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Numerical Computation of Electric Field

Introduction

The design of the insulation of high voltage apparatus between phases and earth and also
between the phases is based on the knowledge of electric field distribution and the dielectric
properties of the combination of insulating materials used in the system. The principal aim is
that the insulation should withstand the electric stresses with adequate reliability and at the
same time the insulation should not be over dimensioned.

It is well known that the withstand voltage of the external insulation of apparatus designed
with non-self restoring insulation is determined by the maximum value of electric field
intensity within the insulation system. Further, corona discharges are eliminated by proper
design of high voltage shielding electrodes. Thus a comprehensive study of the electric field
distribution in and around high voltage equipment is of great practical importance.

High voltage equipments, in practice, are in most of the cases subjected to a.c. field of
frequency 50Hz or 60Hz. These fields may be approximated as quasi-static as the wavelength
is much longer compared to the dimension of the components involved. Because of this, the
electrostatic field calculation is possible by the different methods in use.

Mathematically, an electric field calculation problem may be formulated as follows:

The purpose is to determine, at each point within the field region of interest, the value of
potential ¢(x,y,z) and that of the electric field intensity E(x,y,z) are to be determined, which
are related as

E(x,y,2)=-V¢ ...13.1

In order to do that either the Laplace’s Equation for systems without any source of charge in
the field region,

V=0 ....13.2

or, the Poisson’s Equation for systems with sources of charge in the field region,

V=P ...133
&

are required to be solved.
The solutions of these equations are called Boundary Value problems, whereby the boundary

conditions are specified by means of the given potential of electrode (Dirichlet’s Problem) or
by the given value of electric field intensity (Neumann’s Problem).

Methods of Determination of Electric Field Distribution

The methods that are employed for determination of electric field are detailed in Fig.13.1.
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Fig. 13.1 Different methods for determination of electric field distribution

The analytical methods can only be applied to the cases, where the electrode or dielectric
boundaries are of simple geometrical forms such as cylinders, spheres etc. In other words, in
this method the boundaries are required to be defined exclusively by known mathematical
functions. The results obtained are very accurate. But, as it is obvious, this method cannot be
applied to complex problems. However, the results obtained by analytical methods for
standard configurations are used still today to validate the results obtained by some other
approximate methods such as numerical methods.

Earlier the experimental as well as the graphical methods were used to get a fair idea about
the nature of field distribution in some practical cases. However, these methods are greatly
limited in their areas of usage and the errors involved are usually very high for any complex
problem to be taken directly for design purposes.

In more and more engineering problems now-a-days, it is found that it is necessary to obtain
approximate numerical solutions rather than exact closed-form solutions. The governing



equations and boundary conditions for these problems could be written without too much
effort, but it may be seen immediately that no simple analytical solution can be found. The
difficulty in these engineering problems lies in the fact that either the geometry or some other
feature of the problem is irregular. Analytical solutions to this type of problems seldom exist;
yet these are the kinds of problems that engineers need to solve.

There are several alternatives to overcome this dilemma. One possibility is to make
simplifying assumptions ignoring the difficulties to reduce the problem to one that can be
easily handled. Sometimes this approach works; but, more often than not, it leads to serious
inaccuracies. With the availability of computers today, a more viable alternative is to retain
the complexities of the problem and find an approximate numerical solution.

Several approximate numerical analysis methods have evolved over the years as shown in
Fig.13.1. For each practical field problem, depending upon the dielectric properties,
complexity of contours and boundary conditions, one or the other numerical method is more
suited.

Uniqueness Theorem

It states that once any method of solving Poisson’s or Laplace’s equations subject to given
boundary conditions has been found, the problem has been solved once and for all. No other
method can ever give a different solution.

Proof:

Consider a volume V bounded by a surface S. Also consider that there is a charge density p,
throughout the volume V, and the value of the scalar electric potential on the surface S is ¢.
Assume that there are two solutions of Poisson’s equation, viz. ¢, and ¢, Then

Vig =-L and Vi, =2
& &

So, V(¢ —-¢,)=0 ....13.4
Now, each solution must also satisfy the boundary conditions. It is to be noted here that one
particular point can not have two different electric potentials, as the work done to move a unit
positive charge from infinity to that point is unique. Let, the value of ¢ on the boundary is
¢1s and the value of ¢, on the boundary is ¢ and they must be identical to ¢.

Therefore, Dis = (s = @s
or, d1s— s = 0
For any scalar ¢ and any vector D, the following vector identity can be written.
V(D)= ¢(v.B)+ V4.5 ...135

Consider the scalar as (¢1 — ¢,) and the vector as V(g, — ¢, ). Then from identity (13.5),
6[(¢1 - ¢z)§(¢1 - ¢2)]E(¢1 - ¢2)[§€(¢1 - ¢2)] + 6(¢1 - ¢2) 6(@ - ¢2) ... 13.6

Now, integrating throughout the volume V enclosed by the boundary surface S,

jv[¢1 6, )9( - ¢, Jov=|( 8- V.94 -4, ]dv+JV¢1 4,).V (4~ ,)dv

.. 13.7
zj¢1 ¢V ¢2]dv+j[ Vig )] dv

Applying divergence theorem to the L.H.S of identity (13.7),



J‘ﬁ[(@ - ¢2)§(¢1 - ¢2)]dV=I(¢18 - ¢2s )§(¢1 —¢2)d5 =0 ... 138

\Y S
as ¢is = ¢s on the specified surface S.

On the RHS of identity (13.7), V(¢ —¢,) = 0 from eqn.(13.4). Hence, identity (13.7) reduces

to
[V~ 4,)?av =0 ... 139

Since, [?(qﬁl—qﬁz)]zcannot be negative, hence the integrand must be zero everywhere so that
the integral may be zero.

Hence,
Fa-g)=0 o V(g-g4)=0 ....13.10
Again, if the gradient of (¢ — ¢) is zero everywhere, then
¢ — ¢ = Constant ... 1311
This constant may be evaluated by considering a point on the boundary surface S. So that,
G- = s— s =0
or, =@

which means that the two solutions are identical.

However, in practice if the same problem is solved by using different numerical techniques
the results are not exactly the same. This is due to the fact that the errors in a particular
numerical method are often problem dependent and hence the results are not exactly same in
all the methods. So, this is not a violation of the Uniqueness theorem.

Procedural Steps in Numerical Electric Field Computation

The following are the procedural steps that need to be followed not only for FDM but for
most of the numerical electric field computation methods.

At first, the Region of Interest (ROI) needs to be identified. ROI is the region where the
solution for electric field is to be obtained. For example, normally the field solution is not
needed within the electrode volume or below the earth surface. Hence, for an isolated
electrode and the earth surface, the ROI will be region between the electrode surface and the
earth surface as shown in Fig.13.2. Before the ROI is identified, the geometries of the
components that comprise the field system need to be defined. This step is now-a-days done
with the help of CAD software.

The subsequent procedural step is to discretize the entire ROI or the boundaries to create the
nodes where the solution of field will be obtained. Ideally one should find the field solution at
each and every point within the ROI. But it will result in immense computational burden and
hence the field solution is obtained at discrete nodes. This step is called Discretization and is
often done with the help of mesh generators, which are software modules that create the mesh
within the entire ROI or on the boundaries. In order that the electric field solution can be
obtained at any specific location within the ROI, a pre-defined variation of electric field
between successive nodes is assumed. In fact, this assumption is a root cause of inaccuracy of
the numerical method.



HV Electrode

Region of Interest
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Fig. 13.2 Depiction of Region of Interest for Electric Field Computation

The next step is to create the system of equations based on the numerical method that is being
employed. Subsequently, the system of equations is solved using a suitable solver. The solver
needs to be chosen depending upon the nature of the coefficient matrix that is being created
by the specific numerical method. This solution gives the results for the unknown field
quantities at the pre-defined nodes. Finally the results at any desired location is computed
using the assumed variation of electric field between the nodes, which is termed as post
processing of results. The procedural steps are depicted in Fig.13.3.

Definition of Geometries

v

Identification of ROI

v

Discretization of ROI

v

Creation of System of Equations

v

Solution of System of Equations

v

Post-Processing of Results

Fig. 13.3 Procedural steps in numerical electric field computation



Numerical Computation of HV Field by Finite Difference Method (FDM)

Introduction

The principle of Finite Difference Method (FDM) is to discretize the entire region under
study and solve for unknown potentials a set of coupled simultaneous linear equations which
approximate Laplace’s or Poisson’s equation. In fact this is the objective of most of the
numerical field computation techniques that are being used at present.

In Finite Difference Method, for two-dimensional system the entire region of interest is
discretized using either rectangles or squares. In 3-dimensional system, the discretization is
done using either rectangular parallelepipeds or cubes. Most commonly electric potential is
assumed to vary linearly between two successive nodes. However, this is not mandatory. Any
other type variation, e.g. quadratic or polynomial, may also be assumed. But, a complex
nature of potential variation increases the computational burden greatly and may not always
give improved accuracy. If the electric potential is assumed to vary linearly, as it is
commonly considered, then the nodes need to be closely spaced where the field varies
significantly in space. This is generally the case near the electrodes or dielectric boundaries,
particularly in the cases of contours having sharp corners. On the other hand, in the region
away from the electrodes or dielectric boundaries, where the field does not change rapidly in
space, the nodes may be spaced relatively widely apart.

For multi-dielectric problems, care should be taken during discretization to make sure that
only one dielectric is present between two consecutive nodes. This is achieved by arranging
one layer of nodes along the dielectric-dielectric interface. This aspect will be taken up in
more details in a later section in this chapter.

FDM Equations in 3-D System for Single Dielectric Medium

As stated earlier, in three-dimensional system, discretization is done using either rectangular
parallelepipeds or cubes. In such cases, one particular node is connected to six neighboring
nodes as shown in Fig. 14.1. As it is assumed that electric potential varies linearly between
two successive nodes, it is obvious that potential of that particular node will be related to
potentials of the six connected nodes. FDM equation for any unknown node potential is
developed in terms of potentials of the connected nodes by satisfying the Laplace’s equation.
The FDM equation thus developed is a linear equation, which is an approximation of the
Laplace’s equation that is a second order partial differential equation.

Since the nodal distances in a practical system are unequal, the following approach is
normally taken for development of the FDM equations. After discretization, the largest nodal
distance (h) is identified within the ROI. Then all the other nodal distances are represented as
a fraction of that largest nodal distance as sxh, where s,<1. This is done because the factor sy
is a dimensionless quantity and the FDM equation is developed in terms of potentials of the
six connected nodes and the dimensionless factors sy. Therefore, the developed FDM
equation becomes a linear equation involving electric potential only.



Fig. 14.1 Unequal nodal distances for FDM equation development in 3-D system

As shown in Fig. 14.1, the unknown potential of node-0 will be formulated in terms of
potentials of the six connected nodes 1 through 6. Electric potential being a continuous
function within the ROI and the nodal distances being not large, Taylor series can be applied
for the determination of potential of any one connected node from the potential of node-0.
Taylor series in 3-D system is expressed as follows:
f(x+a,y+b,z+c)="F(xy, z)+a§ f(x,y, z)+b% f(x,y, z)+c§ f(x,y,2)+
X z

a2 82 bZ 62 CZ 82 . 14'1

(X y )+ (XY, )+ == T (%, y,2)+.....

2! Ox 2! oy 2! 0z
Applying Taylor series expansion between the nodes 1 and O considering the potential of
node-0 (Vo) as f(x,y,z) and the node potential of node-1 (V) as f(x+a,y+b,z+c) so that a=s;h,
b=c=0 and neglecting higher order terms,

2
V1:V0+slha—v +@ @

oXlp 2 oOx°
Similarly, applying Taylor series expansion between the nodes 0 and 3, such that a= -ssh,
b=c=0.

.. 142

ov|  (sh) o]

V,=V,—-s;h .. 14.3
Y a2 x|,
oV
Eliminating a—from eqgns. (14.2) and (14.3),
X
ﬁ.kﬁ _V0 i_ﬁ.i
V| s s s, S,
o= / . 144
x|, h?(s,+5,)
2
Similarly, between the nodes 2 and 4 in the y-direction,
ﬁ_l_vi“ _VO i+i
82V| S, S S, S,
2| 2 ... 145
ay |0 h (SZ+S4)
2

and between the nodes 5 and 6 in the z-direction,



oy (284

.. 14.6
o), h?(ss+5g)
2
Now, Laplace’s equation in Cartesian coordinates at node-0,
82\/| 82V| 82V| =0 147

amral az\

So, from eqgns. (14.4) through (14.7), eliminating h, the FDM equation for the unknown node
potential Vq is obtained as

1 (vl V3j 1 (vz V4J 1 (vs VG)

242 —— | 2+ A+ ——| =2+

voSatSs\s 8) SH8\S ) S+S%(S S
=

1 1 1
+ -
$1S; 5,5, SsS6

For equal nodal distances in 3-D system, s; =S, = S3 =S4 = S5 = S¢ = 1. S0 eqn.(14.8) reduces
to

.. 14.8

V, = %(v1 +V, +V, +V, +V, +V, ) ... 14.9

For 2-D system with unequal nodal distances, the FDM equation of (14.8) reduces to

1 (v, Vv, 1 (v, Vv,
el h e I S
s;+5,0s S3) s, +s,ls, s,

Vo =

i i ... 14.10
$S; S,S,
y
A
2()
<
()]
ya\ Of\ N > X
3 sS3h s1h 1
e
=
()]
)]
4

Fig. 14.2 Unequal nodal distances for FDM equation development in 2-D system

For equal nodal distances in 2-D system, the FDM equation of (14.10) reduces to
V, = %(v1 +V,+V, +V,) .. 1411



Problem 14.1
Consider the 3-D arrangement with single-dielectric having six given planes a,b,c,d,e,f as

shown in Fig. 14.3. Write the FDM equations for the unknown node potentials Vo; and V.
Given h,=0.6 h;.

d
f

.Ll 5

30 '3
e I h2
—_— | G4 22 23 b
0, 0, 33
B 7
4 15
a hy
c /

Fig. 14.3 3-D arrangement with two nodes having unknown potentials
Solution:

In this case, for both the nodes 0; and 0y, 1= S,= S3 = s4=1 and ss= sg=(h,/h1)=0.6.

1(\4s+\/zzJ+1(\/c>z+\/s4j+1[\/so+\hj
v 1#1l1 "1 )71+1(1 " 1) 06+06(06 06
01 —

11 1 ... 14.12
4
1 1 06x0.6
and
1 (ijl(vvj 1 (VV)
V02=1+l 1 1 1+i 11 11 06+0.6\06 0.6 1413
4+ 4
1 1 06x0.6
Problem 14.2

For the 2-D system with single-dielectric as shown in Fig. 14.4, write the FDM equations for
the unknown node potentials. Boundary node potentials are given in the figure.

100kV r

Fig. 14.4 2-D arrangement with nodes having unknown potentials

Solution:

From Fig. 14.4 it may be seen that for the nodes 1, 2, 4 and 5 the nodal distances are equal,
i.e. h =r/2. For the node 3, s;= s3= s,= 1 and s, can be computed trigonometrically as 0.268,
as s,h=(r—rcosd) and sin Hz(h/r). Moreover, for the nodes 1 and 2, symmetry wrt the



central plane is to be considered, such that for the node 1 another node on the LHS has to be
considered whose potential will be equal to V4 and similarly for node-2.

v1=%(v4+100+v4+v2)

V, = %(VS +V, +V, +0)

1 (70+100j+ 1 (100 +V4]
V3=1+1 1 1 0.268+110.268 1 . 1414
i1
1 0.268x1
v, :%(52 +V; +V, 4V )

V, :%(36 +V, +V, +0)

FDM Equations in Axi-symmetric System for Single Dielectric Medium

When the field is expressed in cylindrical co-ordinates (r,6,z) and the field distribution is
independent of *&, then the field distribution is said to be axi-symmetric or rotationally
symmetric, e.g. insulators, bushings etc. A typical diagram of an axi-symmetric object is
shown in Fig. 14.5.

Earthed Electrode

Axis of Symmetry

HV I
Electrode

Porcelain

r

Fig. 14.5 Typical Axi-symmetric insulator geometry

To determine the electric field distribution in axi-symmetric system, Laplace’s equation in
cylindrical coordinates, as given below, needs to be solved.

