem 14.6 

Solution: 
For the nodes 1, 2 and 3, symmetry of the configuration has to be considered wrt the central 
plane. The nodal distances are equal for these three nodes. 
For node-1: 

                 ( )2551 100
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For node-2: As per eqn. 14.43, V1=V1, V2=V6, V3=V3 and V4=V6 and K = (1/3). 

                 
4

1333.0
2

1333.0
333.02

6
3

61

2

VVVV
V

+
+

++
+

×

=  

For node-3: 
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For node-4: The nodal distances are unequal such that s1=(1/3), s2=0.882, s3=s4=1 because 
the largest nodal distance is (3r/4). Then as per eqn. 14.10 
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For node-5: The nodal distances are unequal such that s1=(1/3), s2=1, s3=s4=1. Then as per 
eqn. 14.10 
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For node-6: As per eqn. 14.42, V1=V5, V2=V2, V3=V7 and V4=20 and K = (1/3). Nodal 
distance factors are s1=s2=s3=1 and s4=(1/3). 
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For node-7: The nodal distances are unequal such that s1=(1/3), s2=s3=s4=1. Then as per eqn. 
14.10 
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Problem 14.7 
For the 2-dimensional multi-dielectric configuration with parallel dielectric arrangement as 
shown in Fig. 14.14, write the FDM equations for the nodes having unknown potentials. 
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Fig. 14.14 Nodal arrangement pertaining to problem 14.7 

Solution: 
The largest nodal distance for this arrangement is h.  
So, for node-1: s1=1, s2= s4=0.333 and s3=0.5. Then as per eqn. 14.10 
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For node-2: s1=1, s2= s4=0.333 and s3=0.5. Then as per eqn. 14.10 
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For node-3: As per eqn. 14.42, V1=V1, V2=100, V3=V5 and V4= V4 and K = (1/4). Nodal 
distance factors are s1=s3=0.5 and s2= s4= 0.333. 
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For node-4: As per eqn. 14.42, V1=V2, V2=V3, V3=V6 and V4=0 and K = (1/4). Nodal distance 
factors are s1=s3=0.5 and s2= s4= 0.333. 
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For node-5: s1=0.5, s2= s4=0.333 and s3=1. Then as per eqn. 14.10 
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For node-6: s1=0.5, s2= s4=0.333 and s3=1. Then as per eqn. 14.10 

                     

333.0333.0
1

15.0
1

333.0
0

333.0333.0333.0
1

1
33

5.015.0
1 54

6

×
+

×







 +

+
+






 +

+=

VV

V  

 
FDM Equations in Axi-symmetric System for Multi-Dielectric Media 
 
For series dielectric media 
 
In this case, the dielectric interface is considered to be normal to the axis of symmetry. The 
FDM equations need to be developed for a node lying on the dielectric interface. This node 
could be away from the axis of symmetry and could also be on the axis of symmetry. 
 
For the node on the dielectric interface lying away from the axis of symmetry 
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Fig. 14.15 Nodal arrangement for FDM equation development in axi-symmetric system with 
multi-dielectric media in series dielectric arrangement when the node is lying away from the 

axis of symmetry 
 

For the nodal arrangement shown in Fig. 14.15, the z-component of electric flux density is the 
normal component on the dielectric interface that is parallel to the r-axis. 
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Here, it is to be noted again the potential function V is valid for medium-1 and V ′ is valid for 
medium-2. 
Accordingly two Laplace’s equation, one with V and the other withV ′ , need to be satisfied in 
this case, as given in eqn. (14.45a) and (14.45b). Eqn. (14.45a) is valid for medium-1, while 
eqn. (14.45b) is valid for medium-2. 
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Now, from Taylor series expansion between the pair of nodes, the following expressions are 
obtained 
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It is to be noted here that the nodes 1, 0 and 3 lie on the dielectric interface. According to the 
boundary conditions on dielectric-dielectric interface, electric potential and tangential 
component of electric field remain constant on the dielectric interface. 
From eqns. (14.46a) and (14.46b) along the r-direction on the dielectric interface, 
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From eqns. (14.46a) and (14.46b) considering the radial distance of the node-0 from the axis 
of symmetry to be sh, i.e. r = sh, 
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From eqns. 14.45a, 14.47, 14.48 and 14.49 
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and from eqns. 14.45b, 14.47, 14.48 and 14.50 
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Eliminating 
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∂ from eqns. (14.51) and (14.52), 
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Eqn.(14.53) is the FDM equation for unknown potential of a node lying on the dielectric 
interface, where the node is away from the axis of symmetry, in axi-symmetric system with 
unequal nodal distances having series dielectric arrangement. 
For equal nodal distances, i.e. for s1 = s2 = s3 = s4 = 1, eqn.(14.53) reduces to 
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and for single dielectric system, i.e. for K=1,  with equal nodal distances eqn.(14.54) reduces 
to 
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For the node on the dielectric interface lying on the axis of symmetry 
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Fig. 14.16 Nodal arrangement for FDM equation development in axi-symmetric system with 
multi-dielectric media in series dielectric arrangement when the node is lying on the axis of 

symmetry 

Laplace’s equation in medium-1:              02 2
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Now, from Taylor series expansion between the pair of nodes, the following expressions are 
obtained 
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So, from Laplace’s equation in medium-1, i.e. eqn.(14.56), 
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and from Laplace’s equation in medium-2, i.e. eqn.(14.57), 
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Eliminating 
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∂ from eqns. (14.60) and (14.61), 
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Eqn.(14.62) is the FDM equation for unknown potential of a node lying on the dielectric 
interface, where the node is on the axis of symmetry, in axi-symmetric system with unequal 
nodal distances having series dielectric arrangement. 
For equal nodal distances, i.e. for s1 = s2 = s4 = 1, eqn.(14.62) reduces to 
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and for single dielectric system, i.e. for K=1, with equal nodal distances eqn.(14.63) reduces 
to 
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For parallel dielectric media 
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Fig. 14.17 Nodal arrangement for FDM equation development in axi-symmetric system with 
multi-dielectric media in parallel dielectric arrangement when the node is lying away from 

the axis of symmetry 
 
In this case, the dielectric interface is considered to be parallel to the axis of symmetry. The 
FDM equations need to be developed for a node lying on the dielectric interface. This node is 
away from the axis of symmetry, as in this case the dielectric interface cannot be on the axis 
of symmetry. 
For the nodal arrangement shown in Fig. 14.17, the r-component of electric flux density is the 
normal component on the dielectric interface that is parallel to the z-axis. 
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Now, from Taylor series expansion between the pair of nodes, the expressions that may be 
obtained are as follows 
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Again, from eqn. (14.65a)        
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From eqns. (14.65c) and (14.65d) along the z-direction on the dielectric interface, 
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Satisfying Laplace’s equation in medium-1: 
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Similarly, satisfying Laplace’s equation in medium-2: 
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 Eliminating 
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∂
∂ from eqns. (14.71) and (14.72), 
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Eqn.(14.73) is the FDM equation for unknown potential of a node lying on the dielectric 
interface, where the node is away from the axis of symmetry, in axi-symmetric system with 
unequal nodal distances having parallel dielectric arrangement. 
For equal nodal distances, i.e. when s1 = s2 = s3 = s4 = 1, eqn.(14.73) reduces to 
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and for single dielectric system, i.e. K=1,  with equal nodal distances eqn.(14.74) reduces to 
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Problem 14.8 
For the axi-symmetric multi-dielectric configuration with series dielectric arrangement as 
shown in Fig. 14.18, write the FDM equations for the nodes having unknown potentials. 
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Fig. 14.18 Nodal arrangement pertaining to problem 14.8 

Solution: 
In this configuration the largest nodal distance is (2r/3). So the respective nodal distance 
factors are calculated based on this largest nodal distance. 
For node-1: As per eqn. 14.29, V1= V5, V2=100, V4=V2, s1=0.5 and s2=s4=1. 
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For node-2: As per eqn. 14.62, V1=V6, V2=V1, V4=V3, s1=0.5, s2=s4=1 and K = (1/4). 
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For node-3: As per eqn. 14.29, V1= V7, V2= V2, V4=0, s1=0.5 and s2=s4=1. 
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For node-4: The nodal distances are unequal such that s1=1, s2=0.086, s3=0.5, s4=1, s=0.5 and 
V1= 65, V2= 100, V3=100 and V4= V5. Then as per eqn. 14.23 
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For node-5: The nodal distances are unequal such that s1=s2= s4=1, s3=0.5, s=0.5 and V1= 32, 
V2= V4, V3= V1 and V4= V6. Then as per eqn. 14.23 
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For node-6: As per eqn. 14.53, V1=15, V2=V5, V3=V2, V4=V7, s1=s2=s4=1, s3=0.5, s=0.5, and 
K = (1/4). 
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For node-7: The nodal distances are unequal such that s1=s2= s4=1, s3=0.5, s=0.5 and V1= 5, 
V2= V6, V3= V3 and V4= 0. Then as per eqn. 14.23 
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Problem 14.9 
For the axi-symmetric multi-dielectric configuration with parallel dielectric arrangement as 
shown in Fig. 14.19, write the FDM equations for the nodes having unknown potentials. 
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Fig. 14.19 Nodal arrangement pertaining to problem 14.9 

Solution: 
In this configuration the largest nodal distance is (h). So the respective nodal distance factors 
are calculated based on this largest nodal distance. 
For node-1: The nodal distances are unequal such that s1=s2= s4=1, s3=0.5, s=1.833 and V1= 
60, V2= 100, V3= V3, and V4= V2. Then as per eqn. 14.23 
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For node-2: The nodal distances are unequal such that s1=s2= s4=1, s3=0.5, s=1.833 and V1= 
25, V2= V1, V3= V4, and V4= 0. Then as per eqn. 14.23 
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For node-3: The nodal distances are unequal such that s1=0.5, s2= s4=1, s3=0.333, s=1.333 
and V1= V1, V2= 100, V3= V5, V4= V4 and K=(1/2).  Then as per eqn. 14.73 
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For node-4: The nodal distances are unequal such that s1=0.5, s2= s4=1, s3=0.333, s=1.333 
and V1= V2, V2= V3, V3= V6, V4= 0 and K=(1/2).  Then as per eqn. 14.73 
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For node-5: The nodal distances are unequal such that s2=s3= s4=1, s1=0.333, s=1 and V1= V3, 
V2= 100, V3= 66, and V4= V6. Then as per eqn. 14.23 
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For node-6: The nodal distances are unequal such that s2=s3= s4=1, s1=0.333, s=1 and V1= V4, 
V2= V5, V3= 33, and V4= 0. Then as per eqn. 14.23 
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Simulation Details 
 
Discretization 
 
In Finite Difference Method, for two-dimensional system the entire region of interest, i.e. the 
region where the field distribution is required to be calculated, is discretized using either 
rectangles or squares. In three-dimensional system, discretization is done using either 
rectangular parallelepipeds or cubes. Since potential is commonly assumed to vary linearly 
between two successive nodes, hence the nodes need to be closely spaced where the field 
varies significantly in space. This is generally the case near the electrodes or dielectric 
boundaries, particularly in the cases of contours having sharp corners. On the other hand, in 
the region away from the electrodes or dielectric boundaries, where the field does not change 
rapidly in space, the nodes may be spaced relatively widely apart. 
For multi-dielectric problems, care should be taken during discretization to make sure that 
only one dielectric is present between two consecutive nodes. This is achieved by arranging 
one layer of nodes along the dielectric-dielectric interface. 
The finite difference model of a problem gives a point-wise approximation to the governing 
equations, e.g. Laplace’s equation. This model is formed by writing difference equations for 
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an array of grid points called nodes, which is improved as more nodes are used in the 
simulation. With the help of finite difference method, one can treat some fairly difficult 
problems; but for problems having irregular geometries or an unusual specification of 
boundary conditions, the finite difference method become hard to use. 
As an example of how finite difference method might be used to represent a complex 
geometrical shape, consider the high voltage insulator cross section shown in Fig. 14.20. A 
finite difference mesh would reasonably cover the insulator volume, but the boundaries must 
be approximated by a series of horizontal and vertical lines or “stair steps”. This results in 
poor approximation of the curved insulator boundary. 

 
Fig. 14.20 Discretization of insulator geometry by FDM mesh 

 
Simulation of Unbounded Field Region 
 
FDM is well-suited for simulating bounded field regions, i.e. field regions having well 
defined boundaries. For unbounded field regions, a major difficulty in the implementation of 
FDM is the placement of nodes in the space which is far away from the components that 
affect the field distribution. This difficulty is surmounted by placing a fictitious boundary as 
shown in Fig. 14.21 at a location relatively distant from the components influencing the field. 
This fictitious boundary is placed with the assumption that the pair of nodes on both sides of 
this boundary has same potential, e.g. the potential of the nodes 1, 3, 5 & 7 are assumed to be 
same as that of the nodes 2, 4, 6 & 8, respectively. If this fictitious boundary is placed in a 
region where the field does not vary rapidly in space, then the imposition of this fictitious 
boundary does not incorporate any significant error in the field computation. 
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Fig. 14.21 Simulation of unbounded field region 
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Accuracy Criteria 
 
The accuracy of simulation is dependent upon the nature of discretization of the field region 
and hence it is important to determine the simulation accuracy using certain well-accepted 
criteria as detailed below. 
The “potential error” on the electrode boundaries can be determined at a number of 
checkpoints on the electrode surface between two consecutive nodes. Such check points are 
often called control points. This potential error is defined as the difference between the 
known potential of the electrode and the computed potential at the control point. From such 
calculations one can determine the average or the maximum or the mean squared value of the 
potential error. 
The error in the electric field intensity is usually higher than the potential error. Hence, 
compared to the potential error the “deviation angle” on the electrode surface is a more 
sensitive indicator of the simulation accuracy. The deviation angle is defined as the angular 
deviation of the electric stress vector at the control point on the electrode surface from the 
direction of the normal to its surface.   
In multi-dielectric systems, the discrepancy in the tangential electric stress at the control 
points on the dielectric interface can be computed. Another criterion for checking the 
simulation accuracy is to compute the discrepancy in the normal flux density at the control 
point on the dielectric interface. For a good simulation such discrepancies should be small. 
 
System of FDM Equation 
 
In FDM, the potential of any node is related to either four connected nodes in two-
dimensional system or six connected nodes in three-dimensional system. Hence, if a field 
region is discretized using N (N>>1) number of nodes, then the system of FDM equation will 
be an N×N matrix. But in each row of this matrix, there will be non-zero value in only five or 
seven elements depending upon the dimension of the simulated system and all the other 
elements out of N elements of each row of the matrix will be zero. Hence, it is obvious that 
the system of FDM equations generates a highly sparse matrix.  
Hence, it is advisable to solve the system of FDM equations by an iterative technique such as 
Gauss-Seidel method rather than using a direct method such as Gaussian Elimination. In the 
iterative techniques, suitable technique is to be employed to achieve accelerated convergence. 
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Numerical Computation of HV Field by Finite Element Method (FEM) 
 
Introduction 
 
The Finite Element Method (FEM) is a numerical analysis technique to obtain solutions to 
the differential equations that describe, or approximately describe a wide variety of physical 
problems ranging from solid, fluid and soil mechanics, to electromagnetism or dynamics. The 
underlying premise of the FEM is that a complicated region of interest can be sub-divided 
into a series of smaller sub-regions in which the differential equations are approximately 
solved. By assembling the set of equations for each sub-region, the behavior over the entire 
region of interest is determined. 
It is difficult to state the exact origin of the FEM, because the basic concepts have evolved 
over a period of 100 or more years. The term finite element was first coined by Clough in 
1960. In the early 1960s, FEM was used for approximate solution of problems in stress 
analysis, fluid flow, heat transfer, and some other areas. In the late 1960s and early 1970s, 
application of FEM was extended to much wider variety of engineering problems. Significant 
advances in mathematical treatments, including the development of new elements, and 
convergence studies were made in 1970s. Most of the commercial FEM software packages 
originated in the 1970s and 1980s. The FEM is one of the most important developments in 
computational methods to occur in the 20th century.  The method has evolved from one with 
applications in structural engineering at the beginning to a widely utilized and richly varied 
computational approach for many scientific and technological areas at present. 
 
Basics of Finite Element Method 
 
Using the finite element method, the region of interest is discretized into smaller sub-regions 
called elements as shown in Fig. 15.1, and the solution is determined in terms of discrete 
values of some primary field variables, e.g. electric potential, at the nodes. The governing 
equation, e.g. Laplace’s or Poisson’s equation, is now applied to the domain of a single 
element. At the element level, the solution to the governing equation is replaced by a 
continuous function approximating the distribution of the field variable φ over the element 
domain, expressed in terms of the unknown nodal values φ1, φ2 and φ3 of the solution φ. A 
system of equations in terms of φ1, φ2 and φ3 can then be formulated for the element. Once the 
element equations have been determined, the elements are assembled to form the entire 
region of interest. Assembly is accomplished using the basic rule that the value of the field 
variable at a node must be the same for each element that shares that node. The solution φ to 
the problem becomes a piecewise approximation, expressed in terms of the nodal values of φ. 
The assembly procedure results in a system of linear algebraic equations.  
Several approaches can be used to transform the physical formulation of the problem to its 
finite element discrete analogue. If the physical formulation of the problem is known as a 
differential equation, e.g. Laplace’s or Poisson’s equation, then the most popular method of 
its finite element formulation is the Galerkin method. If the physical problem can be 
formulated as minimization of a functional then variational formulation of the finite element 
equations is usually used. For problems in high voltage fields, the functional turns out to be 
the energy stored in the electric field. 
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Fig. 15.1 Depiction of Region of interest, element and nodes for FEM formulation 

 
A third and even more versatile approach to deriving element properties is known as the 
weighted residuals approach. The weighted residuals approach begins with the governing 
equations of the problem and proceeds without relying on a variational statement. This 
approach is advantageous because it makes it possible to extend the finite element method to 
problems where no functional is available. 
 
Procedural Steps in FEM 
 
In general terms, the main steps of the finite element solution procedure are as follows. 

1. At the beginning the region of interest is discretized into finite elements.  
2. Suitable functions are considered to interpolate the field variables over the element. 
3. The matrix equation for the finite element is formed relating the nodal values of the 

unknown field variables to other physical parameters. 
4. Global equation system is formed for the entire region of interest by assembling all 

the element equations. Element connectivities are used for the assembly process. 
Boundary conditions, which are not accounted in element equations, are imposed 
before the solution of equations. 

5. The finite element global equation system is solved to get the nodal values of the 
sought field variables. 

6. In many cases additional parameters need to be calculated after the solution of global 
equation system. For example, in high voltage field problems electric field intensity, 
electric flux density and charges are of interest in addition to electric potential, which 
are obtained after solution of the global equation system. 

 
Variational Approach towards FEM Formulation 
 
For high voltage field problems, the principle of minimum potential energy is used in this 
approach. The principle of minimum potential energy can be stated as: Out of all possible 
potential functions φ(x,y,z) the one which minimizes the total potential energy is the potential 
solution that will satisfy equilibrium, and will be the actual potential due to the applied field 
forces. 
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Thus, a potential function that will minimize the functional, i.e potential energy, is desired. 
Minimization of functionals falls within the field of variational calculus. In most cases an 
exact function is impossible to determine, necessitating the use of approximate numerical 
methods. The minimization of potential energy in a finite element formulation is carried out 
using the energy approach. The finite element method develops the equations from simple 
element shapes, in which the unknowns of the solution are the potentials at the nodes. The 
calculus of variations enables the energy equation to be reduced to a set of simultaneous 
equations with the nodal potentials as the unknown quantities. 
 