OV LV 1OV OV, .. 14.15
o° ror r°o0° oz
In axi-symmetric system, V is independent of &, so that eqn.(14.15) reduces to
82\2 +la—v+az\§=0 ... 14,16
or ror oz

10



FDM equation for a node lying away from the axis of symmetry

In Finite Difference Method, for axi-symmetric system the ROI is discretized using either
rectangles or squares. In such cases, one particular node is connected to four neighboring
nodes as shown in Fig. 14.6. As it is assumed that electric potential varies linearly between
two successive nodes, it is obvious that the potential of that particular node will be related to
potentials of the four connected nodes. FDM equation for any unknown node potential is
developed in terms of potentials of the connected nodes by satisfying the Laplace’s equation
in cylindrical coordinates. Fig. 14.6 shows the node-0 with unknown potential lying at a
certain distance away from the axis of symmetry. In such a case, the radial distance of the
node-0 from the axis of symmetry is also taken as multiple (sh) of the largest nodal distance
h.

z
A

Axis of symmetry

Fig. 14.6 Unequal nodal distances for FDM equation development in axi-symmetric system
for a node lying away from the axis of symmetry

From Taylor series expansion between the nodes 1 and 0 in the r-direction, neglecting higher
order terms,

oV | +(slh)2 oV
orl, 2 or?|
Similarly, from Taylor series expansion between the nodes 0 and 3 in the r-direction,
oV | +(33h)2 oV
orl, 2 or?|

V,=V, +sh .. 14.17

V,=V,—s;h ..14.18

Eliminating %—Vfrom eqns. (14.17) and (14.18),
r

oV _\s s, 35 ... 14.19

| _
or?| h?(s,+5,)
2

0

oV

Eliminating pre from eqgns. (14.17) and (14.18),
r

11



= ... 14.20

Considering the fact that the radial distance of node-0 from the axis of symmetry is r = sh,

Vi Vo (1 1
1ov| 1ov] s s °\s s

ror|, shor|, 1 1 o 1ael
0 0 Shz( j
Sl SS
Similarly, between the nodes 2 and 4 in the z-direction,

82V| S; S S; S

~ = 2 .. 14.22
oz’ |, h?(s,+s,)

2

Putting the relevant expressions from eqns. (14.19), (14.21) and (14.22) in the Laplace’s
equation of (14.16), the FDM equation for the unknown node potential V, can be obtained as

1 {(ZSJFSS}/ (23—51}/} 2s (VZ V4]
L+ 5o+ L+
v - S, +5, S, S, S,+S,\S, S, 1493

° 2S+S,—S; . 23
5SS, S,S,
For an axi-symmetric arrangement with equal nodal distances, i.e. s; =S, = S3 =S4 = 1, eqn.
(14.23) reduces to

Vv, :%(vl+v2+v3+v4)+

ViV, ... 14.24

It may be seen from the above equation that for a node lying on the axis of symmetry, i.e. for
s=0, egn. (14.24) is not valid. Hence, the FDM equation for a node lying on the axis of
symmetry needs to be developed separately.

FDM equation for a node lying on the axis of symmetry

Fig. 14.7 shows an axi-symmetric nodal arrangement with unequal nodal distances where the
node-0 having unknown node potential is lying on the axis of symmetry.

z
A

ssh N

Slh

Axis of symmetry
o
& S4h [
'_\

—> I

Fig. 14.7 Axi-symmetric system with unequal nodal distances with a node lying on the axis
of symmetry

12



For an axi-symmetric system, along the axis of symmetry the electric flux lines are tangent to

the axis. In other words, as r —0, a@—v—>0.
r

So, applying L-Hospital’s rule, Lt lﬂ:ﬂ.
r—0r or or

Hence, for a node lying on the axis of symmetry, Laplace’s equation of (14.16) is modified to

282\/ +ﬂ:0 ... 14.25

or’® oz’
From Taylor series expansion between the nodes 1 and 0 in the r-direction, neglecting higher
order terms,

2
v, =v, +5n Y] (&) az\ﬂ .. 14.26
orl, 2 ar?|
oV
But, as r—0, E_)O . So, from eqgn. (14.26)
oN :2(V1_V°) ... 14.27
ort|,  (shy

Following eqgn. (14.22) applying Taylor series between the nodes 2, 0 and 4 in the z-direction,

£+V74 _VO i+i
V| s, s, S, S,

o), h?(s,+s,)
2
Then satisfying the Laplace’s equation of (14.25) with the help of eqns. (14.27) and (14.28),
the FDM equation for a node lying on the axis of symmetry can be obtained as follows

&, 1 [V”V“j

s s,+s,\s, s,

... 14.28

V, = 2 1 ... 14.29
s> 8,8,
For equal nodal distances, i.e. for s; =s; =54 =1, eqn. (14.29) reduces to
Vo = %(4\/1 +V, +V4) ... 14.30
Problem 14.3

For the axi-symmetric arrangement with equal nodal distances as shown in Fig. 14.8, write
the FDM equations for the unknown node potentials.

4
A
100V 100V 100V 100V

80V

45V

Axis of symmetry

> I
0 0 0 0

Fig. 14.8 Nodal arrangement pertaining to problem 14.3

13



Solution:
It may be noted from Fig. 14.8 that the nodes 1 and 2 lie on the axis of symmetry, while the
nodes 3, 4, 5 and 6 lie away from the axis of symmetry.

V, = 1(4v3 +100+V,)

6
V, :%(4v4 +V,+0)

1(v +100+V, +V, )+ VsV s s=1

4 x1

1(v6+v +V,+0)+ VorVo s 5=1

4 8x1

%(80+100 +V, +V6)+80_V3 as s=2
X

i(45+v5+v4+o)+ BV s s=2

4 8x2

Problem 14.4
For the axi-symmetric system with single-dielectric as shown in Fig. 14.9, write the FDM
equations for the unknown node potentials. Boundary node potentials are given in the figure.

100kV

-

Axis of symmetry

////////////(/(/(/////
h

Fig. 14.9 Nodal arrangement pertaining to problem 14.4
Solution:
It may be noted from Fig. 14.9 that for the nodes 1,2,4 and 5 the nodal distances are equal,
out of which the nodes 1 and 2 lie on the axis of symmetry. Nodes 3, 4 and 5 lie away from
the axis of symmetry, out of which the nodal distances for node-3 are unequal such that s; =
s3=54=1and s, =0.268.

V, = %(4v4 +100+V,)

v, :%(4v5+v1+o)

1{(2x1+1J80+[2x1—1j100}+ 2x1 (100 +v4)
14|01 1 0.268+110.268 1
s 2><1+1—1+ 2x1
1x1 0.268x1
55-V,
8x1

2 :%(55+v3 +V, +V; )+ as s=1

14



40-V,

8x1

as s=1

V, :%(40+v4 +V, +0)+

FDM Equations in Three-Dimensional System for Multi-Dielectric Media

Since the commonly used assumption in finite difference method is linear variation of electric
potential between two successive nodes, hence it is imperative that there should not be two
different dielectric media between two successive nodes. In other words, during discretization
it should be ensured that one set of nodes will always be on the dielectric interface. Fig.14.10
shows one such nodal distribution with unequal nodal distances. The y-z plane is considered
to be the dielectric interface and one set of nodes is on the dielectric interface. For all the
nodes that lie within either medium 1 or medium 2 there will be only that dielectric between
any two successive nodes and hence the FDM equations for single-dielectric medium could
be used for such nodes. But for the nodes lying on the dielectric interface it is not the case. As
shown in Fig.14.10 between the nodes 0 and 1 there is medium-1 and between 0 and 3 there
is medium-2. So FDM equation needs to be developed for the nodes that lie on the dielectric
interface applying suitable boundary conditions.

Medium 2
(e2)

|
z |
|

Fig. 14.10 Nodal arrangement for FDM equation development in 3-D system with multi-
dielectric media

For Laplacian field, i.e. considering that the dielectric boundary does not have any free
charge present on it, the necessary boundary condition is that the normal component of flux
density remains constant on both the sides of the dielectric interface. For the nodal
arrangement shown in Fig. 14.10, the x-component of electric flux density is the normal
component on the dielectric interface as the y-z plane is the dielectric interface. Hence,

or, ¢&E, =¢,E!
or, —glﬂ:—gzav ... 1431
OX OX
or, ai:ﬁé_vz Ka_v
oX &, OX OX
where K 4
&,

15



Here, it is to be noted that two potential functions need to be considered on the two sides of
the dielectric interface as shown in eqn. (14.31). The potential function V is valid for
medium-1 and V'is valid for medium-2.

Accordingly two Laplace’s equation, one with V and the other withV', need to be satisfied in
this case, as given in eqgn. (14.32a) and (14.32b). Eqn. (14.32a) is valid for medium-1, while
eqn. (14.32b) is valid for medium-2.

2
82\£+8\£+62\£ =0 ... 14.32a
oX® oy° oz
[ [ At
%2;/2 +86yz\/2 +aazv2 =0 ... 14.32b

Now, from Taylor series expansion between the pair of nodes, the following expressions are
obtained

2142
V, =V, + slhav| W3 h 62\£| between the nodes 1 and O ... 14.33a
xly 2 o
' 2|2 '
V, =V, —sshav | + Ssh 82\/2 between the nodes 0 and 3 ... 14.33b
xl 2 x|
2|2
V, =V, + szh% + il az\g between the nodes 2 and 0 ... 14.33c
¥ 2
2142
V, =V, - S4hﬂ + il ﬂ between the nodes 0 and 4 ... 14.33d
o, 2 oy,
212 A2
V.=V, + ssha—v + S5 a—\g between the nodes 5 and 0 ... 14.33e
oarl, 2 o7,
oV|  sih? oV
Vs =V, —ssh +7 | between the nodes 0 and 6 ... 14.33f
orl, 2 oz°|,

It is to be mentioned here that the nodes 0, 2, 4, 5 and 6 lie on the dielectric interface.
According to the boundary conditions on dielectric-dielectric interface, electric potential and
tangential component of electric field remain constant on the dielectric interface.

62V| V.-V, —slha\;
From eqgn. (14.33a) - = — 2 ... 14.34
l, s
2
Y V, -V, + ssha(;/ V, -V, + sshK(ZV
and from eqn. (14.33b) —- = ) Xh _ ) Xlo ... 14.35
OX \0 s,h s,h
2 2

From eqns. (14.33c) and (14.33d) along the y-direction on the y-z plane,

) \é_i_\ﬁ _VO i+i
ov| s, s, s, S,) oV

8yz ‘0 hz (SZ+S4) ay2 ‘0
2
and from egns. (14.33e) and (14.33f) along the z-direction on the y-z plane,

... 14.36
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V| _\s s S, S;)_0V

oz’ | h? (s, +5,) oz’ |
2
From eqn. (14.32a), i.e. the Laplace’s equation that is valid for medium-1,

67V V72_|_V74 _V0 i+i \£+V76 _V0 i_}.i
x|, \S S, S, S, Ss S Sy Sg
2112 + 2 + 2

sZh h?(s, +s,) h? (s, +5,)

2 2 2

.. 14.37

0 0

V, -V, —sh

=0 ... 14.38

and from eqgn. (14.32b), i.e. the Laplace’s equation that is valid for medium-2,

V, -V, +s,hk 2

oxly \S2 S, S S) S5 S S S)_j 14.39

s2h? h?(s,+s,) h? (s, +5)
2 2 2

Eliminating Z—\; from eqgns. (14.38) and (14.39),

0

V, V, sK+s| 1 (v, v, 1 (v, Vv,
e T2 ta gy 5406
s, 8K Ko [ (s,+s)\s, s,) (ss+85)\ss s

° 1 1 sK+s,[ 1 1
= + +
s, $;K K S,S,  S:Sg
Eqn.(14.40) is the FDM equation for unknown potential of a node lying on the dielectric
interface in three-dimensional system with unequal nodal distances.
For equal nodal distances in three-dimensional multi-dielectric system, i.e. when s; = s, = s3
=54 =55 =S¢ =1, eqn.(14.40) reduces to

.. 14.40

\ 2K +V, + 2V, +V, +V, +V,
v, =—K+l K6+1 .. 14.41

For two-dimensional multi-dielectric system with unequal nodal distances, the FDM equation
for unknown potential of a node lying on the dielectric interface will be as follows, where the
dielectric interface is considered to be along the y-axis, as shown in Fig. 14.11.
Vi, Vs, sK+s, (VZ+V4]
s, s.K K(s,+s,)ls, s,
o 1 1 sK+s

s, S;K  Ks,s,

... 14.42
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S3h 0 Slh 1
Medium 2 < Medium 1
(e2) @ (e1)

T 4
Fig. 14.11 Nodal arrangement for FDM equation development in 2-D system with multi-
dielectric media

For equal nodal distances in two-dimensional multi-dielectric system, i.e. when s; =S, =s3 =
sS4 =1, egn.(14.42) reduces to

2K V, + 2\/31+V4

K+ ... 14.43
4

\'A +
V0: K+1

Problem 14.5

For the three-dimensional arrangement with two different dielectric media as shown in Fig.
14.12, write the FDM equations for the nodes 1, 2 and 3. The known node potentials are as
follows: V13=V23=V33=100V, V14=V24=V3,=0V, V11=V21=V3=50V, V1,=V,,=V3,=60V and
V15=V35=55V. Given that g,=4 and &,=1.

Medium 2 ZA Medium 1

N

A
- (|~

h/2

Ll‘

11—

|1

| |z

/

|\ /14
]h/s" h/3
X

Fig. 14.12 Nodal arrangement pertaining to Problem 14.5

3h/4

>

Solution:
In this problem, the largest nodal distance is h.
For node-1: $1=0.5, s3=1, s,= $4=0.333, s5=0.5 and s¢=0.75. So as per eqn. 14.8

18



1 (50+60j+ 1 [vz , 55 j+ 1 (100+ oj
v _05+1(05 1) 0.333+0.333(0.333 0.333) 05+0.75\0.5 0.75
1 1 1 1
+ +
0.5x1 0.333x0.333  0.5x0.75

Similarly for node-3: $;=0.5, s3=1, s,= $,=0.333, s5=0.5 and ss=0.75. So as per eqn. 14.8

1 (50+60j+ 1 ( 55 .V, j+ 1 (100+ 0 j
V. - 05+1(05 1 /) 0.333+0.33310.333 0.333) 0.5+0.75\ 05 0.75
s 1 1 1
+ +
0.5x1 0.333x0.333 0.5x0.75
For node-2, as per eqgn. 14.40, V1=V3, V3=V1, Vo,=V53=100V, V4=V2=0V, V5=V,=50V and
V6:V22:60V and S1= 8320.333, $,=0.5, 54=0.75, S5:0.5, Se=1 and K= (61/82):4.

V, v, 0.333x4+0.333 1 (100 oj 1 (50 60)
+ + + + —+—
v 0333 0.333x4 4 (05+0.75){ 05 0.75) (0.5+1)\05 1
2 1 1 0.333x4+0.333 1,1
0.333  0.333x4 4 0.5x0.75 0.5x1
Problem 14.6

For the 2-dimensional multi-dielectric configuration with series dielectric arrangement as
shown in Fig. 14.13, write the FDM equations for the nodes having unknown potentials.

100kV r

L

| -
3r/413r/413r/413r/4

N

Fig. 14.13 Nodal arrangement pertaining to problem 14.6
Solution:

For the nodes 1, 2 and 3, symmetry of the configuration has to be considered wrt the central
plane. The nodal distances are equal for these three nodes.
For node-1:

V, %(vs +100+V; +V,)

For node-2: As per eqn. 14.43, V1=V1, V,=Vs, V3=V3 and V4=V and K = (1/3).
2x0.333 2V, LV

1 +V6 + 6
V, = 0.333+1 0.333+1
4

For node-3:

V, =%(v7 +V, +V, +0)

19



For node-4: The nodal distances are unequal such that s;=(1/3), s,=0.882, s3=s,=1 because
the largest nodal distance is (3r/4). Then as per eqn. 14.10

1 (68 100 1 (100 V,
_0333+1(0.333 1 ) 0.882+110.882 1

Vs 1 N 1
0.333x1 0.882x1
For node-5: The nodal distances are unequal such that s;=(1/3), s,=1, s3=s,=1. Then as per
eqn. 14.10
1 2 Vi), 1 (Ve Ve
0.333+110.333 1) 1+1(1 1
V; =
1 1
+7
0.333x1 1x1

For node-6: As per egn. 14.42, V,1=Vs, V,=V,, V3=V; and V,4,=20 and K = (1/3). Nodal
distance factors are s;=s,=s3=1 and s,=(1/3).

Vs, V; | 1x0.333+1 (\/2+ V, j
v -1 1x0333 0.333(1+0.333)( 1  0.333
6 }+ 1 N 1x0.333+1
1 1x0.333 0.333x1x0.333
For node-7: The nodal distances are unequal such that s;=(1/3), s,=s3=S4=1. Then as per eqn.
14.10
1 8 V, 1 (Vs O
3
0.333+110333 1) 1+1\1 1
V, =
1 1
+7
0.333x1 1x1
Problem 14.7

For the 2-dimensional multi-dielectric configuration with parallel dielectric arrangement as
shown in Fig. 14.14, write the FDM equations for the nodes having unknown potentials.
|

100V 100V 1QOV 100V 100V

W
W
<
h/3+h/3+h/3"

L hoh2 o oh

Fig. 14.14 Nodal arrangement pertaining to problem 14.7
Solution:
The largest nodal distance for this arrangement is h.
So, for node-1: s;=1, s,=54=0.333 and s3=0.5. Then as per eqn. 14.10

1 (66 Vo), 1 100V,
_1+05\ 1 05) 0333+0.33310.333 " 0.333
B 1 1

+
1x0.5 0.333x0.333
For node-2: s1=1, s,=54=0.333 and s3=0.5. Then as per eqn. 14.10

Vl
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2 el ot)
~1+05\1 05) 0.333+0.333\0.333 0.333
B 1 N 1

1x0.5 0.333x0.333
For node-3: As per eqn. 14.42, V,=V1, V,=100, V3=Vs and V,= V4 and K = (1/4). Nodal
distance factors are s;=s3=0.5 and s,= s4= 0.333.

Vv,

Vi, Vs . 05x0.25+05 (100 .V j
v, - 05 05x0.25 0.25(0.333+0.333)1 0.333  0.333
37 1 1 0.5x0.25+0.5

e +
0.5 0.5x0.25 0.25x0.333x0.333

For node-4: As per eqn. 14.42, V1=V,, V,=V3, V3=V and V,=0 and K = (1/4). Nodal distance

factors are s3=s3=0.5 and s,= s4,= 0.333.

Vo, Ve o, 05x025+05 (v3 L0 j
v 05 05x0.25 0.25(0.333+0.333)1 0.333  0.333
‘T 1 1 0.5x0.25+0.5

et +
0.5 0.5x0.25 0.25x0.333x0.333
For node-5: $1=0.5, s,= 54=0.333 and s3=1. Then as per eqn. 14.10

1 (\/3+esesj+ 1 (100 VY J
_05+1(05 1) 0.333+0.333(0.333 0.333
- 1 1

+
0.5x1 0.333x0.333
For node-6: $1=0.5, s,= 5,=0.333 and s3=1. Then as per egn. 14.10

Vs

ilos ™ o ol oo
054105 1) 0.333+0.333{0.333 0.333
1 N 1

0.5x1 0.333x0.333

Vs

FDM Equations in Axi-symmetric System for Multi-Dielectric Media

For series dielectric media

In this case, the dielectric interface is considered to be normal to the axis of symmetry. The
FDM equations need to be developed for a node lying on the dielectric interface. This node

could be away from the axis of symmetry and could also be on the axis of symmetry.

For the node on the dielectric interface lying away from the axis of symmetry
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Fig. 14.15 Nodal arrangement for FDM equation development in axi-symmetric system with
multi-dielectric media in series dielectric arrangement when the node is lying away from the
axis of symmetry

For the nodal arrangement shown in Fig. 14.15, the z-component of electric flux density is the
normal component on the dielectric interface that is parallel to the r-axis.

B, = D!
or, &E, = ¢,E!
or, —glﬂ:—gz N ... 14.44
0z 0z
or, ﬂ:ﬁﬁ: Kﬂ
oz ¢, 0L 0z
where K = &L

&

Here, it is to be noted again the potential function V is valid for medium-1 and V'is valid for
medium-2.
Accordingly two Laplace’s equation, one with V and the other withV', need to be satisfied in
this case, as given in eqn. (14.45a) and (14.45b). Eqn. (14.45a) is valid for medium-1, while
eqn. (14.45b) is valid for medium-2.

oV 1oV oWV

At —t— =
or ror oz
o' 1oV’ oWV’
+= +

orr ror ozt
Now, from Taylor series expansion between the pair of nodes, the following expressions are
obtained

0 ... 14.45a

=0 ... 14.45b

22 A2
V, =V, + slhﬂ + h g between the nodes 1 and 0 ... 14.46a
orly 2 or|
212
V, =V, —sgh% + Sah ﬂ between the nodes 0 and 3 ... 14.46b
orly 2 ort|
2102 A2
V, =V, + szha—v + il 8—\2 between the nodes 2 and 0 ... 14.46¢
orl, 2 oz°|,
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’ 2102 ’
V, =V, _S4hav N s;h? 0%V
ozl, 2 a*|,
It is to be noted here that the nodes 1, 0 and 3 lie on the dielectric interface. According to the
boundary conditions on dielectric-dielectric interface, electric potential and tangential
component of electric field remain constant on the dielectric interface.
From eqns. (14.46a) and (14.46b) along the r-direction on the dielectric interface,

, £+V73 _V0 £+i
V| s s S, S;) oV’

o, h? (s, +s;) ar? |
2
From eqns. (14.46a) and (14.46b) considering the radial distance of the node-0 from the axis
of symmetry to be sh, i.e. r = sh,

between the nodes 0 and 4 ... 14.46d

... 14.47

0

v, V, (11
1v| _rov| s s\ s 1av

= = ... 14.48
rorl, shorj sh2(1+1J rorl
Sl S3
From eqn. (14.46c¢) ~ = — 0 ... 14.49
0z ‘0 s,h
2
62V’| V, -V, + s4haav V, -V, + s4hKaaV
and from eqn. (14.46d) —; ) Zh 7 Zlo ... 1450
074 \0 s,h s,h
2 2
From eqns. 14.45a, 14.47, 14.48 and 14.49
V, V. 1 1 VvV, V 1 1
[1_,_3) _Vo("'j ;_S_V{z—zj Vz _Vo_szhﬂ
Si Sy S| S3 S S S S + Oz |, -0 14.51
h? (s, +ss) 1 1 s;h” o
— sh?| =+
2 S, S, 2
and from eqns. 14.45b, 14.47, 14.48 and 14.50
vV, V 1 1 VvV, V 1 1
(1+3J—V{+J ;-g—Vo(z—zJ Vv, —V0+s4hKa—V
Sl 53 Sl S3 Sl S3 Sl 83 az 0 :0 14 52
h?(s,+s;) 2(1 1] s2h? R
— sh?| =—+—
2 S, S, 2
oV
Eliminating —| from egns. (14.51) and (14.52),
z 0
S S
(Ks, + 54)(2+;) oK (Ks, +s4)(2—31] ,
Vi+—V,+ V,+—V,
V — Sl(sl + 53) s2 S3(51 + S3) S4 14 53
0 2(Ks, +s,) (s;—s,)Ks,+s,) 2K 2 o
+ +—+—
S;S, SS, S, S, S,
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Eqn.(14.53) is the FDM equation for unknown potential of a node lying on the dielectric
interface, where the node is away from the axis of symmetry, in axi-symmetric system with
unequal nodal distances having series dielectric arrangement.

For equal nodal distances, i.e. for s; = s, = s3 =54 = 1, eqn.(14.53) reduces to

vozE vl+£v2+v3+ 2 v, Vs ... 14.54
4 K+1 K+1 8s

and for single dielectric system, i.e. for K=1, with equal nodal distances eqn.(14.54) reduces

to

V1 _Vs
8s

... 14.55

V, :%(v1 +V, +V, +V, )+

For the node on the dielectric interface lying on the axis of symmetry

z
A

OSzh[\J
2
> 9
=

'b'S4h

Axis of symmetry
'S)o \
I

>

Fig. 14.16 Nodal arrangement for FDM equation development in axi-symmetric system with
multi-dielectric media in series dielectric arrangement when the node is lying on the axis of

symmetry
Laplace’s equation in medium-1: 2 %+% =0 ... 1456
.Y ’
Laplace’s equation in medium-2: 2 88_\/2+é;lz =0 ... 14.57
r z
As per eqn. 14.44 N =K a—v,where K=4
0z oz &,

Now, from Taylor series expansion between the pair of nodes, the following expressions are
obtained

21n2
V=V, + slhﬁ 3 h ﬂ between the nodes 1 and 0 ... 14.58a
orly 2 or|;
212 A2
V, =V, + szhﬂ + SN 9 \g between the nodes 2 and 0 ... 14.58b
orl, 2 oz°|,
' 22 AXQ !
vV, =V, —s4hav | + S, 0V | between the nodes 0 and 4 ... 14.58¢

oz |, 2 oz ‘0

In egn. 14.58a, N —0, as r —>0. Hence,

or

0
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L0V _ 4y, -v,)

= ... 1459
arz ‘0 Sth2
82V| 2(\/2 _Vo - Szhaa\zl )
From eqn. 14.58b, ~ = > 0
oz’ |, s, h?
2~V + s,k Y
oV'| oz,
From eqn. 14.58c, > = 5
oz ‘0 s, ’h
So, from Laplace’s equation in medium-1, i.e. eqn.(14.56),
oV
2(\/2 Vo _Szhi )
4(V12_2/°)+ % _g ... 14,60
s’h s,’h
and from Laplace’s equation in medium-2, i.e. eqn.(14.57),
oV
2(V, -V, +s,hK—| )
4(\/12_2/0) " @b _g .. 14,61
s’h s,’h
oV
Eliminating > from egns. (14.60) and (14.61),
z 0
2(K5272+S4)V1+£V2 +iv4
_ Sy Sy S,
V,= 2(Ks,+5,) K 1 ... 14.62
S, S, S,

Eqn.(14.62) is the FDM equation for unknown potential of a node lying on the dielectric
interface, where the node is on the axis of symmetry, in axi-symmetric system with unequal
nodal distances having series dielectric arrangement.

For equal nodal distances, i.e. for s; = s, = s, = 1, eqn.(14.62) reduces to

C2(K+1V, + KV, +V,
° 2(K+1)+K+1

and for single dielectric system, i.e. for K=1, with equal nodal distances eqn.(14.63) reduces
to

... 14.63

V, = %(4vl +V,+V,)

For parallel dielectric media
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P N

Axis of symmetry

Fig. 14.17 Nodal arrangement for FDM equation development in axi-symmetric system with
multi-dielectric media in parallel dielectric arrangement when the node is lying away from
the axis of symmetry

In this case, the dielectric interface is considered to be parallel to the axis of symmetry. The
FDM equations need to be developed for a node lying on the dielectric interface. This node is
away from the axis of symmetry, as in this case the dielectric interface cannot be on the axis
of symmetry.

For the nodal arrangement shown in Fig. 14.17, the r-component of electric flux density is the
normal component on the dielectric interface that is parallel to the z-axis.

B, = B;
, ... 14.64
or, ﬂ: Kﬂ , where K _&a
or or &,

Now, from Taylor series expansion between the pair of nodes, the expressions that may be
obtained are as follows

22 A2
V=V, + slh(a—v 3 h 8_\! between the nodes 1 and 0 ... 14.65a
orly 2 or|,
i 22 Ayt
V, =V, —s3hav Sh” 0 V2 | between the nodes 0 and 3 ... 14.65b
orl, 2 ar?|,
2|2 A2
V, =V, + szhﬂ + S 0 \g between the nodes 2 and 0 ... 14.65¢c
orl, 2 oz7|,
2|2
Vv, =V, —S4h% + Sih 62\2 between the nodes 0 and 4 ... 14.65d
orl, 2 o7,
From eqn. (14.65a) ~ = - 2 ... 14.66
or ‘0 s;h
2
V, -V, +s hKﬂ
oV P T oy
and from eqn. (14.65b) — = 5 0 ... 14.67
ar |, sth
2
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_ 2
Again, from eqn. (14.65a) lav| _V V2° _Sho \£| as r=sh ... 14.68
ror |0 ss,h 2sh or ‘O
and from eqn. (14.65b) LoV VoV, L o as r=sh ... 14.69

rorl, ss,h®  2sh or’ ,

From eqns. (14.65c) and (14.65d) along the z-direction on the dielectric interface,

V72+V74 _V0 i+i
ov| s, s, s, S,) V|

= ... 14.70
oz’ |, h?(s,+s,) oz |,
2
Satisfying Laplace’s equation in medium-1:
oV 1oV oWV
At —t— =
or ror oz
Vv, V 1 1
V=V _Slhﬂ Vi =V, _Slhal e+t ] I
orl, Vi-V, sh orl, s, s, S, S,
5 + = ) + 5 =0 ...14.71
sZh ss,h?  2sh sZh h*(s, +s,)
2 2 2
Similarly, satisfying Laplace’s equation in medium-2:
o' 1oV’ oWV’
= +—=0
or ror 0z
Vv, V 1 1
VS—VO+33hKﬂ V3—V0+S3hKﬁ 2474 _V0 S 4=
orly, Vo-V, sh orl, \ S, S, S, S,
2102 + 2 + 21.2 + 2 =01472
s2h ss;h?  2sh s2h h*(s,+s,)
2 2 2

from eqns. (14.71) and (14.72),

0

K 1 1 s K S vV, V
V. V. : s (Y2, Ve
_51(25—31) 1+(23+33) 3+(32+S4)H(Zs—sl)+(23+s3)}[s2 +S4H

V, = .. 14.73
K N 1 N 1 s;K S;
s,(2s—s,) (2s+s,) s,8, |(2s—s,) (2s+s,)

Eqn.(14.73) is the FDM equation for unknown potential of a node lying on the dielectric
interface, where the node is away from the axis of symmetry, in axi-symmetric system with
unequal nodal distances having parallel dielectric arrangement.

For equal nodal distances, i.e. when s; =s; = s3 =54 = 1, eqn.(14.73) reduces to

_ (ZSK— 1)V1 i (251+ 1)V3 * ; H(ZSK— 1) + ( 251+ 1)}(V2 +V, )}

| 2{<st—1>*<2:+1>}

and for single dielectric system, i.e. K=1, with equal nodal distances eqn.(14.74) reduces to

1 V, -V
V, :Z(Vl +V, +V, +V, )+ 185 3

Eliminating N
or

.. 14.74
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Problem 14.8
For the axi-symmetric multi-dielectric configuration with series dielectric arrangement as
shown in Fig. 14.18, write the FDM equations for the nodes having unknown potentials.

100kV r

|2r/3

&r1— Ao
2 &
A%
RGN B ic
ya
SN NS

r/3] 2r/3
I
v

Fig. 14.18 Nodal arrangement pertaining to problem 14.8
Solution:

In this configuration the largest nodal distance is (2r/3). So the respective nodal distance
factors are calculated based on this largest nodal distance.
For node-1: As per eqn. 14.29, V1= Vs, V,=100, V4=V5, 51=0.5 and s;=s4=1.
2xV, 1 (100 V,
5+ +-=
05 1+4101 1
B 2 1
2t o
0.5° 1x1
For node-2: As per eqn. 14.62, V1=Vs, V,=V1, V4=V3, 51=0.5, $,=5,=1 and K = (1/4).
2(0'25X21+1)V6 . 0.25V1 . ;VS
V. = 0.5 1 1
2 2(0.25x1+1) 0.25 1
5 + +=
0.5 1 1
For node-3: As per eqn. 14.29, V1= V7, Vo=V, V,4,=0, 5;=0.5 and s,=s,=1.
2xV, N 1V, N 0
05 1+1
B 2 1
7+7
0.5° 1x1
For node-4: The nodal distances are unequal such that s;=1, s,=0.086, s3=0.5, s,=1, s=0.5 and
V1= 65, V,= 100, V3=100 and V4= Vs. Then as per egn. 14.23

1 2x05+0.5 2x05-1 2x05 ( 100 'V,
65+ 100 ; + +
_1+O.5 1 0.5 0.086+110.086 1

2x0.5+05-1 2x05

+
1x0.5 0.086x1
For node-5: The nodal distances are unequal such that s;=s,= s4=1, $3=0.5, s=0.5 and V;= 32,
Vo= V4, V3=V and V4= Vg. Then as per egn. 14.23

1 2x0.5+0.5 2x0.5-1 2x0.5(V, 'V,
32+ Lo+ ol
_1+05 1 0.5 1+1 (1 1

2><0.5+0.5—1+ 2x0.5
1x0.5 1x1

Vl

v, 1 1

V4

Vs
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For node-6: As per egn. 14.53, V1=15, V,=Vs, V3=Vs, V4=V, $1=5,=5,=1, $3=0.5, s=0.5, and

K = (1/4).

0.5 1
0.25x1+1) 2+~ 0.25x1+1) 2——

(025 +)( +o.&sj 2x025. (025% +)( o.5j 2

x15+ V. + V,+-V,

V.= 1x(1+0.5) 1 0.5x(1+0.5) 1
6 2(0.25x1+1)  (05-1)0.25x1+1) 2x025 2
1x0.5 0.5x1x0.5 1 1

For node-7: The nodal distances are unequal such that s;=s,= s4=1, $3=0.5, s=0.5 and V;= 5,
Vo= Vs, V3= V3 and V,= 0. Then as per egn. 14.23

1 2x0.5+0.5 2x0.5-1 2x05(V, O
5+ st — 4+
1405 1 0.5 1+1 (1 1

2><O.5+0.5—1+ 2x0.5
1x0.5 1x1

\

Problem 14.9
For the axi-symmetric multi-dielectric configuration with parallel dielectric arrangement as
shown in Fig. 14.19, write the FDM equations for the nodes having unknown potentials.

|
8r2:2 : 8r1:1

Axis of
symmetry

S

100V 100V 100V 100V 100V
¢ *-

2

66V ¢ "o weg—i-

5T 13 2 Is
SE17 SR S WHED S LA 4

6 4 2

7777777077777 777777
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Fig. 14.19 Nodal arrangement pertaining to problem 14.9

Solution:

In this configuration the largest nodal distance is (h). So the respective nodal distance factors
are calculated based on this largest nodal distance.