FEM Formulation in 2-D System with Single Dielectric Medium 
 
The potential energy in a two-dimensional electric field is given by 
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where, E = electric field intensity, φ = electric potential, l = length normal to the area A 
(usually considered as unity for 2-D field), εo = permittivity of free space and εr = relative 
permittivity of dielectric. 
The integration of eqn. 15.1 must be carried out over the area A, which is identical to the field 
region under consideration as shown in Fig. 15.1. Since, this area must be finite, FEM cannot 
be applied to the problems with “open fields” without modifications. 
To apply FEM, the region of interest is to be discretized by so-called finite elements as 
shown in Fig. 15.1. If a region of interest is divided into elements such that continuity of 
electric potential between elements is enforced, then the total potential energy is equal to the 
sum of the individual energies of each element. For N number of elements, the total potential 
energy can then be stated as: 
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To minimize the total potential energy, U, of the entire region of interest, U(e) must be 
minimized for each element. Seeking a set of nodal potentials for each element will minimize 
U(e). Observe that the functional, U(e) is a function only of the nodal potentials. Using 
calculus of variations, an extremization of U(e) occurs when the vector of the first partial 
derivatives with respect to φ is zero. 
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Fig. 15.2 Linear Triangular Element 
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The simplest 2-D element is the linear triangular element as shown in Fig. 15.2. For this 
element there are three nodes at the vertices of the triangle, which are numbered around the 
element in anti-clockwise direction. Electric potential φ is assumed to be varying linearly 
within the element such that 
             yx 321 αααφ ++=                                                                                          …. 15.4 

Hence,      2α−=
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Thus, for this element electric field intensity components are constant throughout the 
element. As a result, this type of element is also known constant stress element (CST). 
 
Now, considering a triangular element as shown in Fig. 15.2 

            

333213

232212

131211

yx
yx
yx

αααφ
αααφ
αααφ

++=
++=
++=

                                                                                        …. 15.6 

So, from eqn.3.6 
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Hence, the electric potential energy in an element T 
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For electric potential energy in an element to be minimum, 
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Eqn. 15.12 is to be applied to every node where the unknown potential is to be determined. It 
may be noted here that the node under consideration may belong to more than one element. 
Then Eqn. 15.12 is to be applied for all such elements considering the node under 
consideration as node-1 and the other two nodes of the element being node-2 and node-3 
taken in anti-clockwise direction.  
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So, from eqn. 15.12 
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Hence, from eqns. 15.7, 15.9 and 15.13 
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In eqn. 15.16, subscript T denotes the element number, DT is twice the area of the element as 
given by eqn. 15.8 and εrT is the permittivity of the dielectric within the element. 
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Fig. 15.3 Nodal connectivity – a) 6-element (Hexagonal), b) 8-element (Octagonal) 

 
Discretization using triangular elements is usually done is such a way that one particular node 
is connected to either 6 other nodes in hexagonal connectivity as shown in Fig. 15.3(a) or to 8 
other nodes in octagonal connectivity as shown in Fig. 15.3(b). For hexagonal connectivity, 
an equation may be formed involving potentials of all the six nodes surrounding the node “0” 
applying eqn. 15.15. In such case, for every element, node-0 of Fig. 15.3 is considered to be 
node-1 of eqn. 15.15 and the other two nodes are considered to be node-2 and node-3 in anti-
clockwise direction. Application of eqn. 15.15 thus results in six simultaneous linear 
equations, the summation of which may be represented as follows. 
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Application of eqn. 15.17 to all the nodes having unknown potential will generate the FEM 
system of simultaneous linear equations, which needs to be solved for determining the node 
potentials. Eqns. 15.17 and 15.18 could be suitably modified for octagonal nodal 
connectivity. Here, it may also be noted that FEM formulation as described above 
automatically takes into account the unequal elemental sizes as the coefficients as in eqn. 
15.18 are all computed in terms of nodal coordinates that may have any numerical values. 
 
FEM Formulation in 2-D System with Multi-Dielectric Media 
 
For computing electric field in a multi-dielectric media, triangular elements are so positioned 
that any given triangular element comprises only one dielectric medium. In other words, a set 
of nodal points are to be placed on the interface between two dielectrics as shown in Fig. 
15.4. Hence, the coefficients K1T, K2T and K3T for any node are to be calculated depending on 
its nodal position (i.e. 1, 2 or 3) in an element considering the proper value of εr. 
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Fig. 15.4 Elemental discretization for multi-dielectric media 

 
While applying eqn. 15.17 for the nodal connectivity shown in Fig. 15.4, the following 
modifications need to be made for F2, F5 and F0 keeping the others unchanged. 
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For the computation of F0, K1T is to be calculated considering εr1 for the elements 1, 5 and 6 
and considering εr2 for the elements 2, 3 and 4, using eqn. 15.16. For example, for elements 
T3 and T6, respectively, the expressions for K1T will be as follows. 
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Here, it may be noted that no separate formulation is required for multi-dielectric media in 
FEM in contrast to FDM. 
 
FEM Formulation in Axi-symmetric System 
 
As already discussed, electric potential energy in a triangular element is 
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where, (A.l) is the volume of the element. 
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Fig. 15.5 Triangular element for axi-symmetric formulation 

 
For axi-symmetric system, this volume is created due to the rotation of a triangular element 
around the axis of symmetry. The area of the triangle being A, l should then be the mean 
length of rotation, i.e. 2π times the radial distance of the centroid of the triangle. 

So,           ( )
3

2 321 rrrl ++
= π                                                                                          …. 15.20 

 
Putting this expression for l in eqn. 15.14b 
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So, from eqn. 15.21 in axi-symmetric system 
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and           ( )321 rrrR ++=  
For axi-symmetric system with multi-dielectric media, the modifications to be brought in are 
the same as those described for two-dimensional formulation discussed in section 15.4.2. 
 
FEM Formulation in 3-D System 
 
The potential energy in a two-dimensional electric field is given by 
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To apply FEM, the region of interest is to be discretized by solid finite elements. For N 
number of solid elements, the total potential energy can then be stated as: 

         ∑
=

=
N

e
Total eUU

1
)(  

To minimize the total potential energy, U, of the entire region of interest, U(e) must be 
minimized for each solid element. 
 
The simplest 3-D solid element is the linear tetrahedron element as shown in Fig. 15.13. For 
this element there are four nodes at the four corners of the tetrahedron, which are numbered 
in such a way that first three nodes are arranged in anti-clockwise direction when viewed 
from the fourth node, e.g. 1, 2 and 3 nodes of Fig. 15.13 are arranged in anti-clockwise 
direction when viewed from node-4.  
 
Electric potential φ is assumed to be varying linearly within the element such that 
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Electric field intensity components are constant within a linear tetrahedral element. Hence, it 
is called a constant stress element in HV field computation. 
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Fig. 15.13 Linear Tetrahedral Element 

 
Again, the potentials at the four corners of the element are given by 
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Hence, 
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where, ∆ = 6 times the volume of the element and  
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where,  ∆ yz1 , ∆ yz2 , ∆ yz3 , ∆ yz4  are 2 times the area of triangles opposite to the nodes 1, 2, 
3, 4, respectively, when these triangles are projected to the y-z plane. 
 
Therefore, 
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where,  ∆ zx1
, ∆ zx2

, ∆ zx3
, ∆ zx4

 are 2 times the area of triangles opposite to the nodes 1, 2, 3, 

4, respectively, when these triangles are projected to the z-x plane and ∆ xy1 , ∆ xy2 , ∆ xy3 , 

∆ xy4  are 2 times the area of triangles opposite to the nodes 1, 2, 3, 4, respectively, when 
these triangles are projected to the x-y plane.  
 
Now, electric potential energy in a tetrahedral element is given by 
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For electric potential energy in an element to be minimum, 
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In eqn. 15.52 
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So, from eqns. 15.48, 15.49, 15.52 and 15.53  
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Eqn. 15.55 can be represented as 
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where, subscript e denotes the element number and  

     ])()()([6
2

)1(

2

)1(

2

)1(1 ∆∆∆∆
++= exyezxeyz

e

re
ek ε  

     ][6 )2()1()2()1()2()1(2 ∆∆∆∆∆∆∆
++−= exyexyezxezxeyzeyz

e

re
ek ε  

     ][6 )3()1()3()1()3()1(3 ∆∆∆∆∆∆∆
++= exyexyezxezxeyzeyz

e

re
ek ε  

     ][6 )4()1()4()1()4()1(4 ∆∆∆∆∆∆∆
++−= exyexyezxezxeyzeyz

e

re
ek ε  

…. 15.57 
 
Features of Discretization in FEM 
 
In FEM the continuous domain is replaced by a series of simple, interconnected elements 
whose field variable characteristics are comparatively easy to compute. In true sense, these 
elements are connected to each other along their boundaries but the assumption that the 
elements are connected only at their nodes is made in order to perform a theoretical 
approximation. A wide variety of elements types in one, two, and three dimensions are now 
available. It is a duty of the person doing the analysis to determine not only the appropriate 
type of elements for the problem at hand, but also the density required to sufficiently 
approximate the solution. It is essential to apply engineering judgment. 
 
Refinement of FEM Mesh 
 
In FEM mesh, every element has a size (h) and an order (p). Either reducing the element size 
(h) or increasing the element order (p) reduces the error in FEM. Consequently, there are 
three basic approaches towards mesh refinement in FEM: the h, p, and the h-p methods. 
i) In the h method, the element order (p) is kept constant and the mesh is refined by making 
the size (h) smaller. 
ii) On the other hand, in the p method, the element size (h) is kept constant and the element 
order p is increased for mesh refinement. 
iii) In the h-p method, simultaneously the size (h) is made smaller and the order (p) is 
increased to create higher order smaller sized elements in the mesh refinement process. 
It is often claimed that higher order elements, which require more nodes per element, results 
in less computational time using a smaller number of larger sized elements. But in real-life, 
geometries defining the practical objects are complex, which anyway require a fine mesh to 
accurately discretize the geometry. In such cases, the mesh size is usually small and hence the 
error does not exceed what is required for engineering accuracy. Therefore, use of higher 
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order h elements offers no benefit over the use of lower order h elements in most of the cases. 
Thus, the h method accompanied by a robust quadrilateral or hex generator is most often the 
best solution for practical design jobs. 
 
Acceptability of Element after Discretization 
 
Traditionally discretization of irregular shaped regions has been performed manually. Now-a-
days, state-of-the-art software packages automate the mesh generation process. However, 
with any mesh-generation package, the user's judgment and experience are still very 
important. Once a finite element mesh has been created, it must be checked to ensure that 
each element satisfies certain criteria for acceptability, for example distortion, which may 
produce spurious results. For all types of elements in FEM, the best results are obtained if the 
elements have reasonable shape. Distorted elements lead to major inaccuracies, as in the case 
of isoparametric elements distortions very often lead to non-unique mapping between the 
global and natural coordinates. Experience shows that good results are normally obtained if 
the internal angles of the elements are within 300 and 1500. Another criterion is the ratio 
between the longest and shortest sides of the element. Preferably this ratio should be smaller 
than 5:1. 
Fig. 15.21 shows a few elements having very bad shape that need to be avoided in FEM 
mesh. 

 
Fig. 15.21 Elements having distorted shape 

 
Solution of System of Equations in FEM 
 
Applications of the finite element method to practical systems lead to large systems of 
simultaneous linear algebraic equations, which are symmetric, positive definite and sparse. 
Many solution methods make use of these properties to provide fast and efficient 
computation algorithms, which are now implemented in nearly all finite element packages. 
Only half of the matrix including diagonal entries needs to be stored because of the 
symmetry. Positive definite matrices are characterized by large positive entries on the main 
diagonal. As a result, solution can be carried out without pivoting. Storage and computations 
could be economized using sparsity. Solution methods for simultaneous linear equation 
systems can be broadly divided into two groups: direct methods and iterative methods. Direct 
solution methods are usually used for problems of moderate size. For large problems iterative 
methods are preferable as they require less computing time. The choice of solution method is 
very much dependent on the size of the problem as well as the type of analysis 
 
Sources of Error in FEM 
 
There are three main sources of error in a typical FEM solution, viz. discretization error, 
formulation error and numerical error. 
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Discretization error results from transforming the continuous physical region of interest into a 
finite element model, and can be related to modeling the boundary shape, the boundary 
conditions, etc. In many problems, poor geometry representation causes serious discretization 
error.  Discretization error can be effectively reduced by refinement of FEM mesh. 
Formulation error results from the use of elements that don't precisely describe the behavior 
of the physical problem. For example a particular finite element might be formulated on the 
assumption that electric potential varies in a linear manner over the domain. Such an element 
will produce no formulation error when it is used to model a linearly varying electric 
potential, but would create a significant formulation error if it used to represent a quadratic or 
cubic varying electric potential. The magnitude of this error depends on the size of the 
elements relative to nature of variation of field variables. Formulation error in most physical 
problems reduces as the element size decreases. 
Numerical error occurs as a result of numerical calculation procedures, and includes 
truncation errors and round off errors. This is a function of the computer accuracy, the 
computer algorithm, the number of equations, and the element subdivision. Both truncation 
and round off errors sources are reduced with good modeling practices. 
 
Advantages of FEM 
 
Early work on numerical solution of boundary-valued problems can be traced to the use of 
finite difference method. Use of such method was reported by Southwell in his book 
published long back in the mid 1940’s. The FDM is generally restricted to simple geometries 
in which an orthogonal grid is possible to construct. For irregular geometries, a global 
transformation of the governing equations (e.g., Poisson’s equation in HV fields) must be 
made to create an orthogonal computational domain. Moreover, implementation of boundary 
conditions in FDM is often cumbersome. 
The beginning of the finite element method actually stem from the difficulties associated with 
using finite difference method for solving difficult, geometrically irregular problems. Unlike 
the finite difference method, which envisions the solution region as an array of grid points, 
the finite element method envisions the solution region as made up of many small, 
interconnected sub-regions or elements. A finite element model of a problem gives a 
piecewise approximation to the governing equations. The basic premise of the finite element 
method is that a solution region can be analytically modeled or approximated by replacing it 
with an assemblage of discrete elements. Since these elements can be put together in a variety 
of ways, they can be used to represent exceedingly complex shapes. 
For the high voltage insulator problem, the finite element model gives a good approximation 
of the region of interest using the simplest two-dimensional element, i.e. the linear triangular 
element, as shown in the Fig. 15.22. In FEM a better approximation of the boundary shape is 
obtained because the curved boundary is represented by straight lines of any inclination. 
However, it is not intended here to suggest that finite element models are decidedly better for 
all problems. The only purpose of the example is to demonstrate that the finite element 
method is particularly well suited for problems with complex geometries. 
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Fig. 15.22 Modelling of HV insulator using triangular element 

 
Using FEM in the Design Cycle 
 
Using FEM analysis in the design cycle of a product is advantageous. FEM can be used to 
determine the real life behavior of a new design concept under various practical conditions, 
and therefore to make possible refinement prior to the creation of drawings in CAD, when 
changes are inexpensive. Once a detailed CAD model has been developed, FEM can be used 
to analyze the design in detail, which saves time and money by reducing the number of 
prototypes required. Further an existing product, which is experiencing a field problem or is 
being improved, can be analyzed to speed up the change in engineering design and reduce its 
cost. In addition, FEM analysis can now be performed on increasingly affordable personal 
computers. However, FEM analysis can reduce product testing, but cannot totally replace it. 
It is important to note here that an inexperienced user of FEM can deliver incorrect answers, 
upon which significant and expensive decisions will be based. FEM is a demanding tool, in 
that the analyst must be proficient not only in subject being solved, but also in mathematics, 
computer applications, and especially the finite element method itself. 
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Numerical Computation of HV Field by Charge Simulation Method (CSM) 
 
Introduction 
 
The principle of FDM and FEM is to provide the entire region of interest into a large number 
of sub-regions, and solve for unknown potentials a set of coupled simultaneous linear 
equations which approximate Laplace’s or Poisson’s equation. Compared to these two 
methods, only boundary surfaces, i.e. electrode surfaces and dielectric interfaces, are 
subdivided and charges are taken as unknowns in CSM. It follows, firstly, that the amount of 
human time and effort needed for subdivision is greatly reduced in CSM. Secondly, the 
electric field strength can be given explicitly in CSM without any numerical differentiation of 
the potential, which results in significant reduction in error. The second characteristic is very 
important because the field strength is usually more important for the design of an insulating 
system than electric potential. 
The earlier attempts for numerical field solutions employing CSM were reported by Loeb et 
a1 in 1950 and then by Abou-Seada and Nasser (IEEE-PAS, 1969, pp1802-1814). 
Subsequently, in a comprehensive paper Singer, Steinbigler and Weiss presented the details 
of CSM (IEEE-PAS, 1974, pp1660-1668). Since then many refinements to the original 
method have been proposed and CSM has evolved into a very powerful and efficient tool for 
computing electric fields in HV equipments. CSM is very simple and applicable to systems 
having more than one dielectric medium. This method is also suitable for 3-D fields with or 
without symmetry. 
 
CSM Formulation for Single Dielectric Medium 
 
The basic principle of conventional CSM is very simple. For the calculation of electric fields, 
the distributed charges on the surface of the electrode are replaced by N number of fictitious 
charges placed inside the electrode as shown in Fig.16.1. The fictitious charges are placed 
inside the electrode to avoid singularity problem. In general, the fictitious charges are to be 
always placed outside the region of interest (ROI), as the field is ideally required to be 
determined at all the points within the ROI. If the fictitious charges are placed within the 
ROI, then at the location of the fictitious charges singularity arises because at these points the 
distance between the charge and the point at which the field solution is required becomes 
zero.  
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x Fictitious Charges : j=1,…..,N

 
Fig. 16.1 Fictitious charges and contour points for CSM formulation in single dielectric 

medium 
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The types and positions of these fictitious charges are predetermined, i.e. user-defined, but 
their magnitudes are unknown. In order to determine their magnitude some collocation 
points, which are called contour points, are selected on the surface of electrode. In the 
conventional CSM the number of contour points is chosen to be equal to the number of 
fictitious charges. Then it is required that at any one of these contour points the potential 
resulting from superposition of effects all the fictitious charges is equal to the known 
electrode potential. Let, Qj be the jth fictitious charge and φ be the known potential of the 
electrode. Then according to the superposition principle 
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where, Pij  is the potential coefficient, i.e. the potential at the point i due to a unit charge at the 
location j, which can be evaluated  analytically for different types of fictitious charges by 
solving Laplace’s equation. When Eqn. 16.1 is applied to N no. of contour points, it leads to 
the following system of N linear equations for N unknown fictitious charges 
 

            

φ

φ

φ

φ

=+++++

=+++++

=+++++

=+++++

NNNjNjNN

NiNjijii

NNjj

NNjj

QPQPQPQP

QPQPQPQP

QPQPQPQP
QPQPQPQP

..............
.

..............
.

..............

..............

2211

2211

22222121

11212111

                                                 …. 16.2 

In matrix form, Eqn 16.2 can be written as  
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where,  [P] = potential coefficient matrix, [φ] = column vector of known potential of contour 
points.  
Eqn. 16.3 is solved for the unknown fictitious charges. As soon as the required fictitious 
charge system is determined, the potential and the field intensity at any point within the ROI 
can be calculated. While the potential is found by Eqn. 16.1, the electric field intensities are 
calculated by superposition of all the stress vector components. For example, in Cartesian co-
ordinate system, the three superimposed field components at any point i are given as follows.  
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where,   Fx,ij , Fy,ij and Fz,ij  are the electric field intensity coefficients in the x, y and z 
directions, respectively, i.e. the components in the x, y and z directions, respectively, of 
electric field intensity at the point i for a unit charge at the location j.  
In many cases the effect of the ground plane is to be considered for electric field calculation. 
This plane can be taken into account by the introduction of image charge.  
 