For node-1: The nodal distances are unequal such that s;=s,= s4,=1, s3=0.5, s=1.833 and V;=
60, V,= 100, V3= V3, and V4= V,. Then as per eqn. 14.23

1 2x1.833+0.5 2x1.833-1 2x1.833(100 'V,
60+ 5o+ +-=
_1+05 1 0.5 1+1 1 1

2x1.833+0.5-1 2x1.833

+
1x0.5 1x1
For node-2: The nodal distances are unequal such that s;=s,= s4,=1, $3=0.5, s=1.833 and V;=
25, Vo=V, V3= V,, and V4= 0. Then as per egn. 14.23

1 2x1.833+0.5 2x1.833-1 2x1.833(V, 0
25+ ————— N, o+ L4
_1+05 1 0.5 1+1 (1 1

2><1.833+O.5—1+ 2x1.833

1x0.5 1x1
For node-3: The nodal distances are unequal such that s,=0.5, s,= s4=1, $3=0.333, s=1.333
and V= Vi, Vo= 100, V3= Vs, V4= V4 and K=(1/2). Then as per eqn. 14.73
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V,
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05 V, + L V; +
0.5(2x1.333-0.5) ' (2x1.333+0.333) °

1 05x05 0.333 (1oo+v4j
(L+1)] | (2x1.333-0.5) (2x1.333+0.333)/\ 1 1

05 1 1 0.5x0.5 0.333
+ + +
0.5(2x1.333-0.5) (2x1.333+0.333) 1x1{(2x1.333—0.5) (2><1.333+o.333)}

For node-4: The nodal distances are unequal such that s;=0.5, s;= s4=1, $3=0.333, s=1.333
and V1= Vy, Vo= V3, V3= Vs, V4= 0 and K=(1/2). Then as per egn. 14.73
0.5 1
V, +
0.5(2x1.333-0.5) * (2x1.333+0.333)

1 05x05 0.333 (\/3+0J
(1+1)] | (2x1.333-0.5) (2x1.333+0.333)J\ 1 1

0.5 1 1 0.5x0.5 0.333
+ + +
0.5(2x1.333-0.5) (2x1.333+0.333) lxl{(2x1.333—0.5) (2><1.333+o.333)}

For node-5: The nodal distances are unequal such that s,=s3=s4=1, 5;=0.333, s=1 and V;= V3,
V,= 100, V3= 66, and V4= Vs. Then as per egn. 14.23

1 (2x1+1)\/ (2x1—0.333j 2><1(1OO ve)
s [x66p+— |+
~ 0.333+1 |\ 0.333 1 1+10 1 1
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For node-6: The nodal distances are unequal such that s;=s3= s4=1, 5;=0.333, s=1 and V1= V4,
Vo= Vs, V3= 33, and V,= 0. Then as per eqn. 14.23

1 (ZX“ljv (2x1—0.333j 2><1[v5 oj
| ——————— X33+ — | >+ —
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Simulation Details
Discretization

In Finite Difference Method, for two-dimensional system the entire region of interest, i.e. the
region where the field distribution is required to be calculated, is discretized using either
rectangles or squares. In three-dimensional system, discretization is done using either
rectangular parallelepipeds or cubes. Since potential is commonly assumed to vary linearly
between two successive nodes, hence the nodes need to be closely spaced where the field
varies significantly in space. This is generally the case near the electrodes or dielectric
boundaries, particularly in the cases of contours having sharp corners. On the other hand, in
the region away from the electrodes or dielectric boundaries, where the field does not change
rapidly in space, the nodes may be spaced relatively widely apart.

For multi-dielectric problems, care should be taken during discretization to make sure that
only one dielectric is present between two consecutive nodes. This is achieved by arranging
one layer of nodes along the dielectric-dielectric interface.

The finite difference model of a problem gives a point-wise approximation to the governing
equations, e.g. Laplace’s equation. This model is formed by writing difference equations for
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an array of grid points called nodes, which is improved as more nodes are used in the
simulation. With the help of finite difference method, one can treat some fairly difficult
problems; but for problems having irregular geometries or an unusual specification of
boundary conditions, the finite difference method become hard to use.

As an example of how finite difference method might be used to represent a complex
geometrical shape, consider the high voltage insulator cross section shown in Fig. 14.20. A
finite difference mesh would reasonably cover the insulator volume, but the boundaries must
be approximated by a series of horizontal and vertical lines or “stair steps”. This results in
poor approximation of the curved insulator boundary.
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Fig. 14.20 Discretization of insulator geometry by FDM mesh
Simulation of Unbounded Field Region

FDM is well-suited for simulating bounded field regions, i.e. field regions having well
defined boundaries. For unbounded field regions, a major difficulty in the implementation of
FDM is the placement of nodes in the space which is far away from the components that
affect the field distribution. This difficulty is surmounted by placing a fictitious boundary as
shown in Fig. 14.21 at a location relatively distant from the components influencing the field.
This fictitious boundary is placed with the assumption that the pair of nodes on both sides of
this boundary has same potential, e.g. the potential of the nodes 1, 3, 5 & 7 are assumed to be
same as that of the nodes 2, 4, 6 & 8, respectively. If this fictitious boundary is placed in a
region where the field does not vary rapidly in space, then the imposition of this fictitious
boundary does not incorporate any significant error in the field computation.
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Fig. 14.21 Simulation of unbounded field region
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Accuracy Criteria

The accuracy of simulation is dependent upon the nature of discretization of the field region
and hence it is important to determine the simulation accuracy using certain well-accepted
criteria as detailed below.

The “potential error” on the electrode boundaries can be determined at a number of
checkpoints on the electrode surface between two consecutive nodes. Such check points are
often called control points. This potential error is defined as the difference between the
known potential of the electrode and the computed potential at the control point. From such
calculations one can determine the average or the maximum or the mean squared value of the
potential error.

The error in the electric field intensity is usually higher than the potential error. Hence,
compared to the potential error the “deviation angle” on the electrode surface is a more
sensitive indicator of the simulation accuracy. The deviation angle is defined as the angular
deviation of the electric stress vector at the control point on the electrode surface from the
direction of the normal to its surface.

In multi-dielectric systems, the discrepancy in the tangential electric stress at the control
points on the dielectric interface can be computed. Another criterion for checking the
simulation accuracy is to compute the discrepancy in the normal flux density at the control
point on the dielectric interface. For a good simulation such discrepancies should be small.

System of FDM Equation

In FDM, the potential of any node is related to either four connected nodes in two-
dimensional system or six connected nodes in three-dimensional system. Hence, if a field
region is discretized using N (N>>1) number of nodes, then the system of FDM equation will
be an NxN matrix. But in each row of this matrix, there will be non-zero value in only five or
seven elements depending upon the dimension of the simulated system and all the other
elements out of N elements of each row of the matrix will be zero. Hence, it is obvious that
the system of FDM equations generates a highly sparse matrix.

Hence, it is advisable to solve the system of FDM equations by an iterative technique such as
Gauss-Seidel method rather than using a direct method such as Gaussian Elimination. In the
iterative techniques, suitable technigue is to be employed to achieve accelerated convergence.
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Numerical Computation of HV Field by Finite Element Method (FEM)

Introduction

The Finite Element Method (FEM) is a numerical analysis technique to obtain solutions to
the differential equations that describe, or approximately describe a wide variety of physical
problems ranging from solid, fluid and soil mechanics, to electromagnetism or dynamics. The
underlying premise of the FEM is that a complicated region of interest can be sub-divided
into a series of smaller sub-regions in which the differential equations are approximately
solved. By assembling the set of equations for each sub-region, the behavior over the entire
region of interest is determined.

It is difficult to state the exact origin of the FEM, because the basic concepts have evolved
over a period of 100 or more years. The term finite element was first coined by Clough in
1960. In the early 1960s, FEM was used for approximate solution of problems in stress
analysis, fluid flow, heat transfer, and some other areas. In the late 1960s and early 1970s,
application of FEM was extended to much wider variety of engineering problems. Significant
advances in mathematical treatments, including the development of new elements, and
convergence studies were made in 1970s. Most of the commercial FEM software packages
originated in the 1970s and 1980s. The FEM is one of the most important developments in
computational methods to occur in the 20th century. The method has evolved from one with
applications in structural engineering at the beginning to a widely utilized and richly varied
computational approach for many scientific and technological areas at present.

Basics of Finite Element Method

Using the finite element method, the region of interest is discretized into smaller sub-regions
called elements as shown in Fig. 15.1, and the solution is determined in terms of discrete
values of some primary field variables, e.g. electric potential, at the nodes. The governing
equation, e.g. Laplace’s or Poisson’s equation, is now applied to the domain of a single
element. At the element level, the solution to the governing equation is replaced by a
continuous function approximating the distribution of the field variable ¢ over the element
domain, expressed in terms of the unknown nodal values ¢, ¢ and ¢; of the solution ¢. A
system of equations in terms of ¢, ¢ and ¢; can then be formulated for the element. Once the
element equations have been determined, the elements are assembled to form the entire
region of interest. Assembly is accomplished using the basic rule that the value of the field
variable at a node must be the same for each element that shares that node. The solution ¢ to
the problem becomes a piecewise approximation, expressed in terms of the nodal values of ¢.
The assembly procedure results in a system of linear algebraic equations.

Several approaches can be used to transform the physical formulation of the problem to its
finite element discrete analogue. If the physical formulation of the problem is known as a
differential equation, e.g. Laplace’s or Poisson’s equation, then the most popular method of
its finite element formulation is the Galerkin method. If the physical problem can be
formulated as minimization of a functional then variational formulation of the finite element
equations is usually used. For problems in high voltage fields, the functional turns out to be
the energy stored in the electric field.
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Fig. 15.1 Depiction of Region of interest, element and nodes for FEM formulation

A third and even more versatile approach to deriving element properties is known as the
weighted residuals approach. The weighted residuals approach begins with the governing
equations of the problem and proceeds without relying on a variational statement. This
approach is advantageous because it makes it possible to extend the finite element method to
problems where no functional is available.

Procedural Steps in FEM

In general terms, the main steps of the finite element solution procedure are as follows.

1. At the beginning the region of interest is discretized into finite elements.

2. Suitable functions are considered to interpolate the field variables over the element.

3. The matrix equation for the finite element is formed relating the nodal values of the
unknown field variables to other physical parameters.

4. Global equation system is formed for the entire region of interest by assembling all
the element equations. Element connectivities are used for the assembly process.
Boundary conditions, which are not accounted in element equations, are imposed
before the solution of equations.

5. The finite element global equation system is solved to get the nodal values of the
sought field variables.

6. In many cases additional parameters need to be calculated after the solution of global
equation system. For example, in high voltage field problems electric field intensity,
electric flux density and charges are of interest in addition to electric potential, which
are obtained after solution of the global equation system.

Variational Approach towards FEM Formulation

For high voltage field problems, the principle of minimum potential energy is used in this
approach. The principle of minimum potential energy can be stated as: Out of all possible
potential functions ¢(x,y,z) the one which minimizes the total potential energy is the potential
solution that will satisfy equilibrium, and will be the actual potential due to the applied field
forces.
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Thus, a potential function that will minimize the functional, i.e potential energy, is desired.
Minimization of functionals falls within the field of variational calculus. In most cases an
exact function is impossible to determine, necessitating the use of approximate numerical
methods. The minimization of potential energy in a finite element formulation is carried out
using the energy approach. The finite element method develops the equations from simple
element shapes, in which the unknowns of the solution are the potentials at the nodes. The
calculus of variations enables the energy equation to be reduced to a set of simultaneous
equations with the nodal potentials as the unknown quantities.

FEM Formulation in 2-D System with Single Dielectric Medium

The potential energy in a two-dimensional electric field is given by

1 —2
Urou =j!§gogr E| 1.dA ...15.1
([tes-94 .. 152
or, U jAjzgogr V| 1dA
where, E = electric field intensity, ¢ = electric potential, | = length normal to the area A

(usually considered as unity for 2-D field), & = permittivity of free space and & = relative
permittivity of dielectric.

The integration of egn. 15.1 must be carried out over the area A, which is identical to the field
region under consideration as shown in Fig. 15.1. Since, this area must be finite, FEM cannot
be applied to the problems with “open fields” without modifications.

To apply FEM, the region of interest is to be discretized by so-called finite elements as
shown in Fig. 15.1. If a region of interest is divided into elements such that continuity of
electric potential between elements is enforced, then the total potential energy is equal to the
sum of the individual energies of each element. For N number of elements, the total potential
energy can then be stated as:

N
UTotal = ZU (e) 153
=1

To minimize the total potential energy, U, of the entire region of interest, U(e) must be
minimized for each element. Seeking a set of nodal potentials for each element will minimize
U(e). Observe that the functional, U(e) is a function only of the nodal potentials. Using
calculus of variations, an extremization of U(e) occurs when the vector of the first partial
derivatives with respect to ¢ is zero.
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Fig. 15.2 Linear Triangular Element
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The simplest 2-D element is the linear triangular element as shown in Fig. 15.2. For this
element there are three nodes at the vertices of the triangle, which are numbered around the
element in anti-clockwise direction. Electric potential ¢ is assumed to be varying linearly
within the element such that

¢ =oa +o,X +agy ... 154
Hence, Exz—a—vz—az and Ey:—ﬁ:—a3 ....155
OX oy

Thus, for this element electric field intensity components are constant throughout the
element. As a result, this type of element is also known constant stress element (CST).

Now, considering a triangular element as shown in Fig. 15.2
¢ = taX+asy,
Py = ay+ X, +25Y, ....15.6
Py = o +a,X Y,
So, from eqn.3.6
Lé v

1¢,Y,
L ¢,
Loy
1 X Y,
1X3y3

or, a, =%[¢1(y2 —¥3)+ b (Ys = i)+ d5(V — V)] ... 15.7

where, D = (Xz Y3 — XsYz)"' (X3Y1 - X1Y3)+ (X1Y2 =X y1) ... 15.8
= 2 times the area of the triangle

Similarly, a, :%[ (X, =X, )+ 8, (X, — X3 )+ ¢, (%, — %, )] ....15.9

The magnitude of the electric field intensity within an element T,

Er|=|EZ|+[E}| =/ + 3 ....15.10

Hence, the electric potential energy in an element T
- |2
E,[ Al = %gogr Al +a2) ... 1511

1
U; = Egogr
For electric potential energy in an element to be minimum,

U, =lgogrA.|.2(aZ%+a3%j=0 ... 15.12
op 2 o, )

Eqn. 15.12 is to be applied to every node where the unknown potential is to be determined. It
may be noted here that the node under consideration may belong to more than one element.
Then Egn. 15.12 is to be applied for all such elements considering the node under
consideration as node-1 and the other two nodes of the element being node-2 and node-3
taken in anti-clockwise direction.

0, Yo=Y 003 X=X, and A=D/2
D

Now, = , =
¢, D ¢,
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So, from eqn. 15.12
%5(@ %.I.Z{az Y~ Y +a, s~ % } =0
0

D D

. ....15.13
or, Egogr-l-[az(yz - ya)"'as(xs - Xz)]:
Hence, from eqns. 15.7, 15.9 and 15.13
I
LA (= v ) (s - )+ (- v 2 - ¥s) 514
+ { 1(X3 - X2)+ ¢2(X1 - X3)+ ¢3(X2 - Xl)}(x3 - Xz)] =0
or A R R A A (S (R P (A A AN
+¢3{(X3 =X )(Xz - X1)+(y2 - ys)(y1 - Y2)}]: 0
or, Kt + Ky, + Kyrhy =0 ... 15.15
Ky = Ei[(xeﬂ — Xyt )2 + (sz — Yar )2]
T
where, K2T = gT [(XST =Xyt )(Xl — Xar )+(y2T — Yar )(yST —Yir )] ... 15.16
T
Er

Ky = D— [(X3T —Xor )(XZT — X7 )+ (sz —Yar )(le —Yor )]

N
In egn. 15.16, subscript T denotes the element number, Dr is twice the area of the element as

given by egn. 15.8 and & is the permittivity of the dielectric within the element.
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Fig. 15.3 Nodal connectivity — a) 6-element (Hexagonal), b) 8-element (Octagonal)

Discretization using triangular elements is usually done is such a way that one particular node
is connected to either 6 other nodes in hexagonal connectivity as shown in Fig. 15.3(a) or to 8
other nodes in octagonal connectivity as shown in Fig. 15.3(b). For hexagonal connectivity,
an equation may be formed involving potentials of all the six nodes surrounding the node “0”
applying egn. 15.15. In such case, for every element, node-0 of Fig. 15.3 is considered to be
node-1 of egn. 15.15 and the other two nodes are considered to be node-2 and node-3 in anti-
clockwise direction. Application of egn. 15.15 thus results in six simultaneous linear
equations, the summation of which may be represented as follows.
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F1¢1 + F2¢2 + F3¢3 + F4¢4 + I:5¢55 + F6¢6 + Fo¢o =0 ... 15.17
Fl = sz) + KS(TG)

Fz = KZ(TZ) + KS(Tl)
Fz =RKya + KS(TZ)
where, Fy = Kyray + Kyrg ....15.18
I:5 = KZ(TS) + K3(T4)
Fo = Kyrey + Kygrs)

6
and F, =) Ky

T=1
Application of eqgn. 15.17 to all the nodes having unknown potential will generate the FEM
system of simultaneous linear equations, which needs to be solved for determining the node
potentials. Eqgns. 15.17 and 15.18 could be suitably modified for octagonal nodal
connectivity. Here, it may also be noted that FEM formulation as described above
automatically takes into account the unequal elemental sizes as the coefficients as in eqn.
15.18 are all computed in terms of nodal coordinates that may have any numerical values.

FEM Formulation in 2-D System with Multi-Dielectric Media

For computing electric field in a multi-dielectric media, triangular elements are so positioned
that any given triangular element comprises only one dielectric medium. In other words, a set
of nodal points are to be placed on the interface between two dielectrics as shown in Fig.
15.4. Hence, the coefficients Kit, Kot and Ksr for any node are to be calculated depending on
its nodal position (i.e. 1, 2 or 3) in an element considering the proper value of &.

|

|
|
€r2 2 €r1

15
|

Fig. 15.4 Elemental discretization for multi-dielectric media

While applying eqn. 15.17 for the nodal connectivity shown in Fig. 15.4, the following
modifications need to be made for F;, Fs and Fq keeping the others unchanged.

6
F, = Kooy + Koy + Fs = Kyrsy + Kyray and F, = z Kir
=]
where,

L2 (k= % X% = %o )+ (¥ = Y3 X(¥s = Yo ]

K2(T2) = D
T2
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K3(T1) = S_rTll[(Xz - Xl)(xl - Xo)"’ (yl - Y )(YO - yl)]

K2(T5) = %[(Xe — X5 )(Xo - X6)+ (ys — ¥ )(YG —Yo )]

T5

gl’
K3(T4) = D_z[(xs — X )(X4 - Xo)"‘ (y4 =Y )(yo -V, )]
T4
For the computation of Fo, Kit is to be calculated considering & for the elements 1, 5 and 6
and considering & for the elements 2, 3 and 4, using eqgn. 15.16. For example, for elements
T3 and T6, respectively, the expressions for Kyt will be as follows.
gl’
Kyra) = D_Z[(X4 — X5 )2 + (ys — Y, )2]

T3

and Kl(TG) = %[(Xl —Xg )2 + (ye - yl)Z]

T6
Here, it may be noted that no separate formulation is required for multi-dielectric media in
FEM in contrast to FDM.

FEM Formulation in Axi-symmetric System

As already discussed, electric potential energy in a triangular element is

1 —|2
Uo=3 6t E| Al ....15.19
where, (A.l) is the volume of the element.
A Z
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Fig. 15.5 Triangular element for axi-symmetric formulation

For axi-symmetric system, this volume is created due to the rotation of a triangular element
around the axis of symmetry. The area of the triangle being A, | should then be the mean
length of rotation, i.e. 2z times the radial distance of the centroid of the triangle.

So.  |ooplithtr) 1520

Putting this expression for | in egn. 15.14b
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i 272'(!’1 LT I’3) [¢1{(I’3 -h )2 + (Zz - 23)2 }+ ¢2 {(rs - rZ)(rl - r3)+ (Zz - 23)(23 - Zl)}

2D 3 . 15.21
+ ¢3{(I’3 -0 )(I’2 - r1)+ (Zz - Zs)(zl - Zz)}] =0
So, from eqn. 15.21 in axi-symmetric system
K1T¢1 + K2T¢2 + K3T¢3 =0
R
KlT = %[(rﬂ — b )2 + (ZZT — Iy )2]
T
R
Wwhere, Ko = ;rT [(r3T — b )(rl Iy )+ (ZZT gy )(ZST — Ly )] - 15,22
T
R
3T:L st — ot Nt — har 21 = A3t Near T for
K D‘T [(ry =1 X = )+ (2or — 207 N2ir =257 )]
T
and R=(r+r,+r,)

For axi-symmetric system with multi-dielectric media, the modifications to be brought in are
the same as those described for two-dimensional formulation discussed in section 15.4.2.

FEM Formulation in 3-D System
The potential energy in a two-dimensional electric field is given by

U ZIH%S@ e[ av ... 15.41

\Y
or, Uy =m%gogr|—v¢|2dv ....15.42
\Y

To apply FEM, the region of interest is to be discretized by solid finite elements. For N
number of solid elements, the total potential energy can then be stated as:

N
UTotaI = ZU (e)
e=1

To minimize the total potential energy, U, of the entire region of interest, U(e) must be
minimized for each solid element.

The simplest 3-D solid element is the linear tetrahedron element as shown in Fig. 15.13. For
this element there are four nodes at the four corners of the tetrahedron, which are numbered
in such a way that first three nodes are arranged in anti-clockwise direction when viewed
from the fourth node, e.g. 1, 2 and 3 nodes of Fig. 15.13 are arranged in anti-clockwise
direction when viewed from node-4.

Electric potential ¢ is assumed to be varying linearly within the element such that

$ = +aX +azy +a,z ....15.43
Hence, Exz—a—vz—az , Ey:—&:—a3 and EZ:—a—V:—oz4 ....15.44
OX oy 0z

Electric field intensity components are constant within a linear tetrahedral element. Hence, it
is called a constant stress element in HV field computation.
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Fig. 15.13 Linear Tetrahedral Element

Again, the potentials at the four corners of the element are given by
d=ata Xt oY,
D=t Xt Y, A 2, ....15.45
D=t o Xt Y, A 2

D =ant . Xet Y, U L
Hence,

o, V. 7
o, Y, 2.
o, Y, .
Y, 7 A, ... 15.46
X Y, z| A

y ZZ
Y, Zs
1 X VY, 2.

where, A = 6 times the volume of the element and

1y, 2z 1Y z 41 VY z 1Y z
A2:_¢11 y3 23+¢21 y3 Zs_¢31 y2 Zz+¢41 y2 Z
1Y,z 4 VY, z4 1Y,z 1Y, 2

= _¢1Alyz+¢2A2y2_¢3A3y2+¢4A4y2 e 1547

where, A, Ay Asyr Ay, @re 2 times the area of triangles opposite to the nodes 1, 2,

EN

o)~

N

N

L =N S e e =
S

w

3, 4, respectively, when these triangles are projected to the y-z plane.

Therefore,

_ _¢1A1yz+¢2A2yl_¢3A3yz+¢4A4)’Z .... 15.48

2 A
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] . a3 _ ¢1Alzx_¢2 A22x+¢3 A3zx_¢4 A4zx and
Similarly, A ....15.49

_ - ¢1Alxy + ¢2 Any - ¢3 A3xy + ¢4 Azixy
4
A
where, A, v Ao Ay As, 7€ 2 times the area of triangles opposite to the nodes 1, 2, 3,

4, respectively, when these triangles are projected to the z-x plane and Alxy, AZXy' A3xy’
A4Xy are 2 times the area of triangles opposite to the nodes 1, 2, 3, 4, respectively, when
these triangles are projected to the x-y plane.

Now, electric potential energy in a tetrahedral element is given by

uf%gogr 1gogV(E CETED
1 2 2 2 ....15.50

= igogrv (a2+a3+a4)

For electric potential energy in an element to be minimum,

Ve _1_ _vx2(a 0az  pq, .00y g ... 15,51
og, 2508 E A gy gy gg)
oa? 0 a

or, V(a s asy _g ... 15.52
Eo& 28¢1 a38¢ 6¢)

In egn. 15.52
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So, from eqns. 15.48, 15.49, 15.52 and 15.53
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Eqn. 15.55 can be represented as
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where, subscript e denotes the element number and
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Features of Discretization in FEM

In FEM the continuous domain is replaced by a series of simple, interconnected elements
whose field variable characteristics are comparatively easy to compute. In true sense, these
elements are connected to each other along their boundaries but the assumption that the
elements are connected only at their nodes is made in order to perform a theoretical
approximation. A wide variety of elements types in one, two, and three dimensions are now
available. It is a duty of the person doing the analysis to determine not only the appropriate
type of elements for the problem at hand, but also the density required to sufficiently
approximate the solution. It is essential to apply engineering judgment.

Refinement of FEM Mesh

In FEM mesh, every element has a size (h) and an order (p). Either reducing the element size
(h) or increasing the element order (p) reduces the error in FEM. Consequently, there are
three basic approaches towards mesh refinement in FEM: the h, p, and the h-p methods.

i) In the h method, the element order (p) is kept constant and the mesh is refined by making
the size (h) smaller.

i) On the other hand, in the p method, the element size (h) is kept constant and the element
order p is increased for mesh refinement.

iii) In the h-p method, simultaneously the size (h) is made smaller and the order (p) is
increased to create higher order smaller sized elements in the mesh refinement process.

It is often claimed that higher order elements, which require more nodes per element, results
in less computational time using a smaller number of larger sized elements. But in real-life,
geometries defining the practical objects are complex, which anyway require a fine mesh to
accurately discretize the geometry. In such cases, the mesh size is usually small and hence the
error does not exceed what is required for engineering accuracy. Therefore, use of higher
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order h elements offers no benefit over the use of lower order h elements in most of the cases.
Thus, the h method accompanied by a robust quadrilateral or hex generator is most often the
best solution for practical design jobs.

Acceptability of Element after Discretization

Traditionally discretization of irregular shaped regions has been performed manually. Now-a-
days, state-of-the-art software packages automate the mesh generation process. However,
with any mesh-generation package, the user's judgment and experience are still very
important. Once a finite element mesh has been created, it must be checked to ensure that
each element satisfies certain criteria for acceptability, for example distortion, which may
produce spurious results. For all types of elements in FEM, the best results are obtained if the
elements have reasonable shape. Distorted elements lead to major inaccuracies, as in the case
of isoparametric elements distortions very often lead to non-unique mapping between the
global and natural coordinates. Experience shows that good results are normally obtained if
the internal angles of the elements are within 30° and 150°. Another criterion is the ratio
between the longest and shortest sides of the element. Preferably this ratio should be smaller
than 5:1.

Fig. 15.21 shows a few elements having very bad shape that need to be avoided in FEM

mesh.
-y ®

o
Fig. 15.21 Elements having distorted shape

Solution of System of Equations in FEM

Applications of the finite element method to practical systems lead to large systems of
simultaneous linear algebraic equations, which are symmetric, positive definite and sparse.
Many solution methods make use of these properties to provide fast and efficient
computation algorithms, which are now implemented in nearly all finite element packages.
Only half of the matrix including diagonal entries needs to be stored because of the
symmetry. Positive definite matrices are characterized by large positive entries on the main
diagonal. As a result, solution can be carried out without pivoting. Storage and computations
could be economized using sparsity. Solution methods for simultaneous linear equation
systems can be broadly divided into two groups: direct methods and iterative methods. Direct
solution methods are usually used for problems of moderate size. For large problems iterative
methods are preferable as they require less computing time. The choice of solution method is
very much dependent on the size of the problem as well as the type of analysis

Sources of Error in FEM

There are three main sources of error in a typical FEM solution, viz. discretization error,
formulation error and numerical error.
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Discretization error results from transforming the continuous physical region of interest into a
finite element model, and can be related to modeling the boundary shape, the boundary
conditions, etc. In many problems, poor geometry representation causes serious discretization
error. Discretization error can be effectively reduced by refinement of FEM mesh.
Formulation error results from the use of elements that don't precisely describe the behavior
of the physical problem. For example a particular finite element might be formulated on the
assumption that electric potential varies in a linear manner over the domain. Such an element
will produce no formulation error when it is used to model a linearly varying electric
potential, but would create a significant formulation error if it used to represent a quadratic or
cubic varying electric potential. The magnitude of this error depends on the size of the
elements relative to nature of variation of field variables. Formulation error in most physical
problems reduces as the element size decreases.

Numerical error occurs as a result of numerical calculation procedures, and includes
truncation errors and round off errors. This is a function of the computer accuracy, the
computer algorithm, the number of equations, and the element subdivision. Both truncation
and round off errors sources are reduced with good modeling practices.

Advantages of FEM

Early work on numerical solution of boundary-valued problems can be traced to the use of
finite difference method. Use of such method was reported by Southwell in his book
published long back in the mid 1940’s. The FDM is generally restricted to simple geometries
in which an orthogonal grid is possible to construct. For irregular geometries, a global
transformation of the governing equations (e.g., Poisson’s equation in HV fields) must be
made to create an orthogonal computational domain. Moreover, implementation of boundary
conditions in FDM is often cumbersome.

The beginning of the finite element method actually stem from the difficulties associated with
using finite difference method for solving difficult, geometrically irregular problems. Unlike
the finite difference method, which envisions the solution region as an array of grid points,
the finite element method envisions the solution region as made up of many small,
interconnected sub-regions or elements. A finite element model of a problem gives a
piecewise approximation to the governing equations. The basic premise of the finite element
method is that a solution region can be analytically modeled or approximated by replacing it
with an assemblage of discrete elements. Since these elements can be put together in a variety
of ways, they can be used to represent exceedingly complex shapes.

For the high voltage insulator problem, the finite element model gives a good approximation
of the region of interest using the simplest two-dimensional element, i.e. the linear triangular
element, as shown in the Fig. 15.22. In FEM a better approximation of the boundary shape is
obtained because the curved boundary is represented by straight lines of any inclination.
However, it is not intended here to suggest that finite element models are decidedly better for
all problems. The only purpose of the example is to demonstrate that the finite element
method is particularly well suited for problems with complex geometries.
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Fig. 15.22 Modelling of HV insulator using triangular element
Using FEM in the Design Cycle

Using FEM analysis in the design cycle of a product is advantageous. FEM can be used to
determine the real life behavior of a new design concept under various practical conditions,
and therefore to make possible refinement prior to the creation of drawings in CAD, when
changes are inexpensive. Once a detailed CAD model has been developed, FEM can be used
to analyze the design in detail, which saves time and money by reducing the number of
prototypes required. Further an existing product, which is experiencing a field problem or is
being improved, can be analyzed to speed up the change in engineering design and reduce its
cost. In addition, FEM analysis can now be performed on increasingly affordable personal
computers. However, FEM analysis can reduce product testing, but cannot totally replace it.
It is important to note here that an inexperienced user of FEM can deliver incorrect answers,
upon which significant and expensive decisions will be based. FEM is a demanding tool, in
that the analyst must be proficient not only in subject being solved, but also in mathematics,
computer applications, and especially the finite element method itself.
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Numerical Computation of HV Field by Charge Simulation Method (CSM)

Introduction

The principle of FDM and FEM is to provide the entire region of interest into a large number
of sub-regions, and solve for unknown potentials a set of coupled simultaneous linear
equations which approximate Laplace’s or Poisson’s equation. Compared to these two
methods, only boundary surfaces, i.e. electrode surfaces and dielectric interfaces, are
subdivided and charges are taken as unknowns in CSM. It follows, firstly, that the amount of
human time and effort needed for subdivision is greatly reduced in CSM. Secondly, the
electric field strength can be given explicitly in CSM without any numerical differentiation of
the potential, which results in significant reduction in error. The second characteristic is very
important because the field strength is usually more important for the design of an insulating
system than electric potential.

The earlier attempts for numerical field solutions employing CSM were reported by Loeb et
al in 1950 and then by Abou-Seada and Nasser (IEEE-PAS, 1969, ppl802-1814).
Subsequently, in a comprehensive paper Singer, Steinbigler and Weiss presented the details
of CSM (IEEE-PAS, 1974, ppl1660-1668). Since then many refinements to the original
method have been proposed and CSM has evolved into a very powerful and efficient tool for
computing electric fields in HV equipments. CSM is very simple and applicable to systems
having more than one dielectric medium. This method is also suitable for 3-D fields with or
without symmetry.

CSM Formulation for Single Dielectric Medium

The basic principle of conventional CSM is very simple. For the calculation of electric fields,
the distributed charges on the surface of the electrode are replaced by N number of fictitious
charges placed inside the electrode as shown in Fig.16.1. The fictitious charges are placed
inside the electrode to avoid singularity problem. In general, the fictitious charges are to be
always placed outside the region of interest (ROI), as the field is ideally required to be
determined at all the points within the ROI. If the fictitious charges are placed within the
ROI, then at the location of the fictitious charges singularity arises because at these points the
distance between the charge and the point at which the field solution is required becomes
zero.

¢

X Fictitious Charges : j=1,....., N
) Contour Points : i=1,....., N

Fig. 16.1 Fictitious charges and contour points for CSM formulation in single dielectric
medium
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The types and positions of these fictitious charges are predetermined, i.e. user-defined, but
their magnitudes are unknown. In order to determine their magnitude some collocation
points, which are called contour points, are selected on the surface of electrode. In the
conventional CSM the number of contour points is chosen to be equal to the number of
fictitious charges. Then it is required that at any one of these contour points the potential
resulting from superposition of effects all the fictitious charges is equal to the known
electrode potential. Let, Q; be the jth fictitious charge and ¢ be the known potential of the
electrode. Then according to the superposition principle

N
ZPiJ'Qi=¢ ....16.1
j=1

where, Pj; is the potential coefficient, i.e. the potential at the point i due to a unit charge at the
location j, which can be evaluated analytically for different types of fictitious charges by
solving Laplace’s equation. When Eqn. 16.1 is applied to N no. of contour points, it leads to
the following system of N linear equations for N unknown fictitious charges

P.Q, +P,Q, +....... +B;Q; . + P\ Qy=¢
P,Q, +P,Q, +....... +P;Q; +.n. + P, Qy =¢

' ..16.2
P.Q +P,Q, +....... +RQ; +. +P,Qy =¢
PuiQ + Py,Q, +ee + PNJ.QJ.+ ....... + P Qy =9
In matrix form, Eqn 16.2 can be written as
Py P P, P Q, |
Py Py Py P Q,
' ' = ....16.3
Py Py Py Py Q (A
| Pus Pugeon Py Pav | Qv
where, [P] = potential coefficient matrix, [¢] = column vector of known potential of contour

points.