Formulation for Floating Potential Electrodes 
 
Floating potential conductors are often present in high voltage system, the most common 
example being condenser bushings.  If floating   electrodes are present, whose potentials are 
constant but unknown, then the boundary condition that is imposed for field computation is 
given below. 
              1,....,1,01 −==−+ Niforii φφ                                                                         …. 16.7 
Moreover, a supplementary condition is included such that the sum of fictitious charges for 
each floating electrode is zero. 
Then the system of equation that is obtained will be as follows 
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If the floating electrode has a net charge, then the supplementary condition is included such 
that the sum of its fictitious charges is equal to the known net charge value (QE). In Eqn. 16.8 
the first row is then modified as follows 
              ENj QQQQQ =+++++ ..........21                                                                       …. 16.9 
 
CSM Formulation for Multi-Dielectric Media 
 
The field computation for a multi-dielectric system is somewhat complicated due to the fact 
that the dipoles are realigned in dielectric media under the influence of the applied voltage. 
Such realignment of dipoles produces a net surface charge on the dielectric interface. Thus in 
addition to the electrodes, each dielectric interface needs to be simulated by fictitious 
charges. Here, it is important to note that the dielectric boundary does not correspond to an 
equipotential surface. Moreover, it must be possible to calculate the electric field on both 
sides of the dielectric boundary. 
It has been mentioned earlier that the fictitious charges should be outside the ROI. In the case 
of electrodes this has been achieved by placing the charges within the electrodes. But, for 
dielectric-dielectric interface, both the sides are within the ROI. Hence, any fictitious charge 
placed on either side of the interface would cause singularity problem. This issue is solved by 
placing two charges for every contour point on the dielectric –dielectric interface. For solving 
the field within the dielectric-A, the set of charges placed within dielectric-B are considered 
and vice-versa. 
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In the simple example shown in Fig. 16.2, there are N1 number of charges and contour points 
to simulate the electrode, of which NA are on the side of dielectric-A and (N1-NA) are on the 
side of dielectric-B. These N1 charges are valid for field calculation in both the dielectrics. At 
the dielectric interface there are N2 contour points  sequentially numbered from 
(N1+1,…..,N1+N2),   with  N2 charges (N1+1,…..,N1+N2) in dielectric-A valid for dielectric-B 
and N2 charges (N1+N2+1,….., N1+2N2) in dielectric-B valid for dielectric-A. Altogether 
there are (N1+N2) number of contour points and (N1+ 2N2) number of fictitious charges. 

x x x x xxxx

x x
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x x

x x

x x

1
NA NA+1 N1

j=N1+1

j=N1+N2

j=N1+N2+1
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i=N1+1

i=N1+N2

Dielectric-A (εA) Dielectric-B (εB)

φ=V

 
Fig. 16.2 Arrangement of fictitious charges for multi-dielectric media 

 
In order to determine the fictitious charges, a system of equations is formulated by imposing 
the following boundary conditions. 
i) At each contour point on the electrode surface the potential must be equal to the known 
electrode potential. This condition is also known as Dirichlet’s condition on the electrode 
surface. 
ii) At each contour point on the dielectric interface, the potential and the normal component 
of flux density must be same when computed from either side of the boundary. 
 
Thus the application of the first boundary condition to contour points 1 to N1 yields the 
following equations. 
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Again the application of the second boundary condition for potential and normal flux density 
to contour points N1+1 to N1+N2 on the dielectric interface results into the following 
equations.  
From potential continuity condition: 
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From continuity condition of normal flux density Dn : 
                  211 ,1.....0)()( NNNiiDiD nBnA ++==−                                          …. 16.13 
Eqn. 16.13 can be expanded as follows.   
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where, Fn,ij  is the field coefficient in the normal direction to the dielectric boundary at the 
respective contour point and εA & εB are the permittivities of dielectric A and B, respectively. 
Eqns. 16.10 to 16.14 are solved to determine the unknown fictitious charges. These equations 
can be presented in matrix form as detailed below. 
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Types of Fictitious Charges 
 
The successful application of the CSM requires a proper choice of the types of fictitious 
charges. Point and line charges of infinite and semi-infinite lengths were used in the initial 
works on this method. Steinbigler et al introduced ring charges and finite length line charges. 
Subsequently, a large variety of different charge configurations have been proposed.   These 
other types of charge configurations include elliptic cylindrical charge, axi-spheroidal charge, 
plane sheet charge, disk charge, ring segment charge, volume charges, shell and annular plate 
charges as well as variable density line charge. 
In general, the choice of type of fictitious charge to be used depends upon the complexity of 
the physical system and the available computational facilities. The potential and field 
coefficients for point and line charges are given by simple expressions and require very small 
computation time. For complex charge configuration, such coefficients may have to be 
computed numerically. On the other hand, a smaller number of charges may be used if 
complex charge configurations are employed, which reduces the overall memory requirement 
and computation time. In practice, most of the HV systems can be successfully simulated by 
using point, line and ring charges or a suitable combination of these charges. 
 
Point Charge 
 
Point charge is the simplest of all types of fictitious charges. It can be used in 2-D as well as 
3-D configurations. Fig. 16.3 shows the point charge Qj along with its image wrt to the x-y 
plane in 3-D system.  
Then, the potential at the point i due to the point charge Qj and its image is given by 
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Putting Qj =1 in Eqn. 16.15, the expression for potential coefficient is given by 
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Fig. 16.3 Point Charge configuration along with its image 

 
 
Expressions for the electric field intensity coefficients are as follows: 
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Infinite Length Line Charge 
 
Infinite length line charges are used in 2-D configurations, particularly for simulating long 
conductors in the case of transmission lines, cables etc. Fig. 16.4 shows the infinite length 
line charge Qj along with its image wrt to the x-z plane. In this configuration, electric field is 
considered to be independent of z-axis, i.e. the length of the long conductors, while the field 
varies in the x-y plane, which is normal to the length of the long conductors. 
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Fig. 16.4 Infinite length line charge configuration along with its image 

 
In 2-D system, all computations are performed for unit length of the system under 
consideration. Hence, Qj is the charge per unit length for the infinite length line charge. 
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The expression for potential coefficient is then given by 
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Expressions for the electric field intensity coefficients are as follows: 
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Finite Length Line Charge 
 
Finite length line charges of uniform charge density are used in axi-symmetric 
configurations, particularly for simulating cylindrical geometries in the case of bushings, 
circuit breakers etc. Fig. 16.5 shows the finite length line charge along with its image. Finite 
length line charges of uniform charge density are commonly placed on the z-axis, i.e. the axis 
of symmetry. Let, the magnitude of the finite length line charge be Qj and the length of the 
charge be (zj2-zj1) as shown in Fig. 16.5. Then considering uniform charge density, charge per 
unit length is [Qj/(zj2-zj1)]. The expressions for potential and electric field intensity 
coefficients were first developed by Steinbigler et al [IEEE-PAS, 1974, pp 1660-1668] and 
are given below. 
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Fig. 16.5 Finite length line charge along with its image 

 
The expression for potential coefficient is given by 
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The expressions for the electric field intensity coefficients are as follows: 
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Ring Charge 
 
Ring charges of uniform charge density are used in axi-symmetric configurations, particularly 
for simulating spherical and cylindrical shaped geometries etc. Fig. 16.6 shows the ring 
charge along with its image. Ring charges of uniform charge density are commonly placed 
with their axes on the z-axis, i.e. the axis of symmetry. Let, the magnitude of the ring charge 
be Qj and the radius of the ring charge be rj as shown in Fig. 16.6. Then considering uniform 
charge density, charge per unit length is [Qj /(2πrj)]. The expressions for potential and electric 
field intensity coefficients were first developed by Steinbigler et al [IEEE-PAS, 1974, pp 
1660-1668] and are given below. 
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Fig. 16.6 Ring charge of uniform charge density along with its image 

 
The expression for potential coefficient is given by 
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The expressions for the electric field intensity coefficients are as follows: 
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where, E(k1) and E(k2) are elliptic integrals of second kind such that  
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Accuracy Criteria 
 
If the fictitious charges completely satisfy the boundary conditions, then these charges give 
the correct field distribution not only on the boundary but also everywhere outside it. But in 
the CSM, the fictitious charges are required to satisfy the boundary conditions only at a 
selected number of contour points. Again the number of contour points is kept small in order 
to reduce the computer memory and computation time. Hence, it is essential to ensure that the 
simulation is accurate. To determine the simulation accuracy, the following criteria can be 
used. 

i) The “potential error” on the electrode can be computed at a number of control 
points on the electrode surface between two contour points. The potential error is 
defined as the difference between the known potential of the electrode and the 
computed potential at the control point.  

ii) Compared to the potential error the “deviation angle” on the electrode surface is a 
more sensitive indicator of the simulation accuracy. The deviation angle is defined 
as the angular deviation of the electric field intensity vector at the control point on 
the electrode surface from the direction of the normal to its surface. 
Another very severe accuracy criterion is to check that the derivative of the 
potential gradient perpendicular to the electrode surface at the control point 
divided by the gradient itself is equal to the curvature at this point or not. This is 
especially applicable for simulation of areas of the electrode with a small radius of 
curvature.  

iii) In multi-dielectric systems the “potential discrepancy” can be computed at a 
number of control points for each dielectric interface. The potential discrepancy is 
defined as the difference in the value of potential at the control point when 
computed from both the sides of the dielectric interface. Alternatively, the 
discrepancy in the tangential electric stress at the control points on the dielectric 
interface can also be computed. Another criterion for checking the simulation 
accuracy is to compute the discrepancy in the normal flux density at the control 
point on the dielectric interface.  

 
For a good simulation all the above discrepancies should be small. 
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Factors Affecting Simulation Accuracy 
 
The simulation accuracy in the CSM depends upon the types and number of fictitious charges 
as well as locations of fictitious charges and contour points. In general, the simulation error 
can be reduced by increasing the number of charges. However, it has been found that 
increasing the number of fictitious charges beyond a certain limit does not necessarily 
improve the simulation accuracy. Generally, the “assignment factor” (λ) defined as the ratio 
of the distance between a contour point and the corresponding charge (a2) to the distance 
between two successive contour points (a1), as shown in Fig. 16.14, considerably affects the 
simulation accuracy. Steinbigler et al (IEEE-PAS, 1974) suggested that this factor should be 
between 1.0 and 2.0. Several others suggest a range of 0.7<λ<1.5. 
In a good simulation, potential error values as low as 0.001% are possible. However, for 
sharp corners and thin electrodes, such low values are difficult to achieve. Since the electric 
field intensity error is an order of magnitude higher than the potential error, potential error 
values of about 0.1% are considered reasonable. For multi-dielectric systems, if the dielectric 
boundary has a complex shape, comparatively large potential discrepancy values of the order 
of 1% are usually acceptable.  
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x

x
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x Fictitious charge

Contour Point

λ = a2/a1

 
Fig. 16.14 Definition of assignment factor 

 
Manufacturing tolerances of the conductors define the practical limit for the accuracy of the 
simulation of electrodes. In the same way, the accuracy of the determination of dielectric 
constants of the involved media puts the practical limit on the accuracy of the simulation of 
dielectrics. 
 
Solution of System of Equations in CSM 
 
The application of CSM for numerical field calculation involves solutions of linear systems 
of equations as explained in earlier sections. In the conventional CSM, for a single dielectric 
case, the matrix of the linear system of equations to be solved is in general asymmetrical 
without a zero term as detailed in section 16.2. In such cases, the equations could be solved 
using the Gaussian elimination technique with or without partial or complete pivoting. 
In multi-dielectric systems, the matrix of systems of equations to be solved is rather 
heterogeneous and is not symmetrical as detailed in section 16.3. Due to bad   conditioning of 
the matrix, it is preferable to solve it by using a direct method, e.g. Gaussian elimination 
technique, to avoid non-convergence problem, which may arise in the case of iterative 
methods. However, for complicated problems the size of the matrix becomes too large. In 
such cases, iterative methods such as Gauss-Seidel method or the successive over relaxation 
method with varying values of acceleration factor have also been found to be successful. 
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Other Development in CSM 
 
Least Square Error CSM (LSECSM) 
 
In this method, compared to conventional CSM, boundary conditions are satisfied at a larger 
number of contour points than the number of charges as shown in Fig. 16.15.  

x x x x xxxx
j=1, …,N

i=1,…,M
φ=V

 
Fig. 16.15 Fictitious charges and contour points LSECSM 

 
Hence, in the case of LSECSM the matrix of system of equation is a rectangular one having 
M rows and N columns. 
                [ ] [ ] [ ]MNNM VQP =×                                                                                       …. 16.84 
This equation is solved in the following way 
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or,           [ ] [ ] [ ]NNNN FQD =×                                                                                        …. 16.85 
Eqn. 16.85 can be solved to find out the unknown fictitious charges. Anis et al (IEEE-PAS, 
1977, pp1721-1730) most comprehensively presented this method. This method is expected 
to be more accurate than conventional CSM, but at the expense of more computation time. 
Again the accuracy depends upon the fitting ratio, i.e., the ratio of number of contour points 
to the number of charges. This ratio should be kept between 1 and 2. This method is 
applicable to multi-dielectric system, too. 
 
Optimized CSM (OCSM) 
 
In conventional CSM and also in LSECSM, the positions of the charges are specified and 
their magnitudes are solved. In OCSM, both magnitudes and locations of charges are 
determined by minimizing certain objective functions. Various versions of OCSM discussed 
in literature differ in the choice of objective function and the optimization algorithm. Most 
authors have used the least squared potential error as the objective function. Regarding the 
optimization techniques, constrained as well as unconstrained optimization has been used. 
Different algorithms such as Fletcher method, Rosenbrock method and Pattern Search 
method can be used. OCSM are applicable to multi-dielectric system also. Yializis et al 
(IEEE-PAS, 1978, pp2434-2440) proposed OCSM in details. 
For a fixed number of simulation charges, the optimized methods will produce more accurate 
results. However, such an increased accuracy will be obtained at the expense of more 
computation time as well as computer memory and will require more complex programming. 
Hence, it is recommended to be used in those problems where conventional CSM or 
LSECSM methods fail to produce adequate accuracy. 
 
Region Oriented CSM (ROCSM) 
 
Conventional CSM is also called surface oriented CSM as discrete charges are used to 
simulate the electrode and dielectric surfaces. Conventional CSM suffers from difficulties 
associated with positioning the charges for complex geometries and thin electrodes. Region 
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oriented CSM aims at removing these drawbacks and making CSM applicable for a wide 
variety of 2D and 3D problems in HV engineering. Blaszczyk et al (IEEE-Magnetics, 1994, 
pp2924-2927) proposed the ROCSM originally. 
The basic concept of region-oriented CSM is shown in Fig. 16.16. A two-dielectric 
arrangement is divided into four regions. Each region is homogeneous with regard to its 
material properties, and consists of one linear dielectric (R1, R2 and R3 contain ε1 and R4 
contains ε2). As shown in Fig. 16.16, a set of charges encloses each region separately and the 
field and the potential inside each region are calculated from the superposition of the 
surrounding charges. Interestingly, only a relatively small number of charges are necessary to 
calculate the fields in each region. Charges assigned to a region are not placed inside the 
region, but always at a certain distance away from its boundary. In this way singularity 
problem can be avoided. Passing through an interface requires changing the set of charges 
used for field calculation. 
An important advantage of the region-oriented CSM is its ability to solve problems with thin 
conducting foils and thin dielectric layers. The conventional CSM requires that charges be 
placed within thin electrodes or dielectrics (R4 of Fig. 16.16), which results in a large number 
of charges or is even impossible when the thickness of the electrode is very small. 
In region oriented CSM, charges can be placed far away from surfaces of such electrodes and 
dielectrics provided that different regions have been defined on their two sides. In Fig. 16.16, 
the large region between the two electrodes has been divided in some smaller parts by 
introducing fictitious boundaries. In this way four regions have been created, although there 
are only two dielectric media in this example. Charges can then be placed easily for even 
smaller regions, as shown for Region-4 in Fig. 16.16(e). 
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(d) Charge placement for Region-3 (e) Charge placement for Region-4 

Fig. 16.16 Concept of arrangement of charges in Region Oriented CSM 
 
Comparison of CSM with FEM 
 
Both the FEM and CSM are extensively used for numerical calculation of electric field in 
high voltage engineering. 
In FEM, the entire region of interest is subdivided into a large number of sub-regions and a 
set of coupled simultaneous linear equations, which minimize the electrostatic energy in the 
field region, are solved for unknown node potentials. On the other hand, in CSM only 
boundary surface, i.e. electrode surface and dielectric interfaces, are subdivided with 
fictitious charges which are taken as unknowns. Therefore, it follows that the amount of time 
and effort needed for subdivision is greatly reduced in CSM. Moreover, the system of 
equations thus obtained by discretization is of smaller dimension in CSM. 
FEM is useful for two-dimensional and also three-dimensional systems with or without 
symmetry and is advantageous for the calculation of fields where the boundaries have 
complicated shapes. However, for computing field distribution at a large distance from the 
HV electrodes by FEM, a large number of nodes and hence excessive computation time and 
computer memory space are required. Thus, FEM is more suited for problems where the 
space is bounded. On the contrary, application of CSM is easy with high precision for field 
problems having infinity extended unbounded region and for relatively simple boundary 
geometries but not so for fields with complex electrode configurations.  
In FEM exact field intensity at any point cannot be obtained. Instead average field intensity 
between two nodes is to be calculated from the known values of node potentials or numerical 
differentiation of the potential has to be done. But, in CSM the electric field intensity can be 
obtained explicitly with the fictitious charges without resorting to numerical differentiation of 
the potential, which results in significant reduction in error. With proper positioning of the 
fictitious charges and the contour points and with the optimum number of fictitious charges, 
the potential and stress errors can be made less than 0.01% and 0.1%, respectively, in CSM. 
Though FEM is more suited for multiple dielectric problems, CSM can also be effectively 
employed for fields with many dielectrics. 
A major disadvantage of CSM was that the electric field is difficult to calculate in systems 
having very thin electrodes because fictitious charges have to be placed within the electrodes. 
However, this disadvantage is obviated by the application of Region Oriented CSM in recent 
years. Further, CSM is usually, more accurate and less trouble-some in computing Laplacian 
fields than FEM, but is difficult to use for non-Laplacian fields, e.g. Poissonian fields. 
However, CSM with complex fictitious charges has been developed for calculating 
Poissonian field including volume and surface resistance providing very accurate results. 
Again, CSM is not suited for specific fields containing space charges where FEM can be 
employed very effectively. But, now-a-days suitable boundary conditions have been 
postulated for use in connection with CSM for computing spacer surface fields in compact 
GIS as modified by the charges accumulated on the spacer surface. 
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Hybrid Method involving CSM and FEM 
 
The most promising of the hybrid methods involving FEM and CSM is the so called 
combination method, which has been independently proposed by Steinbigler (3rd ISH, Milan, 
paper no. 11.11, 1979) and Okubo et al (3rd ISH, Milan, paper no. 11.13, 1979). In general, it 
may be observed that CSM has more or less the opposite properties of FEM. Thus attempts 
have been made to combine these two methods in a general purpose higher precision method 
that takes the superior properties and excludes the inferior properties of these two methods. 
Higher precision in numerical field computation can be obtained if the field region of interest 
is divided into parts to be analyzed by suitable methods. A field problem that could hardly be 
analyzed or that was analyzed approximately by only one method, may be analyzed with very 
good accuracy by applying an appropriate combination of different methods, e.g. FEM and 
CSM. 
In the FEM-CSM hybrid method, the entire space is divided into regions, which are to be 
analyzed separately by the CSM (C-Domain) and by the FEM (F-Domain). The boundary 
between the two regions is called the combined surface. Due to the properties of each 
method, the CSM is mainly used for open areas with infinite boundary and the FEM is used 
for finite enclosed space usually containing dielectric interfaces, conductive dielectrics, space 
charges etc. It is to be noted that though CSM and FEM are two different methods, they result 
into similar linear system of equations. The coupling between C-Domain and F-Domain is 
based on the fact that the potential and the normal flux density must be continuous at the 
combined surface. Figs. 16.17(a) and 16.17(b) show how the entire field region is divided 
into CSM-region and FEM-region in the application of hybrid method in two-dielectric media 
and in space charge modified field computation, respectively.  
Studies on combination method indicate that it offers advantages over the conventional CSM 
in 2D and 3D fields with axial symmetry for situation where space charges or conductive 
regions are present. Also, for the computation of 3D fields without axial symmetry, the 
advantages of combination method are significant. 
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Fig. 16.17 Separation of field region into CSM-Region and FEM-Region in Hybrid Method 
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Numerical Computation of Capacitive-Resistive Field by Charge 
Simulation Method (CSM) 
 
CSM with Complex Fictitious Charges 
 
In order to calculate the field for a sinusoidal applied voltage, the calculations can be 
performed as a d.c. field in so far as the applied voltage does not change so fast that 
electromagnetic treatment is required. Then the instantaneous field strength is merely 
dependent on the applied voltage at that time instant. Thus the conventional CSM with real 
fictitious charges can be used to compute a.c. fields for three phase systems. It has been 
shown that the field distribution for sinusoidal applied voltage can be calculated in an 
efficient way by the use of complex fictitious charges. This is permitted because the fictitious 
charges also change sinusoidally with an angular frequency same as that of the applied 
voltage. Hence, by the use of complex fictitious charges, eqn. 16.1 is modified as follows. 