Eqgn. 16.3 is solved for the unknown fictitious charges. As soon as the required fictitious
charge system is determined, the potential and the field intensity at any point within the ROI
can be calculated. While the potential is found by Eqgn. 16.1, the electric field intensities are
calculated by superposition of all the stress vector components. For example, in Cartesian co-
ordinate system, the three superimposed field components at any point i are given as follows.

_Z aX 2J Z FX IjQ 164
j=1 =
N apl N
Z —Q j _21: Fy,iij ....16.5
j=1 i=
and E,; ZN: an)“ —Q, —ZN: F..iQ; ... 16.6
j= j=1
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where,  Fyij , Fyij and F,j; are the electric field intensity coefficients in the x, y and z
directions, respectively, i.e. the components in the x, y and z directions, respectively, of
electric field intensity at the point i for a unit charge at the location j.

In many cases the effect of the ground plane is to be considered for electric field calculation.
This plane can be taken into account by the introduction of image charge.

Formulation for Floating Potential Electrodes

Floating potential conductors are often present in high voltage system, the most common
example being condenser bushings. If floating electrodes are present, whose potentials are
constant but unknown, then the boundary condition that is imposed for field computation is
given below.

¢.,—¢ =0, for i=1...,N-1 ... 16.7

Moreover, a supplementary condition is included such that the sum of fictitious charges for
each floating electrode is zero.
Then the system of equation that is obtained will be as follows

1 y A 1 1 o

(le_Pll) (P22_P12) ------ (sz _Plj) ------- (PZN _PlN) Ql

(P31_P21) (Psz_Pzz) ------ (P3j _sz) ------- (P3N _PZN) Qz

. ' =[0],,, ...16.8
(P(i+1)1 - Pll) (P(i+1)2 - P|2) ------ (P(i+l)j - P”) ------- (P(i+l)N - F:N) Qi

. _QN_le
_(PNl_P(N—l)l) (PNZ_P(N—l)Z) ------ (PNj _P(N—l)j) ------- (PNN _P(N—l)N)_NXN

If the floating electrode has a net charge, then the supplementary condition is included such
that the sum of its fictitious charges is equal to the known net charge value (Qg). In Eqn. 16.8
the first row is then modified as follows

Q+Qy+. Q4. +Qy =Q¢ ....16.9

CSM Formulation for Multi-Dielectric Media

The field computation for a multi-dielectric system is somewhat complicated due to the fact
that the dipoles are realigned in dielectric media under the influence of the applied voltage.
Such realignment of dipoles produces a net surface charge on the dielectric interface. Thus in
addition to the electrodes, each dielectric interface needs to be simulated by fictitious
charges. Here, it is important to note that the dielectric boundary does not correspond to an
equipotential surface. Moreover, it must be possible to calculate the electric field on both
sides of the dielectric boundary.

It has been mentioned earlier that the fictitious charges should be outside the ROI. In the case
of electrodes this has been achieved by placing the charges within the electrodes. But, for
dielectric-dielectric interface, both the sides are within the ROI. Hence, any fictitious charge
placed on either side of the interface would cause singularity problem. This issue is solved by
placing two charges for every contour point on the dielectric —dielectric interface. For solving
the field within the dielectric-A, the set of charges placed within dielectric-B are considered
and vice-versa.
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In the simple example shown in Fig. 16.2, there are N; number of charges and contour points
to simulate the electrode, of which N4 are on the side of dielectric-A and (N;1-N,) are on the
side of dielectric-B. These N; charges are valid for field calculation in both the dielectrics. At
the dielectric interface there are N, contour points  sequentially numbered from
(N1+1,.....,N;+N2), with N, charges (N1+1,.....,N;+Ny) in dielectric-A valid for dielectric-B
and N, charges (N;+Nx+1,....., N;+2N,) in dielectric-B valid for dielectric-A. Altogether
there are (N1+N2) number of contour points and (N;1+ 2N;) number of fictitious charges.

Na Nat+l

i=N1+l

Dielectric-B (eg)

i:N1+N2
j:N1+N2 X

S/ S S
Fig. 16.2 Arrangement of fictitious charges for multi-dielectric media

X j=N1+2N;

In order to determine the fictitious charges, a system of equations is formulated by imposing
the following boundary conditions.

i) At each contour point on the electrode surface the potential must be equal to the known
electrode potential. This condition is also known as Dirichlet’s condition on the electrode
surface.

il) At each contour point on the dielectric interface, the potential and the normal component
of flux density must be same when computed from either side of the boundary.

Thus the application of the first boundary condition to contour points 1 to N; yields the
following equations

N;+2N,
Z Q,+ > PQ=V ... i=1,N, ....16.10
j= N1+N2+l
N;+N,
and ZP”QJ- + Y PQ;=Vv ... i=N,+LN, ... 16.11
j=1 j=Ny+1

Again the application of the second boundary condition for potential and normal flux density
to contour points Ni+1 to N;+N, on the dielectric interface results into the following
equations.

From potential continuity condition:

N;+N, N;+N,
> BQ;- D.PQ=0 ... i=N,+L N, +N, ....16.12
j=N;+1 J=N;+N,+1
From continuity condition of normal flux density Dy, :
D,(i)-Dg()=0 ... i=N,+LN,+N, ... 16.13

Eqgn. 16.13 can be expanded as follows.
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N, N;+N, N;+2N,
(ea—¢s)Y FiQ—es D FiQ +ex D FyQ =0.i=N+L N, +N, ....16.14
j=1 J=N+1 J=N;+N,+1

where, Fyjj is the field coefficient in the normal direction to the dielectric boundary at the
respective contour point and &y & &g are the permittivities of dielectric A and B, respectively.
Egns. 16.10 to 16.14 are solved to determine the unknown fictitious charges. These equations
can be presented in matrix form as detailed below.

1 l Nl N1+N2 N1+2N2 1 1
P. 0 ,
Na 1 PIJ \V;
Pij Pij 0
Ny Ql= N,
0 Pij -Pij
N;+N 0
(eaeB)| -es A
Fn,ij Fnij | Fnii
N1+2N, N1+2N2 N3+2N,

Types of Fictitious Charges

The successful application of the CSM requires a proper choice of the types of fictitious
charges. Point and line charges of infinite and semi-infinite lengths were used in the initial
works on this method. Steinbigler et al introduced ring charges and finite length line charges.
Subsequently, a large variety of different charge configurations have been proposed. These
other types of charge configurations include elliptic cylindrical charge, axi-spheroidal charge,
plane sheet charge, disk charge, ring segment charge, volume charges, shell and annular plate
charges as well as variable density line charge.

In general, the choice of type of fictitious charge to be used depends upon the complexity of
the physical system and the available computational facilities. The potential and field
coefficients for point and line charges are given by simple expressions and require very small
computation time. For complex charge configuration, such coefficients may have to be
computed numerically. On the other hand, a smaller number of charges may be used if
complex charge configurations are employed, which reduces the overall memory requirement
and computation time. In practice, most of the HV systems can be successfully simulated by
using point, line and ring charges or a suitable combination of these charges.

Point Charge

Point charge is the simplest of all types of fictitious charges. It can be used in 2-D as well as
3-D configurations. Fig. 16.3 shows the point charge Q; along with its image wrt to the x-y
plane in 3-D system.

Then, the potential at the point i due to the point charge Q; and its image is given by

go (L L ...16.15
i
AL

where, rlz[(xi—xj)2+(yi—yj)z+(zi—2j)2]y2 and rz:[(Xi_Xj)2+<yi_yj)z+(zi+zj)2:|%

Putting Q; =1 in Eqn. 16.15, the expression for potential coefficient is given by

p- L1 1 ... 16.16
' dme|r o,
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Q; (%;,Y3,2)
i(xi,yi,zi)
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-Ql (Xj,yj,-Zj)

Fig. 16.3 Point Charge configuration along with its image

Expressions for the electric field intensity coefficients are as follows:

S W e B T 16.17
97T T ame| o F o
1 2
P 1 |YimY, ViV,
__ i i Ji i Y]
P ="~ A ... 16.18
L 1 2
OP, 11z2-2. Z.+2Z,
F.=——1_ r J_t .... 16.19
ol 0z dre r% r% ]
L 1 2

Infinite Length Line Charge

Infinite length line charges are used in 2-D configurations, particularly for simulating long
conductors in the case of transmission lines, cables etc. Fig. 16.4 shows the infinite length
line charge Q; along with its image wrt to the x-z plane. In this configuration, electric field is
considered to be independent of z-axis, i.e. the length of the long conductors, while the field
varies in the x-y plane, which is normal to the length of the long conductors.

y
A

Qj (X,y)
i(%i,yi)

I
I
|
> X
I/
|
I

-Q; (i)
Fig. 16.4 Infinite length line charge configuration along with its image
In 2-D system, all computations are performed for unit length of the system under

consideration. Hence, Qj is the charge per unit length for the infinite length line charge.
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The expression for potential coefficient is then given by
P=—In= ... 16.20

where, rlz[(xi—xj) + and rz:[(xi—xj)2+(yi+yj)2]}/2
Expressions for the electric field intensity coefficients are as follows:

2 (72

o 1 (Xi_xi)_(xi_xi)— 16.21
X,ij 21 r12 rzz | .
1 [li-y) ity
Fyi _ZEg[ e L o : _ ...16.22

Finite Length Line Charge

Finite length line charges of uniform charge density are used in axi-symmetric
configurations, particularly for simulating cylindrical geometries in the case of bushings,
circuit breakers etc. Fig. 16.5 shows the finite length line charge along with its image. Finite
length line charges of uniform charge density are commonly placed on the z-axis, i.e. the axis
of symmetry. Let, the magnitude of the finite length line charge be Q; and the length of the
charge be (zj2-zj1) as shown in Fig. 16.5. Then considering uniform charge density, charge per
unit length is [Qj/(zj2-zj1)]. The expressions for potential and electric field intensity
coefficients were first developed by Steinbigler et al [IEEE-PAS, 1974, pp 1660-1668] and
are given below.

Axis of symmetry
z
Zjp
Q]. xi(ri,zi)

Zj1

226
Qi
226

Fig. 16.5 Finite Iethh line charge along with its image

The expression for potential coefficient is given by

 _ 1 In(zj2_2i+7lxzjl+zi+72) 16.23
Vodre(z,-1y) (zjl—zi+5)(zj2+z.+§) o
where, = I’i2+(2j2—2i)2 ; 6, = I’ + Zj ZI)Z

ri2+(zjl+zi)2 and r +(zjz+z,)2

The expressions for the electric field intensity coefficients are as follows:
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Ring Charge

Ring charges of uniform charge density are used in axi-symmetric configurations, particularly
for simulating spherical and cylindrical shaped geometries etc. Fig. 16.6 shows the ring
charge along with its image. Ring charges of uniform charge density are commonly placed
with their axes on the z-axis, i.e. the axis of symmetry. Let, the magnitude of the ring charge
be Q; and the radius of the ring charge be rj as shown in Fig. 16.6. Then considering uniform
charge density, charge per unit length is [Q; /(2nr;)]. The expressions for potential and electric
field intensity coefficients were first developed by Steinbigler et al [IEEE-PAS, 1974, pp
1660-1668] and are given below.

Axis of symmetry
z

Qj

[ >oa

i(ri,zi)
X

----------
. -~

..........
.ye

Fig. 16.6 Ring charge of uhiform charge density along with its image

The expression for potential coefficient is given by
P.= ! [K(kl)— K(kz)} ... 16.26

Vo2nte| o a,

where, 051:\/(rj+ri)z+(zj—zi)2 and 052:\/(rj+ri)2+(zj+zi)2

K(ki1) and K(ky) are elliptic integrals of first kind such that

by
2

Kk—%—dg d Kk)=[—20

()= !Jl—kfsinze o ()= !Jl—kfsinze

2./rr. 2./rr.

k,=—"2 and k,=—1"1
a, a,

The expressions for the electric field intensity coefficients are as follows:
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where, E(ki1) and E(k) are elliptic integrals of second kind such that

7 7
E(kl)zj 1-kZsin?0 d6  and E(kz)zj 1-kZsin?6 do

ﬂlz{(rj _ori)sz(Zj _Zi)z}% and  f, :{(rj "?32+(ZJ +Zi)2}y2

Accuracy Criteria

If the fictitious charges completely satisfy the boundary conditions, then these charges give
the correct field distribution not only on the boundary but also everywhere outside it. But in
the CSM, the fictitious charges are required to satisfy the boundary conditions only at a
selected number of contour points. Again the number of contour points is kept small in order
to reduce the computer memory and computation time. Hence, it is essential to ensure that the
simulation is accurate. To determine the simulation accuracy, the following criteria can be
used.

)} The “potential error” on the electrode can be computed at a number of control
points on the electrode surface between two contour points. The potential error is
defined as the difference between the known potential of the electrode and the
computed potential at the control point.

i) Compared to the potential error the “deviation angle” on the electrode surface is a

more sensitive indicator of the simulation accuracy. The deviation angle is defined
as the angular deviation of the electric field intensity vector at the control point on
the electrode surface from the direction of the normal to its surface.
Another very severe accuracy criterion is to check that the derivative of the
potential gradient perpendicular to the electrode surface at the control point
divided by the gradient itself is equal to the curvature at this point or not. This is
especially applicable for simulation of areas of the electrode with a small radius of
curvature.

iii) In multi-dielectric systems the “potential discrepancy” can be computed at a
number of control points for each dielectric interface. The potential discrepancy is
defined as the difference in the value of potential at the control point when
computed from both the sides of the dielectric interface. Alternatively, the
discrepancy in the tangential electric stress at the control points on the dielectric
interface can also be computed. Another criterion for checking the simulation
accuracy is to compute the discrepancy in the normal flux density at the control
point on the dielectric interface.

For a good simulation all the above discrepancies should be small.
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Factors Affecting Simulation Accuracy

The simulation accuracy in the CSM depends upon the types and number of fictitious charges
as well as locations of fictitious charges and contour points. In general, the simulation error
can be reduced by increasing the number of charges. However, it has been found that
increasing the number of fictitious charges beyond a certain limit does not necessarily
improve the simulation accuracy. Generally, the “assignment factor” (1) defined as the ratio
of the distance between a contour point and the corresponding charge (a2) to the distance
between two successive contour points (al), as shown in Fig. 16.14, considerably affects the
simulation accuracy. Steinbigler et al (IEEE-PAS, 1974) suggested that this factor should be
between 1.0 and 2.0. Several others suggest a range of 0.7<A<1.5.

In a good simulation, potential error values as low as 0.001% are possible. However, for
sharp corners and thin electrodes, such low values are difficult to achieve. Since the electric
field intensity error is an order of magnitude higher than the potential error, potential error
values of about 0.1% are considered reasonable. For multi-dielectric systems, if the dielectric
boundary has a complex shape, comparatively large potential discrepancy values of the order
of 1% are usually acceptable.

x Fictitious charge

o Contour Point

A =a2lal

Fig. 16.14 Definition of assignment factor

Manufacturing tolerances of the conductors define the practical limit for the accuracy of the
simulation of electrodes. In the same way, the accuracy of the determination of dielectric
constants of the involved media puts the practical limit on the accuracy of the simulation of
dielectrics.

Solution of System of Equations in CSM

The application of CSM for numerical field calculation involves solutions of linear systems
of equations as explained in earlier sections. In the conventional CSM, for a single dielectric
case, the matrix of the linear system of equations to be solved is in general asymmetrical
without a zero term as detailed in section 16.2. In such cases, the equations could be solved
using the Gaussian elimination technique with or without partial or complete pivoting.

In multi-dielectric systems, the matrix of systems of equations to be solved is rather
heterogeneous and is not symmetrical as detailed in section 16.3. Due to bad conditioning of
the matrix, it is preferable to solve it by using a direct method, e.g. Gaussian elimination
technique, to avoid non-convergence problem, which may arise in the case of iterative
methods. However, for complicated problems the size of the matrix becomes too large. In
such cases, iterative methods such as Gauss-Seidel method or the successive over relaxation
method with varying values of acceleration factor have also been found to be successful.
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Other Development in CSM
Least Square Error CSM (LSECSM)

In this method, compared to conventional CSM, boundary conditions are satisfied at a larger
number of contour points than the number of charges as shown in Fig. 16.15.

=1, ...,N
X X
X X X X X X
i=1,....M AN
o=V

Fig. 16.15 Fictitious charges and contour points LSECSM

Hence, in the case of LSECSM the matrix of system of equation is a rectangular one having
M rows and N columns.

[P]MXN [Q]N = [V]M .... 16.84
This equation is solved in the following way

[Pt]NxM [P]MxN [Q]N = [Pt]NxM [V]M

o, D]y [l =[F]; ....16.85

Eqgn. 16.85 can be solved to find out the unknown fictitious charges. Anis et al (IEEE-PAS,
1977, ppl721-1730) most comprehensively presented this method. This method is expected
to be more accurate than conventional CSM, but at the expense of more computation time.
Again the accuracy depends upon the fitting ratio, i.e., the ratio of number of contour points
to the number of charges. This ratio should be kept between 1 and 2. This method is
applicable to multi-dielectric system, too.