                φ=∑
=

j

N

j
ijQP

1

                                                                                                  …. 16.34 

where, a bar on a variable represents a complex quantity. Application of eqn. 16.34 to N 
number of contour points consists of a set of simultaneous linear equations for complex 
unknown charges jQ  with real coefficients as given below in matrix form. 

              [ ] [ ] [ ]NNNN QP φ=×                                                                                             …. 16.35 
Eqn. 16.35 is solved to find complex solutions for the fictitious charges. 
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Fig. 16.9 Application of CSM with complex fictitious charge for a.c. field calculation 
 
To explain the above technique in a detailed manner, consider the case of Fig. 16.9, which 
shows four conductors of which three are energized from a three-phase a.c. source, while the 
fourth one is grounded. Let, Vph be the phase voltage of three phase source. Again, let there 
be N number of complex fictitious charges and contour points, respectively, for each 
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conductor. The charges and the contour points are numbered as follows, 1,……,N for 
conductor A, N+1,…..,2N for conductor B, 2N+1,…..,3N for conductor C and 3N+1,…..,4N 
for conductor G. Then the application of eqn. 16.34 to all these contour points gives the 
following equations. 
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Eqns. 16.36 through 16.39 can be expressed in matrix form as follows: 
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These equations are solved for the unknown complex fictitious charges jQ . 
 
Capacitive-Resistive Field Computation by CSM 
 
Normally high voltage equipment is insulated with materials of such a high resistivity that it 
can be treated as infinite for field calculation. In such cases, the field distribution is purely 
capacitive. But for lower values of volume or surface resistivity, the field distribution is 
capacitive-resistive or even resistive depending upon the value of resistivity. In the case of 
capacitive field distribution, the instantaneous field is independent of waveform of applied 
voltage. But a very distinctive feature of capacitive-resistive fields is their time dependency 
and dependency on the waveform of applied voltage. Hence, capacitive-resistive field 
calculation including volume or surface resistivity is very important in studying d.c. and low 
frequency fields, impulse fields, contaminated insulators, voltage dividers, cables etc. 
Bachmann [3rd ISH, Milan, 1979, Paper No. 12.05] first proposed a technique based on CSM 
for capacitive-resistive field calculation. In his method, as the first step, the capacitive field 
distribution is calculated by CSM assuming resistivity to be infinite. Then the electrode-
electrode and dielectric interface-electrode capacitances are calculated from this capacitive 
field distribution. After this as the second step, an equivalent R-C network is constructed 
which comprises of these capacitances and surface resistances. Finally, the voltage 
distribution for the capacitive-resistive field is calculated from the R-C network. This method 
has two major drawbacks.  Firstly, the capacitances between the dielectric interface and 
electrode are dependent upon the field distribution and hence, are not identical in capacitive 
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and capacitive-resistive fields. Secondly, the calculation of field intensities from the R-C 
network is very laborious and results in significant errors. 
Takuma et a1 [IEEE-PAS, 1981, pp 4665-4672] first proposed a method for direct simulation 
of the instantaneous capacitive-resistive field distribution with fictitious charges. Their 
method based on CSM and employing complex fictitious charges is generally extended so 
that any capacitive-resistive field including volume resistance or surface resistance can be 
calculated, when the field distribution is Laplacian in the region except on the boundaries. 
Use of complex fictitious charges as well as appropriate boundary conditions permits the 
simulation of non-linear and transient problems also. Singer [4th ISH, Athens, Paper No. 
11.02, 1983] has used complex charges and Fourier integrals to calculate the impulse stresses 
of conductive dielectrics. Use of discrete as well as area complex charges have been reported 
for capacitive-resistive field calculation. 
 
Capacitive-Resistive Field Computation including Volume Resistance 
 
For capacitive-resistive field calculation including volume resistance, the principle of the 
method is that the field effect of the true charges produced by volume resistance is 
incorporated by means of complex fictitious charges in the CSM.  
If the volume charge density is σv, then 
                   ( ) vE σε =∇.


                                                                                                 …. 16.40 

where, E  is the electric field intensity. 
 Again, if the current density through the volume of the dielectric is J , then 
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where, ρv is the volume resistivity and is constant, i.e. independent of E . 
Now, if ε is independent of time t and E, then Eqn. 16.40 can be modified as follows 
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Eqns. 16.41 and 16.42 lead to 
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For, a.c. fields of angular frequency ω, E = Emsinωt. Hence, 
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Thus, eqn. 16.43 can be rewritten as 

                    0. =







+∇ EjE

v

ωε
ρ


             

or,                01. =
















+∇ Ej

v

ωε
ρ


                                                                              …. 16.44 

Eqn. 16.44 shows that the fields including volume resistivity ρv can be computed by replacing 
the permittivity ε in purely capacitive field with the complex permittivity ε such that, 
                    ( ) 0.. =∇ Eε


                                                                                                …. 16.45 
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where,          
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Again, if ε  is constant in the region of field calculation, then eqn. 16.45 becomes the 
Laplace’s equation as given below. 
                     0. =∇ E


 

Eqn. 16.45 permits the use of CSM for capacitive-resistive field calculation including volume 
resistance. However, from the above discussion, it becomes clear that in fields containing 
volume resistance, CSM cannot be applied to problems where ε or ρv is dependent on the 
electric field. This is because in such cases the field distribution cannot be expressed by 
superposing solutions of Laplace’s equation. 
The above method can be explained explicitly as described below. Consider a two-dielectric 
arrangement as shown in Fig. 16.10. In Fig. 16.10 the two dielectric media are assumed to 
have volume resistivities of ρvA and ρvB, respectively. The charges and the contour points are 
numbered in the same way as that given in earlier section. However, in earlier section only 
real fictitious charges were taken for capacitive field calculation. But, for capacitive-resistive 
field calculation including volume resistance, complex fictitious charges are employed in 
place of real fictitious charges. The system of equations to be solved for unknown charges is 
derived by imposing the boundary conditions on the electrode surfaces and on the dielectric 
interfaces. The resulting equations with complex treatment are as follows. 
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Fig. 16.10 Multi-dielectric arrangement with volume resistivities 

 
i) Dirichlet’s condition on the electrode surface: 
                  Vi =)(φ                                                                                                        …. 16.46 
Eqn. 16.46 can be expanded for all the contour points on the electrode surface in the 
following way. 
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ii) Potential continuity condition on the dielectric interface: 
                )()( ii BA φφ =                                                                                                    …. 16.49 
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where, the subscripts A and B denote dielectric A and B, respectively. Eqn. 16.49 can be 
detailed explicitly as follows. 
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iii) Continuity condition of Dn on the dielectric interface: 
                  )()()( iiDiD nBnA σ=−                                                                                   …. 16.51 
where, Dn  and σ represent normal component of electric flux density and surface charge 
density, respectively.  
Eqn. 16.51 can also be written as 
                 )()()( iiEiE nBBnAA σεε =−                                                                              …. 16.52 
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Fig. 16.11 Determination of surface current density due to volume resistivities 

 
Now, the surface current density )(iJ  at any point i on the dielectric interface due to volume 
resistance can be obtained as follows from Eqn. 16.53. For the case shown in Fig. 16.11, )(iJ  
is given by 
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The surface charge density )(iσ  at any point i on the dielectric interface is given by 
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Now, for a.c. fields of angular frequency ω,      ∫ =
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So, Eqn. 16.54 can be rewritten as 
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Thus, Eqns. 16.52 and 16.55 lead to 

               )(1)(1 iE
j

iE
j

nB

vB
BnA

vA
A 








+=








+

ωρ
ε

ωρ
ε                                                    …. 16.56 

or,                0)()( =− iEiE nBBnAA εε                                                                               …. 16.57 

where,            







+=








+=

vB
BB

vA
AA j

and
j ωρ

εε
ωρ

εε 11  

Eqn. 16.57 is given below in details 
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Eqns. 16.47, 16.48, 16.50 and 16.58 can be represented in matrix form as given below. 

Pij Pij

PijPij

0

0
0 Pij -Pij

(εA-εB)
Fn,ij

-εB
Fn,ij

εA
Fn,ij

Qj

V

0

1
1

NA

N1

N1+N2

N1+2N2

N1 N1+N2 N1+2N2 1

N1+2N2

1

N1

N1+2N2
            ….  16.59 

 
It follows from Eqn. 16.59 that these are same as those for capacitive field, if the real values 
of the fictitious charges, permittivity, potential and field strength are replaced by their 
complex values. 
 
Capacitive-Resistive Field Computation including Surface Resistance 
 
In fields including only surface resistance, true charges exist only on the boundary, i.e. 
electrode and dielectric surfaces, and not inside the dielectric medium. As a result, the field 
distribution is always Laplacian inside each medium. This permits the application of CSM to 
capacitive-resistive field calculation including surface resistance. The field distribution is 
obtained by superposing the effects of complex fictitious charges properly arranged inside the 
electrode and on both sides of the dielectric interface. The effect of true surface charges has 
to be incorporated into that of the complex fictitious charges.  
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Fig. 16.12 Multi-dielectric arrangement with surface resistivity 

 
The method can be better explained by considering the two-dielectric arrangement shown in 
Fig. 16.12. The difference is that, in this case, the volume resistivities of the two dielectrics 
are considered to be infinite and a uniform surface resistivities ρs is considered along the 
dielectric interface. The boundary conditions (i) and (ii) as given by eqns. 16.46 and 16.49, 
respectively, as well as the eqns. 16.47, 16.48 and 16.50, in the case of volume resistance as 
given in sub-section 16.6.1, are also valid in the case of surface resistance. However, the 
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expression of surface charge density σ in continuity condition of nD , as given by eqn. 16.51 
in sub-section 16.6.1, has to be modified as follows. 
In fields including surface resistance, the true surface charge density σ(i) is expressed as 
given below. 
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where, I(i) is the net surface current flowing into the ith contour point and  S(i) is a small 
surface area corresponding to that contour point. For two-dimensional or axi–symmetric 
cases, where the surface current I(i) flows in a predetermined direction, σ(i) can be expressed 
in terms of neighboring potentials and resistances as shown in Fig. 16.13. 
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Fig. 16.13 Determination of surface current density due to surface resistivity 
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where, R(i) and R(i+1) are surface resistances  corresponding to ith and (i+1)th contour 
points, respectively, as shown in Fig. 16.13. The expressions for R(i) and S(i) are detailed 
below.  
i) For two–dimensional system (per unit length) 

            ∫
−

=
i

i
sdliR

1

)( ρ                                                                                                      …. 16.62 

            ∫
+

−

=
1

1

2/)(
i

i

dliS                                                                                                      …. 16.63 

ii) For axi-symmetric system 
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where, r′  is the r-coordinate of d1 and d1 is a small length along the dielectric interface. 
 
For a.c. fields of angular frequency ω, eqn. 16.61 is modified as follows. 
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Hence, from eqns. 16.52 and 16.66, it follows that   
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Eqn. 16.67 can be expressed explicitly as follows for the system of Fig. 16.12. 
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…. 16.68 
Now, the system of equations to be solved for unknown complex charges jQ  as given by 
Eqns. 16.47, 16.48, 16.50 and 16.68 can be expressed in matrix form as given below. 
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where, 1C  and  2C   are two complex coefficients as given below. 
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From the matrix given in the sub-section 16.6.2 as well as the matrix given in sub-section 
16.6.1, it is important to note that the equations contain not only complex charges but also 
complex coefficients. 
 
Field Computation by CSM under Transient Voltage 
 
Transient problems, where the applied voltage has an arbitrary waveform, are difficult to 
solve directly by CSM. For computing transient fields, there are two techniques. In the 
technique proposed by Singer (4th ISH, Athens, paper no. 11.02, 1983), the transient voltages 
are decomposed into sinusoidal components by means of Fourier analysis or Fourier 
transformation. Field distribution due to individual sinusoidal components is calculated by 
CSM using complex fictitious charges. The complex a.c. responses for the needed 
frequencies are then weighted and summed up in order to get the time-dependent capacitive-
resistive field distribution. In general, it is not necessary to calculate the field distribution for 
all the frequencies and it is sufficient to calculate the field distribution for some fixed 
reference frequencies. The results for the intermediate frequencies are then interpolated from 
the results for the reference frequencies.  
In the other technique proposed by Takuma et al (IEEE-PAS, 1981, pp4665-4672) for 
transient field calculation, the integral of eqn. 16.54 or 16.61 are approximated with a 
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summation over a succession of sufficiently short time intervals to obtain the field 
distribution in relation to time discretely by CSM. Only real fictitious charges are used in this 
case for computation of transient capacitive-resistive field. This technique can be better 
explained in the following way.  
In transient fields, where the voltage applied is φ=V(t), the field distribution is calculated by 
dividing the entire time-span  into short intervals ∆t and by converting the integral form of 
eqns. 16.54 or 16.61 to the iterative summation. In this case, since the real fictitious charges 
are used, the eqns. 16.47, 16.48 and 16.50 are also valid without the complex treatment, for 
the arrangement shown in Fig. 16.10. However, the continuity condition of nD  has to be 
modified. The necessary modifications and the resulting equations for the transient field 
calculation including volume resistance or surface resistance are discussed below.   
 
Transient Field Computation including Volume Resistance 
 
At the time instant t1=∆t1, eqn. 16.52 without the complex treatment can be written as  
        111 )()()( iiEiE nBBnAA σεε =−                                                                                   …. 16.72 
where, the integral form of surface charge density, as given by eqn. 16.54, is modified as 
follows. 
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where, the subscript 1 denotes time instant t1 = ∆t1. 
Hence, eqn. 16.72 can be written as follows 
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Then the real fictitious charges can be determined for the time instant t1 = ∆t1 by solving a 
set of simultaneous linear equations constructed from eqn. 16.74 along with eqns. 16.47, 
16.48 and 16.50 without the complex treatment. 
Then at the time instant t2 = ∆t1 + ∆t2 
               222 )()()( iiEiE nBBnAA σεε =−                                                                           …. 16.75 
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Since σ(i)1 is known for the time instant t1 = ∆t1, the real fictitious charges and hence, the 
field distribution for the time instant t2 = ∆t1+ ∆t2 can be obtained from eqns. 16.75 and 
16.76 along with eqns. 16.47, 16.48 and 16.50 without the complex treatment. Thus, this 
iterative sequence gives the field distribution for φ=V(t) at any time instant. 
The equations to be solved for real fictitious charges at the nth time instant, tn = ∆t1 + ∆t2+--- 
+ ∆tn can be given in matrix form as follows. 
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where, the subscripts n and n-1 denote nth and (n-1)th time instants respectively, and K1, K2 
and K3 are three real constants as detailed below. 
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Transient Field Computation including Surface Resistance 
 
At the time instant t1 = ∆t1, in the continuity condition of nD  the expression for the surface 
charge density σ(i)1 can be written as follows. 
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Eqn. 16.78 is a modified equation derived from the integral form, as given by eqn. 16.61. 
Thus, the continuity condition of Dn can be written as follows 
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Hence, the real fictitious charges can be determined for the time instant t1 = ∆t1 from eqn. 
16.79 along with eqns. 16.47, 16.48 and 16.50 without the complex treatment. 
Then at the time instant t2 = ∆t1 + ∆t2 
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By using σ(i)1 as obtained for the time instant t1= ∆t1 the real fictitious charges for the time 
instant t2 = ∆t1+ ∆t2  can be obtained from eqn. 16.80 along with eqns. 16.47, 16.48 and 
16.50 without the complex treatment. Hence, this iterative sequence gives the field 
distribution for φ=V(t) at any time instant. 
The equations to be solved for real fictitious charges at the nth time instant, tn = ∆t1 + ∆t2+--- 
+ ∆tn can be given in matrix form as follows. 
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where, A1 and A2 are two real coefficients as detailed below. 
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In general, the time interval ∆t for various time steps can have different values. However, 
they may be made equal for all the time steps for simplicity. 
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Sphere or Cylinder in Uniform External Field  
 
Introduction 
 
Conducting and dielectric components are integral parts of any electrical equipment. If the 
size of the conducting or dielectric object is very small compared to dimensions of the field 
region where the object is located, then the object contributes to the field only in the domain 
near the object. In many cases, such objects are present as stray bodies in high voltage 
insulation arrangement. As practical examples one may cite a small piece of conductor or 
dielectric floating in liquid insulation of large volume in transformers, metallic dust particles 
floating in gaseous insulation within gas insulated system etc. It is important to understand 
how the presence of a conducting or dielectric object modifies the external field in the 
vicinity of the object, because any enhancement of electric field intensity due to the 
conducting or dielectric object may lead to unwanted discharge or in the worst case failure of 
the insulation system. 
If it is assumed that the source charges (in practical arrangement, the electrodes or conductors 
with specific potentials) that produce the external field is located far away from the object 
under consideration, then they are unaffected by the presence of the object. Consequently, the 
field due to the source charges may be considered to be uniform at the location of the object. 
If the object is such that its shape is defined by well known mathematical functions, e.g. 
cylinders or spheres, then the complete solution for electric field due to the source charges 
located at far away positions and the induced charges on the surface of the object could be 
obtained by solving Laplace’s equation considering the field region to be free from any 
volume charge. However, in order to get the complete solution appropriate boundary 
conditions on the surface of the object, whether it is conducting or dielectric, need to be 
satisfied. One of the common methods of getting the analytical solution for cylinder or sphere 
in uniform external field is the method of separation of variables as described in this chapter. 
 