Optimized CSM (OCSM)

In conventional CSM and also in LSECSM, the positions of the charges are specified and
their magnitudes are solved. In OCSM, both magnitudes and locations of charges are
determined by minimizing certain objective functions. Various versions of OCSM discussed
in literature differ in the choice of objective function and the optimization algorithm. Most
authors have used the least squared potential error as the objective function. Regarding the
optimization techniques, constrained as well as unconstrained optimization has been used.
Different algorithms such as Fletcher method, Rosenbrock method and Pattern Search
method can be used. OCSM are applicable to multi-dielectric system also. Yializis et al
(IEEE-PAS, 1978, pp2434-2440) proposed OCSM in details.

For a fixed number of simulation charges, the optimized methods will produce more accurate
results. However, such an increased accuracy will be obtained at the expense of more
computation time as well as computer memory and will require more complex programming.
Hence, it is recommended to be used in those problems where conventional CSM or
LSECSM methods fail to produce adequate accuracy.

Region Oriented CSM (ROCSM)
Conventional CSM is also called surface oriented CSM as discrete charges are used to

simulate the electrode and dielectric surfaces. Conventional CSM suffers from difficulties
associated with positioning the charges for complex geometries and thin electrodes. Region
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oriented CSM aims at removing these drawbacks and making CSM applicable for a wide
variety of 2D and 3D problems in HV engineering. Blaszczyk et al (IEEE-Magnetics, 1994,
pp2924-2927) proposed the ROCSM originally.

The basic concept of region-oriented CSM is shown in Fig. 16.16. A two-dielectric
arrangement is divided into four regions. Each region is homogeneous with regard to its
material properties, and consists of one linear dielectric (R1, R2 and R3 contain & and R4
contains &). As shown in Fig. 16.16, a set of charges encloses each region separately and the
field and the potential inside each region are calculated from the superposition of the
surrounding charges. Interestingly, only a relatively small number of charges are necessary to
calculate the fields in each region. Charges assigned to a region are not placed inside the
region, but always at a certain distance away from its boundary. In this way singularity
problem can be avoided. Passing through an interface requires changing the set of charges
used for field calculation.

An important advantage of the region-oriented CSM is its ability to solve problems with thin
conducting foils and thin dielectric layers. The conventional CSM requires that charges be
placed within thin electrodes or dielectrics (R4 of Fig. 16.16), which results in a large number
of charges or is even impossible when the thickness of the electrode is very small.

In region oriented CSM, charges can be placed far away from surfaces of such electrodes and
dielectrics provided that different regions have been defined on their two sides. In Fig. 16.16,
the large region between the two electrodes has been divided in some smaller parts by
introducing fictitious boundaries. In this way four regions have been created, although there
are only two dielectric media in this example. Charges can then be placed easily for even
smaller regions, as shown for Region-4 in Fig. 16.16(e).

X X X X X

X X
X xl

(b) Charge placement for Region-1 (c) Charge placement for Region-2
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(d) Charge placement for Region-3 (e) Charge placement for Region-4
Fig. 16.16 Concept of arrangement of charges in Region Oriented CSM

Comparison of CSM with FEM

Both the FEM and CSM are extensively used for numerical calculation of electric field in
high voltage engineering.

In FEM, the entire region of interest is subdivided into a large number of sub-regions and a
set of coupled simultaneous linear equations, which minimize the electrostatic energy in the
field region, are solved for unknown node potentials. On the other hand, in CSM only
boundary surface, i.e. electrode surface and dielectric interfaces, are subdivided with
fictitious charges which are taken as unknowns. Therefore, it follows that the amount of time
and effort needed for subdivision is greatly reduced in CSM. Moreover, the system of
equations thus obtained by discretization is of smaller dimension in CSM.

FEM is useful for two-dimensional and also three-dimensional systems with or without
symmetry and is advantageous for the calculation of fields where the boundaries have
complicated shapes. However, for computing field distribution at a large distance from the
HV electrodes by FEM, a large number of nodes and hence excessive computation time and
computer memory space are required. Thus, FEM is more suited for problems where the
space is bounded. On the contrary, application of CSM is easy with high precision for field
problems having infinity extended unbounded region and for relatively simple boundary
geometries but not so for fields with complex electrode configurations.

In FEM exact field intensity at any point cannot be obtained. Instead average field intensity
between two nodes is to be calculated from the known values of node potentials or numerical
differentiation of the potential has to be done. But, in CSM the electric field intensity can be
obtained explicitly with the fictitious charges without resorting to numerical differentiation of
the potential, which results in significant reduction in error. With proper positioning of the
fictitious charges and the contour points and with the optimum number of fictitious charges,
the potential and stress errors can be made less than 0.01% and 0.1%, respectively, in CSM.
Though FEM is more suited for multiple dielectric problems, CSM can also be effectively
employed for fields with many dielectrics.

A major disadvantage of CSM was that the electric field is difficult to calculate in systems
having very thin electrodes because fictitious charges have to be placed within the electrodes.
However, this disadvantage is obviated by the application of Region Oriented CSM in recent
years. Further, CSM is usually, more accurate and less trouble-some in computing Laplacian
fields than FEM, but is difficult to use for non-Laplacian fields, e.g. Poissonian fields.
However, CSM with complex fictitious charges has been developed for calculating
Poissonian field including volume and surface resistance providing very accurate results.
Again, CSM is not suited for specific fields containing space charges where FEM can be
employed very effectively. But, now-a-days suitable boundary conditions have been
postulated for use in connection with CSM for computing spacer surface fields in compact
GIS as modified by the charges accumulated on the spacer surface.
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Hybrid Method involving CSM and FEM

The most promising of the hybrid methods involving FEM and CSM is the so called
combination method, which has been independently proposed by Steinbigler (3" ISH, Milan,
paper no. 11.11, 1979) and Okubo et al (3" ISH, Milan, paper no. 11.13, 1979). In general, it
may be observed that CSM has more or less the opposite properties of FEM. Thus attempts
have been made to combine these two methods in a general purpose higher precision method
that takes the superior properties and excludes the inferior properties of these two methods.
Higher precision in numerical field computation can be obtained if the field region of interest
is divided into parts to be analyzed by suitable methods. A field problem that could hardly be
analyzed or that was analyzed approximately by only one method, may be analyzed with very
good accuracy by applying an appropriate combination of different methods, e.g. FEM and
CSM.

In the FEM-CSM hybrid method, the entire space is divided into regions, which are to be
analyzed separately by the CSM (C-Domain) and by the FEM (F-Domain). The boundary
between the two regions is called the combined surface. Due to the properties of each
method, the CSM is mainly used for open areas with infinite boundary and the FEM is used
for finite enclosed space usually containing dielectric interfaces, conductive dielectrics, space
charges etc. It is to be noted that though CSM and FEM are two different methods, they result
into similar linear system of equations. The coupling between C-Domain and F-Domain is
based on the fact that the potential and the normal flux density must be continuous at the
combined surface. Figs. 16.17(a) and 16.17(b) show how the entire field region is divided
into CSM-region and FEM-region in the application of hybrid method in two-dielectric media
and in space charge modified field computation, respectively.

Studies on combination method indicate that it offers advantages over the conventional CSM
in 2D and 3D fields with axial symmetry for situation where space charges or conductive
regions are present. Also, for the computation of 3D fields without axial symmetry, the
advantages of combination method are significant.

HV Electrode HV Electrode

CSM Region

i ) _
g1=1 Combined Surface CSM Region &=1

| /
FEM Region Space Charge
Accumulation

e=4 FEM Region

(@) Application in two-dielectric media (b) Application in space charge modified field
Fig. 16.17 Separation of field region into CSM-Region and FEM-Region in Hybrid Method
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Numerical Computation of Capacitive-Resistive Field by Charge
Simulation Method (CSM)

CSM with Complex Fictitious Charges

In order to calculate the field for a sinusoidal applied voltage, the calculations can be
performed as a d.c. field in so far as the applied voltage does not change so fast that
electromagnetic treatment is required. Then the instantaneous field strength is merely
dependent on the applied voltage at that time instant. Thus the conventional CSM with real
fictitious charges can be used to compute a.c. fields for three phase systems. It has been
shown that the field distribution for sinusoidal applied voltage can be calculated in an
efficient way by the use of complex fictitious charges. This is permitted because the fictitious
charges also change sinusoidally with an angular frequency same as that of the applied
voltage. Hence, by the use of complex fictitious charges, eqn. 16.1 is modified as follows.

N
> PQ =¢ ...16.34
-1

where, a bar on a variable represents a complex quantity. Application of egn. 16.34 to N
number of contour points consists of a set of simultaneous linear equations for complex

unknown charges (jj with real coefficients as given below in matrix form.

[P]NxN [6]N Z[J]N ....16.35

Eqgn. 16.35 is solved to find complex solutions for the fictitious charges.

o= vph@"

/AN

s s s s S s
o-Contour Point x-Fictitious charge

Fig. 16.9 Application of CSM with complex fictitious charge for a.c. field calculation
To explain the above technique in a detailed manner, consider the case of Fig. 16.9, which
shows four conductors of which three are energized from a three-phase a.c. source, while the

fourth one is grounded. Let, V,n be the phase voltage of three phase source. Again, let there
be N number of complex fictitious charges and contour points, respectively, for each
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conductor. The charges and the contour points are numbered as follows, 1,...... ,N for
conductor A, N+1,.....,2N for conductor B, 2N+1,.....,3N for conductor C and 3N+1,.....,4N
for conductor G. Then the application of egn. 16.34 to all these contour points gives the
following equations.

For conductor A: P,Q,=V,£0° for i=1...,N ....16.36
=1
AN
For conductor B: D> P,Q,=V,,£-120°, fori=N+1....2N ....16.37
-1
AN
For conductor C: ,Q, =V, £—-240°, for i=2N+1,......3N ....16.38
j=1
N
For conductor G: D> P,Q,=0, fori=3N+1,....,4N ....16.39
-1
Egns. 16.36 through 16.39 can be expressed in matrix form as follows:
1
1 an 1 1
Pij VphLO °
N N
Pij _ VponZ-10 °
2N Q| = 2N
P; Vons—20 °
3N 3N
P; 0
4N 4N 4N

These equations are solved for the unknown complex fictitious charges(jj .

Capacitive-Resistive Field Computation by CSM

Normally high voltage equipment is insulated with materials of such a high resistivity that it
can be treated as infinite for field calculation. In such cases, the field distribution is purely
capacitive. But for lower values of volume or surface resistivity, the field distribution is
capacitive-resistive or even resistive depending upon the value of resistivity. In the case of
capacitive field distribution, the instantaneous field is independent of waveform of applied
voltage. But a very distinctive feature of capacitive-resistive fields is their time dependency
and dependency on the waveform of applied voltage. Hence, capacitive-resistive field
calculation including volume or surface resistivity is very important in studying d.c. and low
frequency fields, impulse fields, contaminated insulators, voltage dividers, cables etc.

Bachmann [3™ ISH, Milan, 1979, Paper No. 12.05] first proposed a technique based on CSM
for capacitive-resistive field calculation. In his method, as the first step, the capacitive field
distribution is calculated by CSM assuming resistivity to be infinite. Then the electrode-
electrode and dielectric interface-electrode capacitances are calculated from this capacitive
field distribution. After this as the second step, an equivalent R-C network is constructed
which comprises of these capacitances and surface resistances. Finally, the voltage
distribution for the capacitive-resistive field is calculated from the R-C network. This method
has two major drawbacks. Firstly, the capacitances between the dielectric interface and
electrode are dependent upon the field distribution and hence, are not identical in capacitive
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and capacitive-resistive fields. Secondly, the calculation of field intensities from the R-C
network is very laborious and results in significant errors.

Takuma et al [IEEE-PAS, 1981, pp 4665-4672] first proposed a method for direct simulation
of the instantaneous capacitive-resistive field distribution with fictitious charges. Their
method based on CSM and employing complex fictitious charges is generally extended so
that any capacitive-resistive field including volume resistance or surface resistance can be
calculated, when the field distribution is Laplacian in the region except on the boundaries.
Use of complex fictitious charges as well as appropriate boundary conditions permits the
simulation of non-linear and transient problems also. Singer [4" ISH, Athens, Paper No.
11.02, 1983] has used complex charges and Fourier integrals to calculate the impulse stresses
of conductive dielectrics. Use of discrete as well as area complex charges have been reported
for capacitive-resistive field calculation.

Capacitive-Resistive Field Computation including Volume Resistance

For capacitive-resistive field calculation including volume resistance, the principle of the
method is that the field effect of the true charges produced by volume resistance is
incorporated by means of complex fictitious charges in the CSM.
If the volume charge density is oy, then

V(¢E)-=o0, ....16.40
where, E is the electric field intensity.
Again, if the current density through the volume of the dielectric is J , then

v.J =V[EJ=—80“ ... 1641
Py ot

where, py is the volume resistivity and is constant, i.e. independent of E .

Now, if £is independent of time t and E, then Egn. 16.40 can be modified as follows

2 58—E _ 9o,
ot ot

Egns. 16.41 and 16.42 lead to

....16.42

V. £+8E):o ....16.43

For, a.c. fieldsgf angular frequency o, E = Epsinat. Hence,
%E = ja)E
ot

Thus, egn. 16.43 can be rewritten as

@.[£+ ja)gEJ:O
Py

or, 6.{[i+ ja)gjﬁ} =0 ....16.44
Py

Eqn. 16.44 shows that the fields including volume resistivity p, can be computed by replacing
the permittivity ¢ in purely capacitive field with the complex permittivity & such that,

V(eE)=0 ... 16.45
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[+
where, E=¢&+—

Jop,
Again, if ¢ is constant in the region of field calculation, then eqn. 16.45 becomes the
Laplace’s equation as given below.

V.E=0

Eqgn. 16.45 permits the use of CSM for capacitive-resistive field calculation including volume
resistance. However, from the above discussion, it becomes clear that in fields containing
volume resistance, CSM cannot be applied to problems where & or p, is dependent on the
electric field. This is because in such cases the field distribution cannot be expressed by
superposing solutions of Laplace’s equation.
The above method can be explained explicitly as described below. Consider a two-dielectric
arrangement as shown in Fig. 16.10. In Fig. 16.10 the two dielectric media are assumed to
have volume resistivities of p,a and pg, respectively. The charges and the contour points are
numbered in the same way as that given in earlier section. However, in earlier section only
real fictitious charges were taken for capacitive field calculation. But, for capacitive-resistive
field calculation including volume resistance, complex fictitious charges are employed in
place of real fictitious charges. The system of equations to be solved for unknown charges is
derived by imposing the boundary conditions on the electrode surfaces and on the dielectric
interfaces. The resulting equations with complex treatment are as follows.

1

Na Na+l Na
X X X X x x x X
o—6—o—o—6——-6 %/{5
j=Ni+1 X % X j=N1+N+1 =7
N ian o=
x ® x
Dielectric-A x & x Dielectric-B
(SA,va) (gBapo)
X P x
/i=N1+N2
j:N1+N2 X X j:N1+2N2

S/
Fig. 16.10 Multi-dielectric arrangement with volume resistivities

) Dirichlet’s condition on the electrode surface:

p(i)=V .... 16.46
Eqgn. 16.46 can be expanded for all the contour points on the electrode surface in the
following way.

N, o Ni+2N, o
Y PQ;+ D.RQ;=V .. i=1..N, ... 16.47
j=1 Jj=N;+N,+1
N, o Ng+N, o

and > RQ;+ > RQ,=V ... i=N,+1..,N, ....16.48
j=1 j=N;+1

i) Potential continuity condition on the dielectric interface:

XOETX0) ... 16.49
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where, the subscripts A and B denote dielectric A and B, respectively. Eqn. 16.49 can be
detailed explicitly as follows.

N;+N, N;+N,

> RQ- > PRQ=0 ... i=N,+1..,N,+N, ....16.50

iii) Continuity condition of D, on the dielectric interface:
D, (i))-Dg(i)=c(i) ... 16.51
where, D, and o represent normal component of electric flux density and surface charge

density, respectively.
Eqgn. 16.51 can also be written as

eAEn(1)—5E s () =5 (i) ....16.52

Interface

Dielectric-B
(es,pvB)

Dielectric-A
(ea,pva)

Fig. 16.11 Determination of surface current density due to volume resistivities

Now, the surface current density J (i) at any point i on the dielectric interface due to volume
resistance can be obtained as follows from Eqn. 16.53. For the case shown in Fig. 16.11, J (i)
is given by

Ens(i) Enm(i)

J(i) = ....16.53
po va
The surface charge density o (i) at any point i on the dielectric interface is given by
&(i)=[3(i)dt
Hence,  &(i)=] [E“B M _ E“A(I)}dt ... 16.54
P Pua
Now, for a.c. fields of angular frequency o, J' Eup (1) ¢ — En (1)
po Ja)po
So, Egn. 16.54 can be rewritten as
o(i) = E) _Em() .. 16.55
Ja)po Ja)va
Thus, Egns. 16.52 and 16.55 lead to
[gA 1 jEnA(i) =[55 it JEnB(i) ... 16.56
Ja)va Ja)po
or, g,E () —&,E, - ()=0 ... 16.57
where, EA:(EAJF : L ] and §Bz[gs+ - 1 j
Ja)va j(t)po

Eqgn. 16.57 is given below in details
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N;+2N, N;+N,
8/.\ ZFan + ZFan :|_ 83|:ZFH|JQ + ZF“UQ .... 16.58

Jj=N3+Ny+1 j=N;+1

Egns. 16.47, 16.48, 16.50 and 16.58 can be represented in matrix form as given below.