Sphere in Uniform External Field 
 
Consider a spherical object of radius a within a uniform external field as shown in Fig.10.1. 
Since the boundary is a sphere of r=constant, hence the system is best described in spherical 
coordinates as shown in Fig.10.1. The uniform external field is given by zuEE ˆ00 −=


 and the 

potential at any point due to the external field is given by zErE 00 cos =θ  with respect to the 
center of the sphere. In order to get the complete solution for electric field in this system, 
Laplace’s equation in spherical coordinates as given in eqn.(10.1) needs to be solved. 
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Fig.10.1 Sphere in uniform external field 

 
The field system has azimuthal symmetry wrt the z-axis, i.e. the field system does not change 
with the rotation around the z-axis. So z-axis is made the polar axis in the spherical 
coordinate system. Then the field is independent of coordinate φ and the Laplace’s equation 
reduces to 
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In order to separate the terms of the LHS of eqn.(10.2) into functions of only one variable, 
eqn.(10.2) may be rewritten by multiplying r2 as  
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Then LHS of eqn.(10.3) is the sum of two terms which are functions of only one variable 
each, i.e. the first term is function of r only while the second term is function of θ only. The 
solution to eqn.(10.3) can be obtained as the product of two functions of which one is 
dependent only on r while the other is dependent only on θ. 
Let the assumed solution be  )()(),( θθ NrMrV =     …. 10.4 
The assumed solution is convenient as the boundary lies at r=constant. 
Combining eqn.(10.3) and (10.4) 
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The partial derivatives become total derivatives in eqn.(10.5) as each term is dependent on 
only one coordinate.  
The sum of two terms of the LHS of eqn.(10.5) could be zero only when the two terms are 
separately equal to opposite and equal constant terms as given in eqn.(10.6). 
Equal and opposite separation constant solution: 
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where, p is a positive constant. 
Another solution is obtained when the separation constant is zero. Hence,  
Zero separation constant solution: 
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Each of the above-mentioned two solutions is to be obtained separately.  
Determination of the zero separation constant solution: 
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Eqn.(10.9) becomes undefined for θ=π. But this is not feasible in the given system as 
potential must be a continuous function. So, A10 should be zero in eqn.(10.9). Therefore, 

20)( AN =θ           …. 10.10 
Then from eqns.(10.4), (10.8) and (10.10), the zero separation constant solution can be 
obtained as 
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where, C1=A20C10 and C2=A20C20. 
Determination of the equal and opposite separation constant solution: 

The first term of eqn.(10.6) is p
dr

rdMr
dr
d

rM
+=






 )(

)(
1 2 ,  

or, )()(2 rpM
dr

rdMr
dr
d

+=





        …. 10.12 

Putting nrCrM =)( in eqn.(10.12) 

( ) nn rCprnCr
dr
d

+=−12 , or, nn rCprnnC =+ )1( , or, 02 =−+ pnn  

Hence, ( )pn 411
2
1

+±−=         …. 10.13 

The second term of eqn.(10.6) is p
d

dN
d
d

N
−=








θ
θθ

θθθ
)(sin

sin
1

)(
1 ,  

or, )()(sin
sin

1 θ
θ
θθ

θθ
Np

d
dN

d
d

−=





       …. 10.14 



 75 

Putting θθ cos)( BN = in eqn.(10.14), ( ) θθθ
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Hence, from eqn.(10.13) n = +1, -2. 
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From eqns.(10.4) and (10.15), 
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where, BCC ′=3 and BCC ′′=4 . 
The complete solution for potential function is uniquely given as a linear combination of the 
two solutions given by eqns.(10.11) and (10.16). 
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where, the constants are determined by satisfying the boundary conditions. 
It is evident from eqn.(10.17) that the first term corresponds to a net charge on the sphere and 
the second term to a finite potential. 
 
Conducting Sphere in Uniform Field 
 
Consider that the sphere is a conducting one and is isolated and uncharged. Further, consider 
that the potential at the location of the center of the sphere due to the external field is V0.  
Since the perturbing action of the sphere is negligible at a large distance from the sphere, the 
potential at a large distance from the sphere (r>>a) is given by 
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If the sphere is charged with a finite amount of charge Q, then 
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In practical systems, floating metallic particles are usually not charged and hence eqn.(10.18) 
is taken here for further discussion. 
Comparing eqns.(10.17) and (10.18) for r→∞, 0302 , ECVC == . C1 will be zero for 
uncharged sphere. 
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On the conductor surface, i.e. for r=a, θθ cos),( 2
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But conducting sphere surface is an equipotential and hence electric potential is independent 
of θ on the conductor surface. 
So, from eqn.(10.21), 3
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Hence, the complete solution for electric potential in the domain r>a is given by 
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The r and θ components of electric field intensity could be obtained as follows 
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On the conducting sphere surface, tangential component of electric field intensity must be 
zero as it is an equipotential surface. Eqn.(10.24) shows that for r=a, Eθ is zero, which in turn 
validates the solution obtained. 
Again, on the conducting sphere surface, Er is the normal component of electric field 
intensity, which is given by θcos3 0EE

arr −=
=

. Thus the maximum value of electric field 
intensity on the surface of the conducting sphere is 3E0, i.e. three times the strength of 
uniform external field. 
This is the reason why metallic dust particles should be avoided at all costs for gas insulated 
systems. Because presence of metallic dust particles will increase the local electric field 
intensity three times, which will result into partial discharge within the GIS that is very 
detrimental for GIS operation. 
Induced surface charge density on the surface of the conducting sphere may be obtained as 
follows 
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As stated earlier, the sphere may be charged with an additional charge Q, which is distributed 
uniformly on the sphere surface and its effect on the field could be found by superposition. 
 
Dielectric Sphere in Uniform Field 
 
In the case of dielectric sphere present in a uniform external field, there will be two solutions 
to potential function, Vi valid for the region within the sphere having dielectric of permittivity 
εi and Ve valid for the region outside the sphere having dielectric of permittivity εe. So from 
eqn.(10.17) 
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and θθ cos),( 2
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The potential at large distance r (r>>a) from the sphere  
θθ cos),( 00 rEVrV +=         …. 10.28 

where, V0 is the potential at the location of the center of the sphere due to the external field. 
Comparing eqns.(10.27) and (10.28) for r→∞, 0302 , ECVC ee == . C1e will be zero as a 
dielectric sphere is not considered to have any free charge. 

Hence, eqn.(10.27) can be rewritten as θθ cos),( 2
4
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Inside the dielectric sphere electric potential must be finite at all the points. Hence, from 
eqn.(10.26) 0241 ,0 VCCC iii === . Hence, eqn.(10.26) can be rewritten as 

θθ cos),( 30 rCVrV ii +=         …. 10.30 
At r=a, both eqns.(10.29) and (10.30) should yield the same electric potential. Therefore, 
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On the dielectric-dielectric boundary the normal component of electric field intensity should 
be same on both sides of the boundary. For the spherical boundary, r-component of electric 
field intensity is the normal component on the boundary. Hence,  
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From eqns.(10.31) and (10.32) 
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Therefore, the complete solutions for potential functions inside and outside the dielectric 
sphere are given by 
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Noting that rcosθ=z, potential function inside the dielectric sphere can be written as 
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Hence, electric potential within the dielectric sphere varies in only z-direction, i.e. the 
direction of the external field. Electric field intensity within the dielectric sphere will 
therefore have only the z-component, which is given by 
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Fig.10.2 Electric field in and around dielectric sphere in uniform field 

 
Eqn.(10.36) shows that the magnitude of electric field intensity within the dielectric sphere is 
constant. Typical field distribution in and around a dielectric sphere within a uniform external 
field is shown in Fig. 10.2. 
Eqn.(10.36) also shows that if εi<εe, then 0EEzi > . Consider the case of a spherical air bubble 
trapped within a moulded solid insulation of relative permittivity 4. If the magnitude of 
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electric field intensity in solid insulation at the location of the air bubble is E0, then the 
magnitude of electric field intensity within the air bubble will be 1.33E0. The operating 
electric field intensity within solid insulation is usually kept at a higher value as the solid 
insulation has a higher dielectric strength and hence such increase in field intensity within the 
air bubble often causes partial discharge within the air bubble as the dielectric strength of air 
is much lower than solid insulation. 
 
Cylinder in Uniform External Field 
 
Consider a long cylindrical object of radius a within a uniform external field as shown in 
Fig.10.3. Since the boundary is a circle of r=constant on the x-y plane, hence the system is 
best described in cylindrical coordinates as shown in Fig.10.3. The uniform external field is 
given by iEE ˆ

00 −=


 and the potential at any point due to the external field is given by
xErE 00 cos =θ with respect to the axis of the cylinder. In order to get the complete solution 

for electric field in this system, Laplace’s equation in cylindrical coordinates as given in 
eqn.(10.37) needs to be solved. 
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Fig.10.3 Cylinder in uniform external field 

 
For this arrangement electric field distribution does not vary along the length of the cylinder, 
i.e. along z-coordinate. Hence, Laplace’s equation reduces to 
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Separating the terms of the LHS into functions of only one variable by multiplying r2 with 
eqn.(10.38), it may be written that 
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The two terms on the LHS of eqn.(10.39) are functions of only one variable each, i.e. the first 
term is function of r only while the second term is function of θ only. The solution to 
eqn.(10.39) can be obtained as the product of two functions of which one is dependent only 
on r while the other is dependent only on θ. 
Let the assumed solution be  )()(),( θθ NrMrV =     …. 10.40 
The assumed solution is convenient as the boundary lies at r=constant. 
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Combining eqns.(10.39) and (10.40), 
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Dividing by M(r)N(θ), 
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The partial derivatives become total derivatives in eqn.(10.41) as each term is dependent on 
only one coordinate.  
As in the case of sphere in uniform field, zero separation constant solution and equal and 
opposite separation constant solution are to be obtained separately in this case, too. 
Determination of the zero separation constant solution: 

The first term of eqn.(10.41) is 0)(
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Integrating and incorporating constants of integration 
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Next the second term of eqn.(10.41) is 0)(
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, where N(θ) is non-zero. So 

2010)( AAN += θθ          …. 10.43 
But, from eqns.(10.42) and (10.43), it can be seen that there is discontinuity of potential at 
r=0 and θ=∞, which are not feasible in the given arrangement as potential must be a 
continuous function. Hence, 01010 == AC  in eqns.(10.42) and (10.43). 
Therefore, 12020),( CACrV ==θ        …. 10.44 
Determination of the equal and opposite separation constant solution: 

The first term of eqn.(10.41) is p
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Substituting nCrrM =)( in eqn.(10.45), it may be obtained that 
pnnn =+− )1( , or, pn ±=  

Hence, p
p

rC
r
CrM ′′+
′

=)(         …. 10.46 

Again, the second term of eqn.(10.41) is p
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Substituting θθ aeN =)( in eqn.(10.47), it may be obtained that 
θθ aa epea −=2 , or, pia ±=  

Hence, ( )αθθ += pBN cos)(        …. 10.48 
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Eqns.(10.46) and (10.48) lead to 
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where, BCC ′=2 and BCC ′′=3  
From eqns.(10.44) and (10.49), the complete solution for potential function at all values of r 
and θ can be obtained as 
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The potential at large distance r (r>>a) from the cylinder is given by 
θθ cos),( 00 rEVrV +=         …. 10.51 

Matching eqns.(10.50) and (10.51), 1=p and α=0. 
Hence, the complete solution as given by eqn.(10.50) reduces to 
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Conducting Cylinder in Uniform Field 
 
Comparing eqns.(10.51) and (10.52), C1=V0 and C3=E0. 
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But conducting cylinder surface is an equipotential and hence electric potential is 
independent of θ on the conductor surface. 
So, from eqn.(10.53), 2

02 aEC −=  
Hence, the complete solution for electric potential in the domain r>a is given by 
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The r and θ components of electric field intensity could be obtained as follows 

θcos1 2

2

0 







+−=

∂
∂

−=
r
aE

r
VEr        …. 10.55 

θ
θθ sin11

2

2

0 







−=

∂
∂

−=
r
aEV

r
E        …. 10.56 

Eqn.(10.56) shows that for r=a, Eθ is zero, i.e. the tangential component of electric field 
intensity is zero on the cylindrical conductor surface as it is an equipotential surface.  
Again, on the conducting cylinder surface, Er is the normal component of electric field 
intensity, which is given by θcos2 0EE

arr −=
=

. Thus the maximum value of electric field 
intensity on the surface of the conducting cylinder is 2E0, i.e. twice the magnitude of uniform 
external field. Comparing this maximum electric field intensity with the value obtained for 
conducting sphere in uniform field, it may be seen that the enhancement of field intensity is 
more if the conducting object is spherical is shape.  
Induced surface charge density on the surface of the conducting cylinder may be obtained as 
follows 
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Dielectric Cylinder in Uniform Field 
 
Potential function valid for the region within the cylinder having dielectric of permittivity εI 
is 
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and the potential function valid for the region outside the cylinder having dielectric of 
permittivity εe is 
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The potential at large distance r (r>>a) from the cylinder  
θθ cos),( 00 rEVrV +=         …. 10.60 

where, V0 is the potential at the location of the axis of the cylinder due to the external field. 
Comparing eqns.(10.59) and (10.60) for r→∞, 0301 , ECVC ee == . 
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Inside the dielectric cylinder electric potential must be finite at all the points. Hence, from 
eqn.(10.58) 0, 201 == ii CVC . Hence, eqn.(10.58) can be rewritten as 

θθ cos),( 30 rCVrV ii +=         …. 10.62 
At any point on the dielectric cylinder surface, i.e. for r=a, electric potential as may be 
obtained from eqns.(10.61) and (10.62) must be unique. Hence, 
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From the boundary condition of normal component of electric flux density at r=a 
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From eqns.(10.63) and (10.64) 
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Therefore, the complete solutions for potential functions inside and outside the dielectric 
cylinder are given by 
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As rcosθ=x, potential function inside the dielectric cylinder can be written as 
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Hence, electric potential within the dielectric cylinder varies in only x-direction, i.e. the 
direction of the external field. Electric field intensity within the dielectric cylinder will 
therefore have only the x-component, which is given by 
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Similar to the case of dielectric sphere in uniform field, Eqn.(10.68) shows that the 
magnitude of electric field intensity within the dielectric cylinder is constant. Typical field 
distribution on the x-y plane in and around a dielectric cylinder within a uniform external 
field will be the same as that shown in Fig. 10.2. 
As in the case of dielectric sphere in uniform field, for dielectric cylinder in uniform field 
also 0EEzi >  if εi<εe. If a cylindrical air bubble is trapped within a moulded solid insulation of 
relative permittivity 4, then the magnitude of electric field intensity within the air bubble will 
be 1.6E0, where E0 is the magnitude of electric field intensity in solid insulation at the 
location of the air bubble. Comparing this result with the corresponding value in the case of 
dielectric sphere, it may be seen that field enhancement is more if the gas cavity in liquid or 
solid insulation is cylindrical in shape. 
 



 83 

Electrostatic Pressures on Boundary Surfaces  
 
Introduction 
 
There could be two different approaches towards the calculation of electrostatic force acting 
on any boundary. In the first approach, the macroscopic resultant force may be calculated by 
summing up the elementary electrostatic forces as obtained from Coulomb’s law. On one 
hand this approach should always give correct result, but on the other hand in most of the 
practical cases it is very difficult, if not impossible, to perform such calculation as the actual 
distributions of charges are mostly unknown. 
The second approach is based on the principle of energy conservation and the electrostatic 
forces are derived indirectly from energy relationship. This approach is advantageous in the 
sense that the forces can be calculated conveniently even by analytical methods. But the 
accuracy of the results obtained from this approach depends on the validity of the principle of 
energy conservation for the specific case under consideration. Some argue that this condition 
is not always satisfied and consequently this method can lead to wrong results in some cases. 
Although majority of the scientific community firmly believe that the principle of energy 
conservation has a general validity, and therefore this approach should always provide correct 
results. On the whole, it is better to suggest that one should use it with due circumspection 
and reservation by always verifying the results. 
 
Mechanical Pressure on Conductor-Dielectric Boundary 
 
As discussed in section 6.2, only same polarity charges reside on the boundary between a 
perfect conductor and a dielectric medium. These same polarity charges, residing on the 
surface of the conductor, exert repulsive forces on each other. These forces will be of such 
nature that the distance between the charges should increase. In other words, the surface area 
of the conductor-dielectric boundary will try to increase under the influence of these 
repulsive forces. Hence, the electrostatic force on the conductor-dielectric boundary always 
acts along the normal to the boundary directed from the conductor to the dielectric. 
The force on a conductor-dielectric boundary could be calculated using the expression for 
energy density. If an elemental area A∆ on a conductor-dielectric boundary is depressed by a 
distance l∆ , the increase in stored energy ( W∆ ) is equal to the work done against the 
electrostatic force acting on the conductor-dielectric boundary trying to swell the surface. 
Hence, considering the energy density of electric field within the dielectric to be WE 

lAWW E ∆∆=∆  
 
Here, it has been assumed that the charge on the conductor surface remain unchanged even 
when the geometry is changed slightly. This assumption is valid when the conductor is an 
isolated one, i.e. it is not connected to a source that could alter its charge, e.g. a voltage 
source. Hence, the work done in depressing the boundary could be related directly to the 
energy content of electric field according to the law of conservation of energy. 
If the electrostatic force acting against the depression of the surface is given by F, then the 
work done against this force is 

lAWlF E ∆∆=∆ , or, AWF E ∆=        …. 8.1 
Electrostatic force per unit area is the mechanical pressure due to electrostatic field acting on 
the conductor-dielectric boundary, which is therefore given by 

Econdmech W
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=          …. 8.2 
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Considering the surface charge density of the conductor-dielectric boundary to be σ,  
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as D = Dn = σ, because Dt = εEt is zero on the conductor surface, as Et=0. 
 
Electric Field Intensity exactly on the Conductor Surface 
 
Dimensionally, the mechanical pressure acting on the charged conductor surface is equal to 
the product of surface charge density (σ) and the electric field intensity exactly on the 
conductor surface (Esurface), i.e. from eqn.(8.3)  
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r
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From eqns.(6.8) and (6.10), 
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r
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Therefore, Surfacesurfacetheoffjust EE ×= 2       …. 8.6 
 
 
Problem 8.1 
A metallic sphere of 20cm radius is charged with 1µC, spread uniformly over the surface and 
is surrounded by a dielectric medium having a relative permittivity of 5. Find the electric 
field intensity just off the sphere and also on the sphere. Find also the mechanical pressure 
acting on the sphere.  
Solution: 
Sphere radius  =  20 cm  =  0.2m 
Sphere surface area  =  4 π × (0.2)2   =  0.5026  m2 
Therefore, surface charge density (σ) = (1×10-6) / 0.5026  = 1.989×10-6 C/m2 
Electric field intensity just off the sphere surface   

=  (1.989×10-6) / (5×8.854×10-12)  =  44.94×103 V/m 
Electric field intensity exactly on the sphere surface   

=  (44.94×103) / 2   =  22.47×103 V/m 
Therefore, mechanical pressure acting on the sphere surface  

= 1.989×10-6×22.47×103 = 0.0447 N/m2 
 
Electrostatic Forces on the Plates of a Parallel Plate Capacitor 
 
In order to get a simple analytical solution, consider that the distance between the plates (l) of 
the capacitor is much smaller than the area of the plates (A).  In that case it may be assumed 
that the E-field between the plates is homogeneous, and the effect of the inhomogeneity of E-
field at the edges, commonly known as fringing, may be neglected. The charge may also be 
assumed to be distributed uniformly over the plates, i.e. the charge density may be assumed 
to be known for the application of Coulomb’s law. 

Capacitance of the parallel plate capacitor (C) = 
l
Aε  

Let, the potential difference between the two plates of the capacitor be V. 

So, the uniformly distributed charge on the plates of the capacitor (Qplate) = C×V = 
l

VAε  

and the electric field intensity within the dielectric of the capacitor is 
l
VE =  
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As discussed in section 8.2.1, electric field intensity exactly on the plate surface is given by 
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So from Coulomb’s law, the electrostatic force acting on the capacitor plates is given by 
2

2
1

2






=×==

l
VA

l
V

l
VAEQF plateplateplate εε       …. 8.8 

Again, according to eqn.(8.2) mechanical pressure acting on the plates 
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Hence, the electrostatic force acting on the capacitor plates is 
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platemechPlate ε , which is the same as that of eqn.(8.8) 

Eqn.(8.8) is very useful because if the force could be measured when the voltage is unknown, 
then the voltage can be calculated from the above formula from the knowledge of the 
capacitor dimensions. In fact the measurement of voltage by electrostatic voltmeter is based 
on this principle. 
 
Problem 8.2 
For an air-filled parallel plate capacitor, the area of the plates is 50cm2 and the separation 
distance between the plates is 5mm. What will be the maximum electrostatic force on the 
capacitor plates at standard temperature and pressure? 
Solution 
Breakdown strength of air at STP is 30kV/cm or 3×106 V/m. That will be the maximum 
possible electric field intensity within the parallel plate capacitor. 
So the maximum electrostatic pressure on the capacitor plates is 

22612
max

/84.39)103(10854.8
2
1 mNPplate =××××= −  

 
NFplate 199.0105084.39 4

max
=××= −  

 
 
Mechanical Pressure on Dielectric-Dielectric Boundary 
 
Mechanical pressure due to electrostatic field that act on a dielectric-dielectric boundary arise 
due to two reasons. The first one is the polarization of atoms and/or dipoles in the volume of 
the dielectric media under the action of electric field, while the second one is the change in 
the polarization vector that takes place at the boundary between two different dielectric 
media. These two mechanical pressures need to be discussed separately. 
 
Mechanical Pressure due to Dielectric Polarization 
 
Consider a homogeneous isotropic dielectric piece of small volume placed in vacuum within 
an electric field. The atoms and/or dipoles within this dielectric volume will be polarized 
under the action of the electric field. Since, each atom and/or dipole consists of positive and 
negative charge, it may be considered that under the action of the electric field a uniformly 
distributed cloud of negative charges is shifted through a small distance from a uniformly 
distributed cloud of positive charges. The same polarity charges by mutual repulsion develop 
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an outward force, which tends to swell the small dielectric volume into the surrounding 
vacuum. 
The dielectric volume being small enough, it will not alter the electric field intensity due to 
the external field within which it is placed. But due to dielectric polarization the electric flux 
density within the dielectric volume will be higher due to higher permittivity of the dielectric 
compared to vacuum for the same electric field intensity.  
In the absence of dielectric medium, energy density of electric field will be given by 

2
02

1 EW
vacuumE ε=          …. 8.10 

and in the presence of dielectric medium, energy density of electric field for the same electric 
field intensity within the same volume will be given by 

2

2
1 EW

dielectricE ε=          …. 8.11 

Due to electrostatic repulsive force, if unit area of the surface of the small dielectric volume 
expands through a small distance dl in the normal direction, then the difference in stored 
energy is equal to the mechanical work done by the repulsive forces, if no heat energy is lost. 
Let the force on the dielectric boundary due to dielectric polarization be Fpol. Then the 
mechanical work done by Fpol is given by 
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0 ××−=×= dlEdlFDoneWork pol εε  

or, ( ) 2
02

1
1

E
Fpol εε −=         …. 8.12 

This force per unit area, i.e. mechanical pressure, acts normally on the boundary directed 
from the dielectric to vacuum. 
When two different dielectric meet at a boundary, then the mechanical pressure by which 
each dielectric tends to push the boundary normally outward could be computed using 
eqn(8.12). The difference in these two pressures is the net pressure acting on the dielectric-
dielectric boundary due to dielectric polarization. 
The mechanical pressure on the boundary due to dielectric-1 alone, i.e. when dielectric-2 is 
replaced by vacuum, is given by 

( ) 2
1011 2

1 EP
vacuumdielctricmech εε −=

−
       …. 8.13 

This pressure given by eqn.(8.13) acts normally from dielectric-1 to vacuum on the boundary. 
Again, the mechanical pressure on the boundary due to dielectric-2 alone, i.e. when 
dielectric-1 is replaced by vacuum, is given by 

( ) 2
2022 2

1 EP
vacuumdielctricmech εε −=

−
       …. 8.14 

This pressure given by eqn.(8.14) acts normally from dielectric-2 to vacuum on the boundary. 
The difference in these two pressures as given by eqns.(8.13) and (8.14) is the net pressure 
acting on the boundary due to dielectric polarization. Considering the normal on the 
dielectric-dielectric boundary to be from dielectric-1 to dielectric-2,  
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as ttt EEE == 21 and nnn DDD == 21 . 
 
Mechanical Pressure on Surface Film at Dielectric-Dielectric Boundary 
 
Consider a boundary between a homogeneous isotropic dielectric medium and vacuum as 
shown in Fig.8.1. For a boundary having no free charge, the boundary conditions are E1t = E2t 
and D1n = D2n. 

Dielectric (ε1) Vacuum (ε0)

Boundary

P1N

E1, D1,P1

P1 = D1 – ε0E1 P2 = 0

E2, D2

Normal to
Boundary

 
Fig.8.1 Change of polarization vector at dielectric-vacuum boundary 

 
Within the dielectric medium 110111 PEED +== εε , where P1 is the polarization vector in the 
dielectric medium. Hence, 1011 EDP ε−= .  
On the other hand, within vacuum 202 ED ε=  and hence, P2=0. 
Thus, as one crosses the boundary the polarization vector drops from a finite value within the 
dielectric medium to zero in vacuum. But this change in polarization vector cannot occur at 
one line of infinitesimal thickness representing the boundary. On the contrary, such change in 
polarization vector occurs within a thin film of finite but very small thickness within the 
dielectric medium just off the boundary. 
Consequently, this boundary film needs to be studied closely. Since only a normal 
displacement of the boundary film will expand the boundary, hence only the normal 
components of electric flux density and polarization vector are considered. The normal 
component of electric flux density remains constant inside the boundary film. But, the normal 
component of electric field intensity as well as the normal component of polarization vector 
vary gradually and finally assume the values equal to those just outside the film on the 
vacuum side of the boundary. Such variation is schematically shown in Fig.8.2. 
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Fig.8.2 Variation of electric field quantities within the boundary film 

 
Within the boundary film, the polarization vector is nnn EDP 0ε−=  
Therefore, Nn dEdP 0ε−= as Dn is constant within the film. 
Now, consider a thin strip of thickness ds within the film such that the distance of the strip 
from the beginning of the film is S, as shown in Fig.8.2. Also consider that ds be the 
separation distance between the positive and negative charges of the atoms and/or dipoles 
within this strip. At a distance S, the negative charges of the atoms lie in a field of intensity 
En and at a distance dsS + , the positive charges lie in a field of nn dEE + . Hence, each dipole 
charge is subjected to a force per unit of dEn towards right according to Fig.8.2. But the 
polarization vector being Pn, there are Pn charges per unit area. Thus the force per unit area, 
i.e. mechanical pressure, acting towards right on the thin strip is 

nnnnfilmmech dPPdEPPd
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1
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−==  

So, total mechanical pressure acting on the entire film is 
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     …. 8.17 

Thus, when two dielectric media meet at a boundary, the normal pressure that acts on the 
boundary film from dielectric-1 to dielectric-2 may be computed following the same logic as 
in the case of eqns. (8.13), (8.14) and (8.15). So, 
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Total Mechanical Pressure on Dielectric-Dielectric Boundary 
 
The total mechanical pressure on the boundary between two dielectric media pushing the 
boundary from dielectric-1 to dielectric-2 is the sum of eqns.(8.15) and (8.18). So, 
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Noting that 2
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Eqn.(8.20) may also be written as 
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as ttt EEE == 21 and nnn DDD == 21 . 
Eqn.(8.21) can be used to find the mechanical pressure acting on the conductor-dielectric 
boundary, by considering ∞=1ε for the conductor and noting the boundary conditions on the 
conductor-dielectric boundary as Et=0 and hence D=Dn. Then putting εε =2 for the dielectric 
surrounding the conductor in eqn.(8.21) 

ε2

2DP
condmech = , which is the same as eqn.(8.3). 

 
Problem 8.3 
There is a paper insulated transformer coil immersed in oil. εr for paper=3 and εr for 
transformer oil=2.1. There is a normal electric stress of 25 kV/cm and a tangential electric 
stress of 10kV/cm just within the paper at the paper-oil boundary. Calculate the total 
mechanical pressure acting on the paper-oil boundary. 
Solution 
Given: E1n = 25kV/cm = 25×105V/m and E1t = 10kV/cm = 106V/m 
So, 5

0
5

01011 107510253 ××=×××== εεεε nrn ED V/m 
Total mechanical pressure acting on the paper-oil boundary 
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11101.23
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1 ε

ε
ε = 39.56 N/m2. 

 
Problem 8.4 
A rectangular slab of porcelain (εr=5) is placed in air within an electric field such that the 
surface of the porcelain slab is perpendicular to the electric field lines. Find the maximum 
possible mechanical pressure acting on the porcelain-air boundary at standard temperature 
and pressure. 
Solution 
Since the boundary is perpendicular to the electric field lines in air, hence on the air side of 
the boundary, Et=0. Again the maximum value of electric field intensity in air is 30kV/cm at 
standard temperature and pressure. So, on the air side of the boundary En-max = 30kV/cm or 
3×106V/m. 
So, the maximum possible mechanical pressure acting on the porcelain-air boundary is 
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Two Dielectric Media in series between a Parallel Plate Capacitor 
 
Consider a parallel plate capacitor having two dielectric media in series between the plates 
such that the boundary between the dielectric media is parallel to the plates, as shown in 
Fig.8.3. In this case, electric field lines will be perpendicular to the boundary. According to 
the boundary condition, normal component of electric flux density will be same in both the 
dielectric media, but the magnitude of electric field intensity will be different in the two 
dielectrics. Further, since the tangential component of electric field is zero because the 
electric flux lines are perpendicular to the boundary, hence D=Dn. 

E1

E2

Φ = +V +σ

−σΦ = 0

ε1

ε2D
1n

=D
2n ε1<ε2

l1

l2

E1 E2>
σb

Plate area (A)

Plate area (A)

F1

F3

F2

D

D

 
Fig.8.3 Two dielectric media in series between a parallel plate capacitor 

 
Let, the potential difference across the dielectric-1 (ε1) is V1 and that across the dielectric-2 
(ε2) is V2. Then 
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Mechanical pressure acting on the plates will be equal to energy density of electric field just 

off the plates, i.e. 2

2
1 Eε . Considering the area of the plates to be A,  

Mechanical force acting on the top plate (F1) = AE2
112

1 ε  = AV
ll

2
2

2112

2
12

1








+εε
εε  

or, 
1

2
2

2112

21

1
1 2

1
εεε

εε
ε

FAV
ll

F =







+

= , where AV
ll

F 2
2

2112

21

2
1









+

=
εε

εε   …. 8.23 

Similarly, mechanical force acting on the bottom plate (F2) = AE2
222

1 ε = 
2ε

F  …. 8.24 

The force F1 acts on the top plate directed towards dielectric-1, while the force F2 acts on the 
bottom plate directed towards dielectric-2. Thus F1 and F2 are in opposite direction and 
F1>F2 as ε1<ε2. 
So it appears that there is a resultant unidirectional reaction-less force acting on the capacitor. 
But this is not true, because the force acting on the boundary surface between the two 
dielectric media has to be taken into account, too. 
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From eqn.(8.21) the mechanical force on the dielectric-dielectric boundary is given by 
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In eqn.(8.21) the mechanical pressure is assumed to be acting from dielectric-1 to dielectric-
2. As ε1<ε2, F3 as per eqn.(8.25) is negative indicating that the force F3 acts towards the 
dielectric of smaller permittivity, i.e. towards dielectric-1.  

Thus net electrostatic force acting on the capacitor 0
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FFFFFFF  

 
Two Dielectric Media in parallel between a Parallel Plate Capacitor 
 
Consider a parallel plate capacitor having two dielectric media in parallel between the plates 
such that the boundary between the dielectric media is perpendicular to the plates, as shown 
in Fig.8.4. In this case, electric field lines will be tangential to the boundary. According to the 
boundary condition, tangential component of electric field intensity will be same in both the 
dielectric media, but the magnitude of electric flux density will be different in the two 
dielectrics.  
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Φ = +V +σ1

Φ = 0

ε1ε2

ε1<ε2 l

Plate area (A2)

F1

F3

F2
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D1D2

−σ1

+σ2
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Fig.8.4 Two dielectric media in parallel between a parallel plate capacitor 

 

In this case, 
l
VEE == 21 , 111 ED ε= and 222 ED ε=  

The mechanical force acting on the part of the plate in contact with dielectric-1 is given by 
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The forces acting on the two plates within the section of the capacitor containing dielectric-1 
will be equal to F1 but will act in opposite directions. 
The mechanical force acting on the part of the plate in contact with dielectric-2 is given by 
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The forces acting on the two plates within the section of the capacitor containing dielectric-2 
will be equal to F2 but will act in opposite directions. If A1=A2, then F2>F1 as ε2>ε1. But the 
net force on the capacitor plates will always be zero due to the presence of equal and opposite 
forces on the plates. 
But there will be mechanical force acting on the boundary between the two dielectric media, 
which according to eqn.(8.21) is given by 
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where, Ab = area of the dielectric-dielectric boundary. 
As stated earlier, in eqn.(8.21) the mechanical pressure is considered to be acting from 
dielectric-1 to dielectric-2. As ε1<ε2, F3 as per eqn.(8.28) is negative, which indicates that the 
force F3 acts towards the dielectric of smaller permittivity, i.e. from dielectric-2 to dielectric-
1. 
 
Electrostatic Pump 
 
The mechanical force acting on the dielectric-dielectric boundary, as discussed in section 8.5 
above, can be demonstrated practically with the help of the arrangement shown in Fig.8.5, 
which is also known as electrostatic pump. 

Φ
 =

 +
V

Φ
 =

 0

hε

ε0

l

 
Fig.8.5. Demonstration of electrostatic pump 

 
If a charged parallel plate capacitor with air between the plates is partially submerged in a 
liquid dielectric as shown in Fig.8.5, then the mechanical force on liquid-air boundary within 
the capacitor will act from the liquid dielectric to air, as the permittivity of air is smaller than 
the permittivity of liquid dielectric. Hence, this mechanical force will push the liquid up 
between the plates against the force of gravity. When the electrical force on the boundary and 
the weight of the liquid column between the capacitor plates become equal, then the upward 
movement of the liquid dielectric between the plates stops, and the surface of the liquid 
dielectric between the capacitor plates remains at a higher level than the surface of the liquid 
dielectric in the container. 
As per eqn.(8.28), the mechanical force on the liquid-air boundary acting towards air is 
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where, lw = width of the plates normal to the plane of the paper, l = separation distance 
between the capacitor plates and V = potential difference between the capacitor plates. 
The gravitational force on the liquid column between the capacitor plates is  

gllhF wgravity ρ=          …. 8.30 
where, h = height of the liquid column between the capacitor plates, ρ = density of the liquid 
dielectric and g = acceleration due to gravity. 
At equilibrium Fgravity = Fdielectric-boundary, i.e. 
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In the case of electrostatic pump, for a given liquid dielectric and for fixed dimensions of the 
capacitor, the height of the liquid column between the capacitor plates can be controlled by 
controlling the voltage applied across the plates. 
 
Problem 8.5 
A parallel plate capacitor with air between the plates is submerged into transformer oil in a 
container in such a way that the top surface of transformer oil in the container is 
perpendicular to the capacitor plates. The potential difference between the capacitor plates is 
15kV and the separation distance between the plates is 6mm. Density of transformer oil is 
860kg/m3. Calculate the height of the transformer oil column between the capacitor plates if 
εr for transformer oil = 2.1. What will be height of the liquid column if transformer oil is 
replaced by water for which density is 1000kg/m3 and εr is 80. 
Solution 
Given: ρoil = 860kg/m3, εr of oil = 2.1, V = 15kV = 15×103V and l = 6mm = 6×10-3m 
Acceleration due to gravity (g) = 9.81 m/s2 
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If transformer is replaced by water, then ρwater = 1000kg/m3, εr of water = 80 

So, ( ) mmhwater 3.222
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Conformal Mapping  
 
Introduction 
 
Analytical solutions to many field problems, particularly Dirichlet problems, can be obtained 
using methods like Fourier Series and integral transforms. These methods are applicable only 
for simple regions and the solutions are either infinite series or improper integrals, which are 
difficult to evaluate. Closed form solutions to many Dirichlet problems can be obtained using 
conformal mapping, which is a similarity transformation. If a function is harmonic, i.e. it 
satisfies Laplace's equation 02 =∇ f


, then the transformation of such a function via conformal 

mapping is also harmonic. Hence, equations in relation to any field that can be represented by 
a potential function can be solved with the help of conformal mapping. However, conformal 
mapping can only be employed in two dimensional fields. If the solution for potential field is 
required in three dimensional cases, then conformal mapping is applicable to only those 
configurations where the potential field is translationally invariant along any one of the three 
axes. The two dimensional potential fields that can be solved by conformal mapping are static 
electric fields, static magnetic fields, static electric flow fields, stationary thermal flow fields, 
stationary hydrodynamic flow fields to name a few. According to Riemann Mapping 
Theorem any two regions with same connectivity may be conformally mapped to one 
another. But in practical applications conformal mapping is used only in those cases where 
the maps take simpler, explicit forms, so that one may carry out actual calculations with those 
maps. 
As the application of conformal mapping is limited to variables which solve the Laplace's 
equation for two dimensional fields, one such variable of practical interest is the electrostatic 
potential in a region of space that is free of charges. This chapter, therefore, focuses on 
application of conformal mapping to determine electrostatic potential field by solving two 
dimensional Laplace’s equation. 
 
Basic Theory of Conformal Mapping 
 
Conformal transformation is based on the properties of analytic functions. Let, iyxz += be a 
complex variable such that the real and imaginary parts x and y are real valued variables, and 

),(),()()()( yxviyxuzvizuzf +=+= be a complex valued function such that the real and 
imaginary parts u and v are real and single valued functions of real valued variables x and y. 
If the derivative of f(z) exists at a point z, then the partial derivatives of u and v exist at that 
point and obey the Cauchy-Riemann equations as follows. 

y
v

x
u

∂
∂

=
∂
∂ and

x
v

y
u

∂
∂

−=
∂
∂         …. 11.1 

A function f(z) is analytic at a point z0 if its derivative )(zf ′ exists not only at z0 but at every 
point in the neighborhood of z0. It can also be shown that if f(z) is analytic, the partial 
derivatives of u and v of all orders exist and are continuous functions of x and y. So, 
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In the same way one may get, 02
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v       …. 11.3 

Eqns.(11.2) and (11.3) show that both the functions u(x,y) and v(x,y) satisfy Laplace’s 
equation. 
Any function that has continuous second order partial derivatives and satisfies Laplace's 
equation is called a Harmonic function. Thus both the real part, u(x,y), and imaginary part, 
v(x,y), of the complex function f(z) are harmonic functions. If the function f(z) = 
u(x,y)+iv(x,y) is analytic, then u(x,y) and v(x,y) are conjugate harmonic functions. If one of 
two harmonic functions is known, then the other can be found using Cauchy-Riemann 
equations.  
Thus both the conjugate harmonic functions u(x,y) and v(x,y) can be used to find the potential 
since they satisfy Laplace's equation.  
 
Mapping of Shapes 
 
From a different point of view, the complex function f(z) can be considered as a tool for 
change of variables, i.e. a transformation from the complex z-plane to the complex w-plane, 
as shown in Fig.11.1, where  

iyxz +=  and  ivuw +=  
It can also be shown that if the function f is analytic at a point z=z0 on the z-plane, where the 
first order derivative )( 0zf ′ is non-zero, there exists a neighborhood of the point w0 in the w-
plane in which the function w=f(z) has a unique inverse z=F(w). The functions f(z) and F(w), 
therefore, define a change of variables from (x,y) to (u,v) and from (u,v) to (x,y), respectively.  

x

y
z-plane or,
x-y plane

u

v
w-plane or,
u-v plane

z0

w0

 
Fig.11.1 Mapping between z-plane and w-plane 

 
On the z-plane, dyidxdz += and on the w-plane dvidudw +=  

So, 222 dydxdz +=          …. 11.4 

and 222 dvdudw +=          …. 11.5 
Then, on the z-plane, square of the length element can be written as  

2222 dzdydxdl =+=          …. 11.6 
and, on the w-plane, square of the length element can be written as 

2222 dwdvdudL =+=          …. 11.7 
Therefore, from eqns.(11.6) and (11.7), it may be written that 

dz
dw

dl
dL

=           …. 11.8 

Thus, in the neighborhood of each point in z-plane, if w(z) is analytic and have a non-zero 
derivative, i.e. finite slope at that point, then the ratio of length elements in two planes 
remains constant. The net result of this transformation is to change the dimensions in equal 
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proportions and rotate each infinitesimal area in the neighborhood of that point. In general, a 
linear transformation bzazfw +== )( , where a and b are complex numbers, rotates by 
arg(a) in the anti-clockwise direction, dilates or compresses by a  and translates by b. Thus 
the ratio of linear dimensions, which may also be represented as the angle, is preserved. As a 
result, conformal mapping is isogonic because it preserves angles. Hence, all curves in the z-
plane that intersect each other at particular angles are mapped into curves in the w-plane that 
intersect each other at exactly the same angles. This property is most useful for electric field 
analysis as the equipotentials and the field lines, which are normal to each other in z-plane, 
are mapped to corresponding curves in w-plane, which are also mutually orthogonal. 

Furthermore, 1)()( ==′′
dw
dz

dz
dwwFzf , which means that the inverse mapping is also 

conformal. Because of this uniqueness and conformal property of inverse mapping, solution 
obtained in the w-plane can be mapped back to z-plane.  
When infinitesimally small region is considered, then every shape in the z-plane is 
transformed into a similar shape in the w-plane, e.g. a rectangle in the z-plane remains a 
rectangle in w-plane. However, shape will not be preserved in general, particularly in a large 

scale as the value of 
dz
dw may vary considerably at different points in the z-plane. As a result 

rotation and scaling will vary from one point in the z-plane to its neighboring point and hence 
the similarity of shape is not achieved for large regions.  
At this juncture, it is pertinent to mention that conformal mapping does not provide a solution 
to any arbitrary problem. Another question that arises is why one should use conformal 
mapping instead of numerical methods. The answer to this question is two-fold: firstly 
analytical solutions to field problems provides insight and secondly it provides useful 
approximations to difficult problems, which in many cases is valuable to practicing 
engineers. 
 
Preservation of Angles in Conformal Mapping 
 
As shown in Fig.11.2, two curves A and B intersect each other at an angle α at the point zi in 
the z-plane. With the help of the tangent vectors to the curves, the angle between the curves 
could be computed. Let, tzA and tzB be the tangent vectors to the curves A and B, respectively. 
Then from the law of cosines it may be written that  










 −−+
= −

zBzA

zBzAzBzA

tt
tttt

2
cos

222
1α        …. 11.9 

The corresponding transformed curves A′  and B′  intersect at an angle β in the w-plane. Let, 
wAt′  and wBt′  be the tangent vectors to the curves A′  and B′ , respectively. Then β can be 

obtained as  












′′
′−′−′+′

= −

wBwA

wBwAwBwA

tt
tttt

2
cos

222
1β        …. 11.10 
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Fig.11.2 Preservation of angles in conformal mapping 

 
Let, a curve is parameterized in z-plane by z=z(p) and the complex analytic function 
w=f(z(p)) defines the mapped curve in the w-plane. Then application of chain rule to 
w=f(z(p)) gives )())(( ptpzft zw ′=′ . Since the curves intersect in z-plane at z=zi, then 

zAiwA tzft )(′=′ and zBiwB tzft )(′=′ . Since 0)( ≠′ izf , hence eqn.(11.10) can be re-written as 












′′
′−′−′+′

= −

zBizAi

zBizAizBizAi

tzftzf
tzftzftzftzf

)()(2
)()()()(

cos
222

1β     …. 11.11 

In eqn.(11.11), the absolute value 2)( izf ′ cancels from the numerator and denominator and 
eqn.(11.11) gets reduced to 










 −−+
= −

zBzA

zBzAzBzA

tt
tttt

2
cos

222
1β        …. 11.12 

From eqns.(11.9) and (11.10), α = β, which proves that angles are preserved in conformal 
mapping. 
 
Problem 11.1 
For the point z=1+i in the z-plane, find the mapped point in the w-plane under the linear 
transformation w=(1+i)z +(2 +2i).  
Solution 

The given transformation function )22(2)22()1()( 4 izeizizfw
i

++=+++==
π

 
Hence, the transformation of the point (1+i) in the z-plane to the corresponding point in the 
w-plane can be obtained in three steps as shown in Fig.11.3. 
Step-1: The length OP ( )z  is multiplied by 21 =+ i to get the length AB as shown in 
Fig.11.3(b). 
Step-2: The length AB is rotated by an angle (π/4) in the anti-clockwise direction to get the 
length AC, as shown in Fig.11.3(c).  
Step-3: The point C is then translated by (2+2i) to get the point P′ (2+4i) in the w-plane 
which is the conformally mapped point corresponding to the point P in the z-plane. 
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Fig.11.3 Pertaining to Problem 11.1 

 
Problem 11.2 
Let Ω  be the rectangular region in the z-plane bounded by x=1, y=1, x=3 and y=2. Find the 
mapped region Ω′  in the w-plane under the linear transformation w=(1+i)z +(2 +2i). 
Solution 
Given, w=f(z)=(1+i)z + (2+2i) = (1+i)(x+iy) + (2+2i) = (x-y+2) + i (x+y+2) 
Hence, u = x-y+2 and v = x+y+2 
Therefore, for x=1, u = -y+3 and v = y+3  or, u+v = 6, i.e. the line x=1 in the z-plane is 
mapped to the straight line u+v=6 in the w-plane. 
Similarly, for y=1, u = x+1 and v = x+3   or, u-v = -2 
For x=3, u = -y+5 and v = y+5   or, u+v = 10  
For y=2, u = x and v = x+4   or, u-v = -4  
So, the four straight lines in the z-plane defined by x=1, y=1, x=3 and y=2 are mapped to 
four straight lines defined by u+v = 6, u-v = -2, u+v = 10 and u-v = -4, respectively, in the 
w-plane. The mapping is shown in Fig.11.4. Under the linear transformation w=az+b, where 
a=1+i and b=2+2i, it may be seen that the rectangular region Ω  in the z-plane is translated 
by b(=2+2i), rotated by an angle 450 (=arg(a)=arg(1+i)) in the anti-clockwise direction and 
dilated by √2(= ia += 1 ) to another rectangular region Ω′  in the w-plane.  
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Fig.11.4 Pertaining to Problem 11.2 
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Concept of Complex Potential 
 
Let, ),( yxφ be a harmonic function in a domain Ω . It is possible to define a harmonic 
conjugate function, ),( yxψ , uniquely by Cauchy-Riemann equations in the same domain. 
Thus an analytic function of iyxz += in the domain Ω can be written as 

),(),()( yxiyxzF ψφ +=         …. 11.13 
Consequently, F(z) conformally maps the curves in the z-plane onto the corresponding curves 
in the w−plane and vice-versa preserving the angles during mapping. 
Since, both the real and imaginary parts of F(z), viz. ),( yxφ and ),( yxψ , are harmonic 
functions, they satisfy Laplace’s equation and hence either one of these two could be used to 
find potential. Thus the complex analytic function F(z) is known as complex potential. 
Laplace’s equation is one of the most important partial differential equations in engineering 
and physics. The theory of solutions of Laplace’s equation is known as Potential Theory. The 
concept of complex potential relates potential theory closely to complex analysis. 
If ),( yxφ is considered to be real potential, then ),( yxφ =const represents equipotential lines 
in the z-plane. Since, ),( yxφ and ),( yxψ are orthogonal, hence, ),( yxψ =const represents 
electric field lines in the z-plane. For example, consider the complex potential function as

iAyBAxBAzzF ++=+=)( . Then the equipotential lines corresponding to 
constBAxyx =+=),(φ are straight lines parallel to y-axis and the electric field lines 

corresponding to constAyyx ==),(ψ are straight lines parallel to x-axis. 
The introduction of the concept of complex potential is advantageous in the following ways: 
i) it is possible to handle equipotential and electric field lines simultaneously and ii) Dirichlet 
problems with difficult geometry of boundaries could be solved by conformal mapping by 
finding an analytic function F(z) which maps a complicated domain Ω  in the z-plane onto a 
simpler domain Ω′  in the w-plane. The complex potential )(wF ′  is solved in the w-plane by 
satisfying Laplace’s equation along with the boundary conditions. Then the complex potential 
in the z-plane can be obtained by inverse transform from which the real potential is obtained 
as )}(Re{),( zFyx =φ . This is a practicable way of solution as harmonic functions remain 
harmonic under conformal mapping. 
 
Procedural Steps in Solving Problems using Conformal Mapping 
 
1) Find an analytic function w=F(z) to map the original region Ω in the z-plane to the 

transformed region Ω′ in the w-plane. The region Ω′should be a region for which explicit 
solutions to the problem at hand are known. 

2) Transfer the boundary conditions from the boundaries of the region Ω  in the z-plane to 
the boundaries of the transformed region Ω′  in the w-plane.  

3) Solve the problem and find the complex potential )(wF ′ for the transformed region Ω′ in 
the w-plane.  

4) Map the solution )(wF ′ for the region Ω′ in the w-plane back to the complex potential 
F(z) for the region Ω in the z-plane through inverse mapping. 

The steps are schematically shown in Fig.11.5. The most important step is to find an 
appropriate mapping function w=F(z), which fits the problem at hand. Once the right 
mapping function has been found, the problem is as good as solved. 
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Solved Complex Potential
F'(w) = φ'(u,v)+ i ψ'(u,v)

Ω'

Ω
w=F(z)
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y v
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w=u+iv

Mapped back Complex Potential
F(z) = φ(x,y)+ i ψ(x,y)

Boundary Condition:
φ(x,y)=const Boundary Condition:

φ'(u,v)=const

 
Fig.11.5 Schematic representation of solution of potential problem by conformal mapping 

 
Applications of Conformal Mapping in Electrostatic Potential Problems 
 
Conformal mapping is a powerful method for solving boundary value problems in two-
dimensional potential theory through transformation of a complicated region into a simpler 
region. Electric potential satisfies Laplace’s equation in charge free region. Therefore, 
electrostatic field that satisfies Laplace’s equation in a two-dimensional region in xy-plane, 
will also satisfy Laplace’s equation in any plane to which the region may be transformed by 
an analytic complex potential function F(z). For each value of complex iyxz += , there is a 
corresponding value of complex )(zFw = . In other words, for every point in the z-plane, 
there is a corresponding point in the w-plane. As a result, the locus of any point in the z-plane 
will trace another path in w-plane. Let, the locus in the z-plane maps onto a path 

constvu =′ ),(φ  in the w-plane, which corresponds to an equipotential and may also be the 
surface of a conductor. Then the problem can be solved in the w-plane incorporating the 
appropriate boundary condition, i.e. the value of the conductor potential, and the results can 
be mapped back to z-plane to get the real potential and then the electric field lines can be 
obtained from the conjugate harmonic function. This section discusses some of the 
applications of conformal mapping in solving two-dimensional electrostatic potential 
problems. 
 
Conformal Mapping of Co-Axial Cylinders 
 
The cross-sectional view of a single-core cable is shown in Fig.11.6, where the co-axial 
cylindrical conductors are of infinite length in the direction normal to the plane of the paper. 
Hence, the field varies only in the cross-sectional plane and is translationally invariant in the 
direction of the length of the cable. Let, the cross-sectional plane of the cable be the x-y plane 
or the z-plane. Then the field in the region between the two cylindrical conductors can be 
found by conformal mapping. Let, the radii of the inner and the outer conductors be r1 and r2, 
respectively, and the potential of the inner and the outer conductors be V and zero 
respectively. 
Consider the complex analytical function for conformal mapping be 

21 )ln( CzCivuw +=+=         …. 11.14 

where, z=x+iy = reiθ such that 22 yxr += and )/(tan 1 xy−=θ  

So, θθ
12121 ln)ln( CiCrCCreCivu i ++=+=+  

or, 21 )ln( CrCu += and θ1Cv =        …. 11.15 
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Fig.11.6 Conformal mapping of co-axial cylinders 

 
For the inner conductor, x2+y2=r1

2 and hence it maps to a straight line constu =1 parallel to v-
axis in the w-plane. Similarly, the outer conductor for which x2+y2=r2

2 maps to another 
straight line constu =2 parallel to v-axis in the w-plane, as shown in Fig.11.6. In other words, 
the field within the two cylindrical conductors in the z-plane is conformally mapped to field 
between two infinitely long parallel plates, i.e. the field within a parallel-plate capacitor, in 
the w-plane. From Fig.11.6 it may be seen that the orthogonality of the equipotentials in the 
form of circles and electric field lines in the form of radial lines in the z-plane are maintained 
in the w-plane, where the equipotentials are straight lines parallel to v-axis and the electric 
field lines are straight lines parallel to u-axis. 
From the boundary conditions on the conductor surfaces 

VCrC =+ 211 ln          …. 11.16 
and 0ln 221 =+CrC          …. 11.17 
From eqns. (11.16) and (11.17), 

1

2
1

ln
r
r

VC −=  and  

1

2

2
2

ln

ln

r
r
rVC =        …. 11.18 

The potential at any radius r is given by 21 ln CrCu += . Correspondingly, in the z-plane 

1

2

2

1

2

2

1

2 ln
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ln

ln

ln

ln),(

r
r

r
rV

r
r
rV

r
r

rVyx =+−=φ        …. 11.19 

Then, 

1

2ln
),(

r
rr

V
r

yxEr =
∂
∂

−=
φ        …. 11.20 

Eqn.(11.20) gives the value of electric field intensity at any radius r, which is the same as the 
one given by eqn.(4.30). 
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Conformal Mapping of Non Co-Axial Cylinders 
 
Fig.11.7 shows two non co-axial cylinders in the z-plane, such that for the outer cylinder C2,

1=z . Radius of the inner cylinder C1 is (1/5) and its center is located at a distance of (1/5) 
from the center of the larger cylinder. In this case also the length of the two cylinders is taken 
to be infinite in the direction normal to the plane of the paper. Hence, the field in the space 
between the two cylinders does not vary in the direction of the length of the cylinders. So the 
cross-sectional plane is shown to be the z-plane in Fig.11.7. The inner cylinder is at a 
potential of V while the outer cylinder is earthed. Direct solution of the field between the two 
cylinders is difficult in the z-plane. However, it is possible to conformally map the non co-
axial cylinders in the z-plane onto two co-axial cylinders in the w-plane keeping the boundary 
conditions, i.e. boundary potentials, same. 
In this transformation, the unit radius outer circle C2 in the z-plane is mapped onto a unit 
radius circle C'2 in the w-plane in such a way that the inner circle C'1 becomes concentric with 
a radius ri, as shown in Fig.11.7. The mapping function for this linear fractional 
transformation is 

1−
−

=
zk

kzw           …. 11.21 
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Fig.11.7 Conformal mapping of non co-axial cylinders 

 

As shown in Fig.11.7, the two points on the inner circle A(0,0) and B )0,
5
2( in the z-plane are 

mapped onto two points A'(ri,0) and B'(-ri,0) on the inner circle in the w-plane.  

Hence, from eqn.(11.21) for the points A(0,0) and A'(ri,0) kkri =
−
−

=
10

0   

and for the points B )0,
5
2( and B'(-ri,0) 

52
52

15
2

5
2

−
−

=
−

−
=−

i

i
i r

r
k

k
r  

or, 0152 =+− ii rr , or, ri=4.79 and 0.208. 
But, ri cannot be greater than 1 and hence, ri= 0.208. Therefore, k = ri = 0.208. 

Thus the mapping function for this problem is 
1208.0

208.0
−

−
=

z
zw    …. 11.22 
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Writing the complex potential function in the w-plane as bwawF +=′ ln)( , the real part of the 
complex potential can be written as 

bwawFvu +=′=′ ln)}(Re{),(φ        …. 11.23 

Two conditions on boundary potentials in the w-plane are as follows: i) 0=′φ for 1=w and ii) 

V=′φ for irw =  
Application of first boundary condition on eqn.(11.23) yields 

01ln =+ba , or, b = 0 
Similarly, applying the second boundary condition on eqn.(11.23) one would get 

VorVbra i ==+ 208.0ln,ln , or, a = -0.6368V 
Thus the desired solution for complex potential in the z-plane is 

1208.0
208.0ln6368.0)(

−
−

−=
z

zVzF        …. 11.24 

The real potential within the two cylinders is then given by 

{ }
1208.0

208.0ln6368.0)(Re),(
−

−
−==

z
zVzFyxφ       …. 11.25 

If the potentials are +V and –V instead of V and 0, then from the first boundary condition 
Vba −=+1ln , or b = -V 

and from the second boundary condition Vbra i =+ln , or, VVa =−208.0ln or, a = -1.273V 
Hence, the desired solution for complex potential in the z-plane is 









−

−
−

−=−
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−
−= 1

1208.0
208.0ln273.1
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z
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z
zVzF    …. 11.26 

The real potential within the two cylinders is then given by 

{ } 







−

−
−

−== 1
1208.0

208.0ln273.1)(Re),(
z

zVzFyxφ      …. 11.27 

 
Conformal Mapping of Unequal Parallel Cylinders 
 
Fig.11.8 shows two unequal parallel cylinders in the z-plane, such that for the larger cylinder 
C2, 1=z . Radius of the smaller cylinder C1 is (1/2) and its center is located at a distance of 
(7/2) from the center of the larger cylinder. In this case also the length of the two cylinders is 
taken to be infinite in the direction normal to the plane of the paper. Hence, the field in the 
space between the two parallel cylinders does not vary in the direction of the length of the 
cylinders. So the cross-sectional plane is shown to be the z-plane in Fig.11.8. The smaller 
cylinder is at a potential of V while the larger cylinder is earthed. It is possible to map these 
two parallel cylinders onto two co-axial cylinders in the w-plane as follows. 
In this transformation, too, the unit radius larger circle C2 in the z-plane is mapped onto a unit 
radius circle C'2 in the w-plane in such a way that the smaller circle C'1 becomes concentric 
with a radius ri, as shown in Fig.11.8. The mapping function for this linear fractional 
transformation is also 

1−
−

=
zk

kzw           …. 11.28 
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Fig.11.8 Conformal mapping of two unequal parallel cylinders 

 
However, as shown in Fig.11.8, the two points on the inner circle A(3,0) and B(4,0) in the z-
plane are mapped onto two points A'(-ri,0) and B'(ri,0) on the inner circle in the w-plane.  

Hence, from eqn.(11.26) for the points A(3,0) and A'(-ri,0)  
13

3
−

−
=−

k
kri   

and for the points B(4,0) and B'(ri,0)  
13
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4

−
−

=
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−
=

k
k

k
kri  

or, 07267 2 =+− kk , or, k = 3.42 and 0.292. 
For k=3.42, ri=0.046 and for k=0.292, ri=21.84. 
But ri cannot be greater than 1 in the w-plane, so the solution is k=3.42 and ri=0.046. 
Writing the same complex potential function in the w-plane as bwawF +=′ ln)( , as in section 
11.5.2, and applying the same boundary conditions for potential, as shown in Fig.11.8, 

b=0 and VV
r

Va
i

3247.0
046.0lnln

−===  

Thus the desired solution for complex potential in the z-plane is 
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42.3ln3247.0)(
−

−
−=

z
zVzF         …. 11.29 

The real potential between the two unequal parallel cylinders is then given by 

{ }
142.3

42.3ln3247.0)(Re),(
−

−
−==

z
zVzFyxφ       …. 11.30 

If the potentials are +V and –V instead of V and 0, then from the first boundary condition 
Vba −=+1ln , or b = -V 

and from the second boundary condition Vbra i =+ln , or, VVa =−046.0ln or, a = -0.6494V 
Hence, the desired solution for complex potential in the z-plane is 
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The real potential between the two unequal parallel cylinders is then given by 
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Conformal Mapping of Equal Parallel Cylinders 
 
With reference to Fig.11.8, if the radius of the cylinder-1, i.e C1, is taken to be unity, then 
k=2.906 and ri=0.064 
Hence, if the potentials of the two cylinders are V and 0, respectively, then the desired 
solution for complex potential in the z-plane is 

1906.2
906.2ln3638.0)(

−
−

−=
z

zVzF        …. 11.33 

The real potential between the two equal parallel cylinders is then given by 
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−
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z
zVzFyxφ      …. 11.34 

If the potentials of the two cylinders are +V and -V, respectively, then the desired solution for 
complex potential in the z-plane is 


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The real potential between the two equal parallel cylinders is then given by 
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Graphical Field Plotting  
 
Introduction 
 
Most of the practical problems have such complicated geometry that no exact method of 
finding the electric field is possible or feasible and approximate techniques are the only ones 
which can be used. Out of the several approximate techniques, numerical techniques are now 
extensively used to determine electric field distribution with high accuracy. Numerical 
techniques, which are widely used, will be discussed in details in the later chapters. In this 
chapter, experimental and graphical field mapping methods are discussed. Experimental field 
mapping involve special equipments such as electrolytic tank, a device for fluid flow, 
conducting paper and associated measuring system. The other mapping method is a graphical 
one and needs only paper and pencil. In both these methods, the exact value of the field 
quantities could not be determined, but accuracy level which is sufficient for practical 
engineering applications could be achieved. Graphical field plotting is economical compared 
to experimental method and is also capable of providing good accuracy when used with skill. 
Accuracy of the order of 5 to 10% in capacitance determination could be achieved even by a 
non-expert simply by following the rules. 
 
 
Experimental Field Mapping 
 
Experimental method of field mapping is based on the analogy of stationary current field with 
static electric field, as presented in Table 12.1, rather than directly on measurement of electric 
field. If the medium between electrodes is isotropic, then volume conductivity and dielectric 
constant do not vary with position. Then current density (J) in stationary current field and 
electric field intensity (E) and electric flux density (D) in static electric field will be in the 
same direction. In other words, current density and electric field lines are the same. Thus for 
a given electrode system, if a slightly conducting material, e.g. conducting paper or an 
electrolyte, is placed instead of a dielectric material between the electrodes, then electric field 
lines and equipotential lines will remain the same.  
It is well known that if one travels along a line through an electric field and measures electric 
scalar potential V as one goes, then the negative of the rate of change of V is equal to the 
component of electric field intensity E in the direction of travel. In other words, 

lu
l
VE ˆ
∂
∂

−=


          …. 12.1 

If 
l
V
∂
∂

− is maximum, then it gives the value of E itself. If electric potential does not change 

with position, then the path of travel is at right angles to the electric field and is along an 
equipotential. Thus electric field could be mapped by a voltmeter that will measure potential 
difference and two metal rods acting as probes. The probes are connected to the terminals of 
the voltmeter and are placed in various positions in an electric field to monitor the potential 
differences between the positions of the two probes.  
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Table 12.1 Analogy between static electric field and stationary current field 
Static Electric Field Stationary Current Field 

Electric Flux Electric Current 
ED


ε=  EJ


κ=  
Dielectric constant Volume conductivity 

∫=
S

sdDQ 
.  ∫=

S

sdJI 
.  

 
For the determination of equipotential lines one probe is kept still, while the other probe is 
moved. In whichever position of the moving probe the voltmeter registers a zero reading; the 
potential of the moving probe is same as that of the standstill probe. By marking each such 
position, equipotentials could be traced.  
For tracing electric field lines the two probes are kept at a constant separation distance and 
one probe is rotated around the other. The position of the rotating probe where the voltmeter 
registers a maximum reading, the electric field is changing at its maximum rate. Hence, the 
electric field at that location of the rotating probe is parallel to the line joining the two probes. 
By repeating this measurement process at several positions, the electric field could be 
mapped.  
Since a real-life voltmeter draws a current, however small it may be, measurement of the 
potential differences using voltmeter could not be done with vacuum or air as the medium. In 
practice, measurement is carried out for the electric field that is set up in a medium, which is 
slightly conducting.  
Commonly slightly conducting paper, e.g. paper impregnated with carbon, is used. Since the 
paper is slightly conducting, the electric field due to the charged electrodes is almost the same 
as the one that would be produced in air or vacuum with similar geometry. At the same time 
the paper is sufficiently conducting to supply the small current needed by the voltmeter.  
Alternately electrolytic tank setup is used which consists of a specially fabricated insulating 
tray. A large sheet of laminated graph paper is pasted on the base plate of the tray. The tray is 
then half-filled with an electrolyte and the height of the electrolyte is kept same throughout 
the tray. Metallic electrodes are placed in the electrolytic tank, which are shaped to conform 
to the boundaries of the problem, and appropriate potential difference between the electrodes 
is maintained.  
 
Field Mapping using Curvilinear Squares 
 
Field mapping by curvilinear squares is a graphical method based on the orthogonal property 
of a pair of conjugate harmonic functions and also on the geometric considerations. This 
method is suitable for mapping only those fields in which there is no variation of field in the 
direction normal to the plane of the sketch, i.e. the field is two-dimensional in nature. Many 
practical electric field problems may be considered as two dimensional, e.g. the co-axial 
cylindrical system or a pair of long parallel wires. In these cases the field remains same in all 
cross-sectional planes. It is a fact that no real system is infinitely long, but the idealization is 
a useful one for electric field analysis and visualization.  
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Fig.12.1 A typical curvilinear square 

 
In this method the field region of interest is discretized into a network of curvilinear squares 
formed by flux or field lines and equipotentials. Curvilinear square is a planar geometric 
figure which is different from a true square as its sides are slightly curved and slightly 
unequal, but which approaches a true square as its dimensions become small. A typical 
curvilinear square is shown in Fig. 12.1. The field map thus obtained is unique for a given 
problem and helps in understanding the behaviour of electric field through visualization. The 
method of curvilinear square is capable of handling problems with complicated boundaries. A 
curvilinear field map is also independent of field property coefficients and could be directly 
applied from one physical field to another if an analogy exists between the concerned fields. 
Theoretically curvilinear field mapping is based on Cauchy-Riemann relations, which ensures 
that the Laplace’s equation is satisfied by a conjugate pair of harmonic functions in any 
orthogonal coordinate system. Hence, this method utilizes the fieldline coordinate 
representation of electric field such that electric field is always tangent to the fieldlines and 
depends only on the distribution of fieldlines and equipotentials.  
 
Foundations of Field Mapping 
 
Construction of field map using curvilinear squares is based on some significant features of 
electric field as described below: 
i) A conductor boundary is one of the equipotentials. 
ii) Equipotential and electric field intensity (or electric flux density) are normal to each other. 
As a conductor boundary is an equipotential, hence electric field intensity and electric flux 
density vectors are always perpendicular to the conductor boundaries. 
iii) Electric flux lines (often termed as streamlines) originate and terminate on charges. 
Hence, in the case of a homogeneous and charge free dielectric medium, electric flux lines 
originate and terminate on conductor boundaries. 
Fig.12.2 shows two coaxial cylindrical conductor boundaries having a specified potential 
difference (V) and extending 1m into the plane of the paper. A field line is considered to 
leave the boundary with more positive electric potential making an angle of 900 with the 
boundary at the point X. If the line is extended following the rule that it is always 
perpendicular to the equipotentials and if the dielectric medium is considered to be 
homogeneous and charge free, then the fieldline will terminate normally on the boundary of 
the less positive conductor at the point X ′ as shown in Fig.12.2. In a similar manner, another 
fieldline could be drawn in such a way that it starts from the point Y on the more positive 
conductor boundary and terminates on the point Y ′ on the less positive conductor boundary. 
As the fieldlines are drawn perpendicular to the equipotentials everywhere, electric field 
intensity and hence electric flux density will be tangent to a fieldline everywhere on it. 
Consequently, no electric flux can cross any fieldline thus drawn. Therefore, if there is a 
charge of Q∆ on the surface of the conductor between the points X and Y, then a flux of 

Q∆=∆ψ will originate in this region and must terminate on the surface of the other 
conductor boundary between the points X ′ and Y ′ . Such a pair of fieldlines is known as a 
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“flux tube” as it seems to carry flux from one conductor to the other without losing any flux 
in between the two conductors. For simplification of interpretation of the field map, another 
flux tube YZ may be drawn in such a way that the same amount of flux is carried in the flux 
tubes XY and YZ. The method of determination of dimensions of the curvilinear square for 
drawing such flux tubes is described in the next section. 
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Fig.12.2 Field map between two co-axial cylinders 

 
Sketching of Curvilinear Squares 
 
Considering the length of the line joining the points X and Y to be s∆ , the flux in the tube XY 
to be ψ∆ and the depth of the tube to be 1m into the paper, the electric flux density at the 
midpoint of this line is then given by  

s
D

∆
∆

=
ψ           …. 12.2 

So, considering the permittivity of dielectric medium to be ε, electric field intensity at the 
midpoint of the line XY is then given by  

s
E

∆
∆

=
ψ

ε
1           …. 12.3 

Alternately, electric field intensity could also be determined from the potential difference 
between the points X and X1 lying on the same fieldline on two equipotentials as shown in 
Fig.12.2.  
Considering the length of the line joining the points X and X1 to be l∆ and the potential 
difference between the two consecutive equipotentials to be φ∆ , electric field intensity at the 
midpoint of the line X-X1 is then given by 

l
E

∆
∆

=
φ           …. 12.4 

Considering s∆ and l∆ to be small, the two values of electric field intensity as given by eqns. 
(12.3) and (12.4) may be taken to be equal. Hence, 

ls ∆
∆

=
∆
∆ φψ

ε
1   

or, 
ψ
φε

∆
∆

=
∆
∆

s
l          …. 12.5 
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For sketching the field map, consider the following: a) homogeneous dielectric having a 
constant permittivity ε, ii) constant amount of electric flux per tube, i.e. ψ∆  is constant, and 
iii) constant potential difference between two consecutive equipotentials, i.e. φ∆  is constant. 

Then from eqn.(12.5), =
∆
∆

s
l constant. In other words, the ratio of the distance between 

fieldlines as measured along an equipotential and the distance between equipotentials as 
measured along a fieldline must be maintained constant and not the individual lengths. The 
simplest ratio of lengths that can be maintained is unity, so that sl ∆=∆ . Then the field region 
is divided into curvilinear squares by the fieldines and equipotentials.  
The field map thus obtained is composed of curvilinear squares of the same kind such that 
each square has the same potential difference across it and also has the same amount of flux 
through it. For a given φ∆ and ψ∆ , the sides of a curvilinear square are thus inversely 
proportional to electric field intensity. For a non-uniform field electric field intensity varies 
with location and hence l∆ and s∆ vary with the strength of electric field. In the region of 
higher field strength, l∆ and s∆ are to be kept small, i.e. the squares are to be made smaller in 
size where the magnitude of the field intensity is high. On the other hand, the squares are 
made larger in size in the field region where the field intensity is low. 
It may be recalled that the product of electric charge and electric potential difference is the 
energy of electric field. Moreover, electric charge and electric flux has a one to one 
correspondence. Thus for a field map if φ∆ and ψ∆ are kept constant, then their product 
remains constant and hence, energy of electric field remains constant. Therefore, curvilinear 
squares having the same ratio as give by eqn.(12.5) have the same energy stored in electric 
field regardless of the size of the square. A curvilinear square can thus be scaled up or down 
keeping the energy stored in the curvilinear square unaltered as long as the ratio given by 
eqn.(12.5) remains unaltered. 
 
Construction of Curvilinear Square Field Map 
 
The fieldines and equipotentials are typically drawn on the original sketch which shows the 
conductor boundaries. Arbitrarily one fieldline is begun from a point on the surface of the 
more positive conductor with a suitable value of l∆  and an equipotential is drawn 
perpendicular to the fieldline with a value of ls ∆=∆ . Then another fieldline is added to 
complete the curvilinear square. The field map is then gradually extended throughout the 
field region of interest. As the field map is extended, the condition of orthogonality of 
fieldline and equipotential should be kept paramount, even if this results in some squares with 
ratios other than unity. Construction of a satisfactory field map using curvilinear squares is a 
trial and error process that involves continuous adjustment and refinement. Typically the field 
maps are started as a course map having large curvilinear squares. Then the field map is fine 
tuned through successive subdivisions to form a dense field map having higher accuracy. In 
the process of subdivision, the lengths between consecutive fieldlines as well as 
equipotentials are kept equal. Before starting the construction of a field map, it is a judicious 
practice to examine the geometry of the system and take advantage of any symmetry that may 
exist in the system under consideration. This is because of the fact the lines of symmetry 
serve as boundaries with no flux crossing and thereby separate regions of similar field maps.  
 
Capacitance Calculation from Field Map 
 
Once the field map is drawn, it is possible to determine the capacitance per unit length 
between the two conductors using the field map. It is well known that capacitance between 
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two conductors having a potential difference of V is given by
V
QC = , where Q is the charge on 

the conductor. Applying Gauss’s law on a Gaussian surface enclosing the conductor having 

more positive potential, ψ=Q , where ψ is the flux coming out of the conductor. Thus,
V

C ψ
= . 

∆ψ
∆φ
∆l

∆s

 
Fig.12.3 An isolated curvilinear rectangle 

 
To calculate the capacitance with the help of curvilinear rectangle, consider first an isolated 
curvilinear rectangle as shown in Fig.12.3. Let the flux through it be ψ∆  and the potential 
difference across it be φ∆ . Considering the curvilinear rectangle to be small, the flux density 
may be assumed uniform within the curvilinear rectangle so that 

1×∆=∆ sEεψ          …. 12.6 
where, the depth is taken to be 1m into the plane of the field map. 
Electric field intensity (E) and the potential difference φ∆ are related as 

lE ∆×=∆φ           …. 12.7 
Combining eqns. (12.6) and (12.7) 

l
s

∆
∆

×∆=∆
φεψ  

Therefore, the capacitance of the small curvilinear rectangle, which may be taken as a small 
field cell, is given by 

l
sC

∆
∆

=
∆
∆

=∆ ε
φ
ψ          …. 12.8 

The total amount of flux (ψ ) emanating from one conductor and terminating on the other 
conductor may be obtained by adding all the small amounts of flux ( ψ∆ ) through each flux 
tube so that 

ψψψ ψ
ψ

∆=∆=∑ N
N

         …. 12.9 

where, ψ∆ is assumed to be same for each flux tube and ψN is the number of flux tubes in 
parallel, i.e. the number of curvilinear rectangles in parallel.  
The total potential difference between the two conductors (V) may be obtained by adding all 
the small amounts of potential differences ( φ∆ ) between consecutive equipotentials starting 
from one conductor and finishing at the other conductor, i.e. 

φφ φ
φ

∆=∆=∑ NV
N

         …. 12.10 

where, φ∆ is assumed to be same between any two consecutive equipotentials and φN is the 
number of equipotentials (including the two conductors) minus one, i.e. the number of 
curvilinear rectangles in series between the two conductors. 
Thus capacitance per unit length of the two conductors is given by 
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where, ls ∆=∆ , considering the ratio of the lengths to be unity, i.e. considering curvilinear 
squares. 
Hence, determination of capacitance from the field map involves counting of curvilinear 
squares in two directions, one in series between the two conductors and the other in parallel 
around either conductor. 
 
 
Field Mapping in Multi-dielectric Media 
 
From eqn.(12.5), it may be seen that for the same value of electric flux per tube and same 
potential difference between two consecutive equipotentials,  

ε∝
∆
∆

s
l           …. 12.12 
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Fig.12.4 Mapping in two-dimensional configuration with multi-dielectric media 

 
Thus in the case of a two dielectric configuration as shown in Fig.12.4, the ratio of the sides 
of curvilinear element is to be made proportional to the relative permittivity of the dielectric 
medium in which the field map is drawn. In other words, curvilinear rectangles are to be 
used. 
Moreover, the deviation of the fieldlines takes place at the boundary between the two 
dielectric media, as shown in Fig.12.4, which is given for charge free dielectric media by 

2
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1

tan
tan

ε
ε

θ
θ
=           …. 12.13 

For two-dimensional configurations comprising multi-dielectric media, the field map is first 
drawn in the field region where there is only one dielectric media. Then the directions of the 
fieldlines are changed at the boundary between the two dielectric media according to 
eqn.(12.13). Subsequently the ratio of the sides of the curvilinear rectangles is changed as per 
eqn.(12.12) and the field map is extended into the field region comprising a different 
dielectric medium. In this way the field map could be obtained in configurations comprising 
several dielectric media. 
 
 



 113 

Field Mapping in Axi-Symmetric Configuration 
 
Consider a curvilinear rectangle in an axi-symmetric configuration as shown in Fig.12.5. Let 
the radial distance of the centroid of the curvilinear rectangle from the axis of rotational 
symmetry be r.  
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Fig.12.5 Field mapping in axi-symmetric configuration 

 
Considering the flux through the rectangle to be ψ∆ and assuming the square to be small, the 
electric flux density can be taken to be uniform within the rectangle and is given by 

sr
D

∆
∆

=
π
ψ

2
 

or, 
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E
∆

∆
=

επ
ψ

2
         …. 12.14 

Alternately, electric field intensity as obtained from the potential difference between two 
consecutive equipotentials, which are the two sides of the rectangle perpendicular to the 
fieldlines, is given by 

l
E

∆
∆

=
φ  

Considering a small curvilinear rectangle, these two values of electric field intensity could be 
taken as same such that 
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s
l 2          …. 12.15 

Considering i) homogeneous dielectric having a constant permittivity ε, ii) constant amount 
of electric flux per tube, i.e. ψ∆  is constant, and iii) constant potential difference between 
two consecutive equipotentials, i.e. φ∆  is constant,  

r
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∆           …. 12.16 
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Hence, to draw field maps in axi-symmetric configurations comprising a homogeneous 
dielectric, the ratio of the sides of the curvilinear rectangles is to be increased in direct 
proportion to the radial distance of the square from the axis of rotational symmetry. 
For axi-symmetric configurations comprising multiple dielectric media, eqn.(12.16) is to be 
rewritten in the light of eqn.(12.15) as  

r
s
l ε∝

∆
∆           …. 12.17 

So for multi-dielectric media in axi-symmetric configurations, the ratio of the sides of the 
curvilinear rectangles is to be increased not only in direct proportion to the radial distance of 
the square from the axis of rotational symmetry, but also in direct proportion to the relative 
permittivity of the dielectric medium in which the field map is drawn. The directions of the 
fieldlines at the boundary between the two dielectric media are to be changed according to 
eqn.(12.13). 
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