1 l Nl N1+N2 N1+2N2 1 1
=8 0 » -
Na 1 PIJ vV
Pij Pij 0 -—
Nl QJ p— Nl
0 Pij -Pij
Ny+Nof—— — — 0
(Ea-€B) -€B €A
Fn,ij Fnij | Fnii
N1+2N; N1+2N, N;+2N;

. 16.59

It follows from Eqgn. 16.59 that these are same as those for capacitive field, if the real values
of the fictitious charges, permittivity, potential and field strength are replaced by their
complex values.

Capacitive-Resistive Field Computation including Surface Resistance

In fields including only surface resistance, true charges exist only on the boundary, i.e.
electrode and dielectric surfaces, and not inside the dielectric medium. As a result, the field
distribution is always Laplacian inside each medium. This permits the application of CSM to
capacitive-resistive field calculation including surface resistance. The field distribution is
obtained by superposing the effects of complex fictitious charges properly arranged inside the
electrode and on both sides of the dielectric interface. The effect of true surface charges has
to be incorporated into that of the complex fictitious charges.

1
Na Na+l N1
X X X x x x x X
o—e—o6—o——6——0— \e
j:N1+1 X % X j:N1+N2+1 _ \_/
™N g+ 0=
X ¢ x
. . Ps . .
Dielectric-A Dielectric-B
x ¢ x
(ea) (eB)
X @ x
/i:N1+N2
j=N1+Nz X X j=N3+2N,

SIS
Fig. 16.12 Multi-dielectric arrangement with surface resistivity

The method can be better explained by considering the two-dielectric arrangement shown in
Fig. 16.12. The difference is that, in this case, the volume resistivities of the two dielectrics
are considered to be infinite and a uniform surface resistivities ps is considered along the
dielectric interface. The boundary conditions (i) and (ii) as given by eqgns. 16.46 and 16.49,
respectively, as well as the eqns. 16.47, 16.48 and 16.50, in the case of volume resistance as
given in sub-section 16.6.1, are also valid in the case of surface resistance. However, the
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expression of surface charge density o in continuity condition of D_, as given by egn. 16.51

in sub-section 16.6.1, has to be modified as follows.

In fields including surface resistance, the true surface charge density ofi) is expressed as
given below.

(i) :%j 1 (i) dt ... 16.60

where, 1(i) is the net surface current flowing into the ith contour point and S(i) is a small
surface area corresponding to that contour point. For two-dimensional or axi—-symmetric
cases, where the surface current I(i) flows in a predetermined direction, o(i) can be expressed
in terms of neighboring potentials and resistances as shown in Fig. 16.13.

(ea) (eB)

Fig. 16.13 Determination of surface current density due to surface resistivity

... 16.61

o (i) = 1 j P(i-1)—¢() ¢(i)—¢(i+1)
S@) R(i) R(i+1)
where, R(i) and R(i+1) are surface resistances corresponding to ith and (i+1)th contour
points, respectively, as shown in Fig. 16.13. The expressions for R(i) and S(i) are detailed
below.
i) For two—dimensional system (per unit length)

R(i) = jpsdl ... 16.62
i-1
i+l

S(i):jdl/z ... 16.63
i-1

i) For axi-symmetric system

R(i) = jps—('),dl ... 16.64
J2rr
i+l

S(i) = j;zr’dl ... 16.65
i-1

where, r’ is the r-coordinate of d1 and d1 is a small length along the dielectric interface.

For a.c. fields of angular frequency o, eqn. 16.61 is modified as follows.

O S U o ) B O R () 1666
jos(i) R(i) R(i+1)
Hence, from egns. 16.52 and 16.66, it fo_llows thgt L
£ Emn(i) = &, Ena (i) = ——— [¢(i‘1)_‘¢(i)—¢(i)‘_¢(”l)} ... 16,67
JaS (i) R(i) R(i+1)
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Eqgn. 16.67 can be expressed explicitly as follows for the system of Fig. 16.12.

N, N;+2N, N, N;+N,
8A|:2Fnlj i T ZFan i| 8B|:2Fnu i T ZFUQ :|

j=1 Jj=N;+N,+1 j=1 j=N;+1

Ny N;+N, N;+N,

1 1
) J'a)S(i)R(i)LZ RaiQyt ZP“Q} W{Z PasQs+ 2P, }

j=N;+1

1 1 1 N, N;+N,
+— —+— = for i= Ny+1,....,N1+N,
JCOS(')(R(') R(I+1)]LZ J%u }
.. 16.68

Now, the system of equations to be solved for unknown complex charges 6] as given by
Eqgns. 16.47, 16.48, 16.50 and 16.68 can be expressed in matrix form as given below.

1 1 Nl N1+N2 N1+2N2 1 1
Na PIJ ° PIJ \_/
N Pi Pjj 0 | _ N
: 0 Pij -Pij QJ - '
N1+No—— — 0
€
Ci Cx Fn:_
N.+2N> N1+2Ns N;+2N,
.. 16.69
where, C, and C, are two complex coefficients as given below.
— P.. P..: P.
Ci :(gA_gB)Fn i T T ) +— : L .... 16.70
7 JeSMR()  jJoSH)R(@A+1)  jwS(i) R(l) R(@+1)
— P, P..: P.
Co=—gF,; —= Ny +— : .1 - 16.71
7 JeSMR()  joS@H)R@A+D)  jwS(i) R(l) R(i+1)

From the matrix given in the sub-section 16.6.2 as well as the matrix given in sub-section
16.6.1, it is important to note that the equations contain not only complex charges but also
complex coefficients.

Field Computation by CSM under Transient VVoltage

Transient problems, where the applied voltage has an arbitrary waveform, are difficult to
solve directly by CSM. For computing transient fields, there are two techniques. In the
technique proposed by Singer (4™ ISH, Athens, paper no. 11.02, 1983), the transient voltages
are decomposed into sinusoidal components by means of Fourier analysis or Fourier
transformation. Field distribution due to individual sinusoidal components is calculated by
CSM using complex fictitious charges. The complex a.c. responses for the needed
frequencies are then weighted and summed up in order to get the time-dependent capacitive-
resistive field distribution. In general, it is not necessary to calculate the field distribution for
all the frequencies and it is sufficient to calculate the field distribution for some fixed
reference frequencies. The results for the intermediate frequencies are then interpolated from
the results for the reference frequencies.

In the other technique proposed by Takuma et al (IEEE-PAS, 1981, pp4665-4672) for
transient field calculation, the integral of egn. 16.54 or 16.61 are approximated with a
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summation over a succession of sufficiently short time intervals to obtain the field
distribution in relation to time discretely by CSM. Only real fictitious charges are used in this
case for computation of transient capacitive-resistive field. This technique can be better
explained in the following way.

In transient fields, where the voltage applied is ¢=V(t), the field distribution is calculated by
dividing the entire time-span into short intervals At and by converting the integral form of
eqns. 16.54 or 16.61 to the iterative summation. In this case, since the real fictitious charges
are used, the eqns. 16.47, 16.48 and 16.50 are also valid without the complex treatment, for
the arrangement shown in Fig. 16.10. However, the continuity condition of D, has to be
modified. The necessary modifications and the resulting equations for the transient field
calculation including volume resistance or surface resistance are discussed below.

Transient Field Computation including Volume Resistance

At the time instant t1=At1, egn. 16.52 without the complex treatment can be written as

EaEn (1), —&5E 5 (1), =0 (i), ... 16.72
where, the integral form of surface charge density, as given by eqgn. 16.54, is modified as
follows.

o (i), =At{EHB M, _ EHA(i)l} ... 16.73
Ps Pa

where, the subscript 1 denotes time instant t1 = Atl.
Hence, eqn. 16.72 can be written as follows

gAEnA(i)l—gBEnB(i)let{E”B(')l - EnA(')l} ... 16.74
Ps P

Then the real fictitious charges can be determined for the time instant t1 = Atl by solving a
set of simultaneous linear equations constructed from egn. 16.74 along with eqgns. 16.47,
16.48 and 16.50 without the complex treatment.

Then at the time instant t2 = Atl + At2

gAEnA(i)z_SBEnB(i)z:O-(i)z .... 16.75
where, o(i), = o(i), +At{E”B(i)2 - E”A(i)z} ... 16.76
Ps P

Since ofi); is known for the time instant t1 = Atl, the real fictitious charges and hence, the
field distribution for the time instant t2 = Atl+ At2 can be obtained from eqns. 16.75 and
16.76 along with eqns. 16.47, 16.48 and 16.50 without the complex treatment. Thus, this
iterative sequence gives the field distribution for ¢=V(t) at any time instant.

The equations to be solved for real fictitious charges at the nth time instant, t, = At; + Aty +---
+ At, can be given in matrix form as follows.
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1 N4 N++N2 Ny+2N, 1 1

A
Pij I::.ij 0
N+ 5 5 = Q| = 0 N
Ni+N ’ _ N+
Ki | K2 | Ks oor| Nz
I:n,ij I:n,ij I:n,ij
N¢+2N> N¢+2Ns N¢+2N,

... 16.77

where, the subscripts n and n-1 denote nth and (n-1)th time instants respectively, and K1, K2
and K3 are three real constants as detailed below.

K, =(3A + At”J—(sB +ﬁ} K, = —(83 + AtnJand K, =(5A + At”J
Pa Ps Ps Pa

Transient Field Computation including Surface Resistance

At the time instant t1 = At1, in the continuity condition of D, the expression for the surface
charge density ofi); can be written as follows.
N Atl ¢(| _1)1 _¢(i)1 _ ¢(i)1 _¢(i +1)1
o(i), == : -
s(i) R(i) R(i+1)
Eqgn. 16.78 is a modified equation derived from the integral form, as given by egn. 16.61.
Thus, the continuity condition of D, can be written as follows

SAEnA(i)l — &, EnB (I)l — At_l ¢(| _1)1 __ ¢(|)1 _ ¢(|)1 _-¢(| +1)1
s(i) R(i) R(i+1)
Hence, the real fictitious charges can be determined for the time instant t1 = Atl from eqn.
16.79 along with eqgns. 16.47, 16.48 and 16.50 without the complex treatment.
Then at the time instant t2 = Atl + At2

EnEn (1), — 5B (i), =0(i),

where, o), = o), + 2t V(i ~D, =), _ #(0), ~ 4 +1)2}
s(i) R(i) R(i+1)

By using ofi); as obtained for the time instant t1= Atl the real fictitious charges for the time
instant t2 = Atl+ At2 can be obtained from egn. 16.80 along with eqns. 16.47, 16.48 and
16.50 without the complex treatment. Hence, this iterative sequence gives the field
distribution for ¢g=V(t) at any time instant.

The equations to be solved for real fictitious charges at the nth time instant, t, = At; + Aty+---
+ At, can be given in matrix form as follows.

....16.78

... 16.79

.... 16.80
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1 1 N1 Ni+N2 N;+2N, 1

1
Na il k i Vi
N Pij I:)ij 0 Q _ N
1 i P jn — 1
N1+N> 0 P” PIJ 0 N+
A EA On. N2
Aq 2 Foi n-1
N;+2N, N1+2N> Ni+2N,
....16.81
where, Al and A2 are two real coefficients as detailed below.
At P .. At P .. At _P.
A =(8A_EB)Fn i x I_l'.J - Ifl’J +—1 1_ + _1 .... 16.82
= SMR@) SHR(+1) S@) \R(i) R(i+1)
At P .. At P, At P.
and A, :(_EB)Fn i~ e S 1_ + _1 .... 16.83
= S(R@) SHR(+1) S@) \R() R(i+1)

In general, the time interval At for various time steps can have different values. However,
they may be made equal for all the time steps for simplicity.
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Sphere or Cylinder in Uniform External Field

Introduction

Conducting and dielectric components are integral parts of any electrical equipment. If the
size of the conducting or dielectric object is very small compared to dimensions of the field
region where the object is located, then the object contributes to the field only in the domain
near the object. In many cases, such objects are present as stray bodies in high voltage
insulation arrangement. As practical examples one may cite a small piece of conductor or
dielectric floating in liquid insulation of large volume in transformers, metallic dust particles
floating in gaseous insulation within gas insulated system etc. It is important to understand
how the presence of a conducting or dielectric object modifies the external field in the
vicinity of the object, because any enhancement of electric field intensity due to the
conducting or dielectric object may lead to unwanted discharge or in the worst case failure of
the insulation system.

If it is assumed that the source charges (in practical arrangement, the electrodes or conductors
with specific potentials) that produce the external field is located far away from the object
under consideration, then they are unaffected by the presence of the object. Consequently, the
field due to the source charges may be considered to be uniform at the location of the object.
If the object is such that its shape is defined by well known mathematical functions, e.g.
cylinders or spheres, then the complete solution for electric field due to the source charges
located at far away positions and the induced charges on the surface of the object could be
obtained by solving Laplace’s equation considering the field region to be free from any
volume charge. However, in order to get the complete solution appropriate boundary
conditions on the surface of the object, whether it is conducting or dielectric, need to be
satisfied. One of the common methods of getting the analytical solution for cylinder or sphere
in uniform external field is the method of separation of variables as described in this chapter.

Sphere in Uniform External Field

Consider a spherical object of radius a within a uniform external field as shown in Fig.10.1.
Since the boundary is a sphere of r=constant, hence the system is best described in spherical

coordinates as shown in Fig.10.1. The uniform external field is given by E,=— E,(, and the
potential at any point due to the external field is given by E,rcosé=E,z with respect to the

center of the sphere. In order to get the complete solution for electric field in this system,
Laplace’s equation in spherical coordinates as given in egn.(10.1) needs to be solved.

1o(pt) L2 o )L 101
reor or resing oe 060 ) r°sin“0 o¢
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X

Fig.10.1 Sphere in uniform external field

The field system has azimuthal symmetry wrt the z-axis, i.e. the field system does not change
with the rotation around the z-axis. So z-axis is made the polar axis in the spherical
coordinate system. Then the field is independent of coordinate ¢ and the Laplace’s equation
reduces to

%Q(rzﬂj +— 1 i(sinﬁﬂj =0 ... 10.2
r°or or resin@ oo 06

In order to separate the terms of the LHS of eqn.(10.2) into functions of only one variable,
eqn.(10.2) may be rewritten by multiplying r’ as

i(rzﬁj +_Li(sin gﬁj =0 ....10.3

or or sing 06 060

Then LHS of egn.(10.3) is the sum of two terms which are functions of only one variable
each, i.e. the first term is function of r only while the second term is function of & only. The
solution to eqgn.(10.3) can be obtained as the product of two functions of which one is
dependent only on r while the other is dependent only on 6.

Let the assumed solution be V(r,8)=M(r)N(60) ....10.4
The assumed solution is convenient as the boundary lies at r=constant.

Combining eqn.(10.3) and (10.4)

i(rzaM(r)N(e)j N 1 i(sineaM (r)N(e)] 0

or or sin@ 06 00
or, N(6) i(rZMj +M(r) _Li(sineaN—W)j =0
or or sin@ 06 060

Dividing by M(r)N(8),

Li(rsz(r)j st 1 i(sinewj =0 ... 105

M (r) dr dr N (@) sing do do
The partial derivatives become total derivatives in eqn.(10.5) as each term is dependent on
only one coordinate.
The sum of two terms of the LHS of egn.(10.5) could be zero only when the two terms are

separately equal to opposite and equal constant terms as given in egqn.(10.6).
Equal and opposite separation constant solution:

Li(rZMj =+p and L_Li(siné'wj =—p ....10.6
M(r) dr dr N (@) sing do do
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where, p is a positive constant.

Another solution is obtained when the separation constant is zero. Hence,

Zero separation constant solution:

Li(ﬁMJ =0 and i_ii(sin GM] =0 ... 10.7
M(r) dr dr N(6)sing do déo

Each of the above-mentioned two solutions is to be obtained separately.

Determination of the zero separation constant solution:

1 d (rz dM (r)

The first term of eqn.(10.7) is J =0, where M(r) is non-zero. So

M (r) dr dr
i(rz dM(r)J 0. or r2dM(r) _¢c,, or, dM(r) =C_§
dr dr dr dr r
Integrating and incorporating constants of integration
M (r):%jtc20 ....10.8
r
Next the second term of eqn.(10.7) is Lii(sin Mj =0, where N(6) is non-
N () sing do déo
zero. SO

sing do do déo
Integrating and incorporating constant of integration

N(0)= Aioln(tan jJrA20 ....10.9

Eqn.(10.9) becomes undefined for 6=z But this is not feasible in the given system as
potential must be a continuous function. So, Ajp should be zero in eqn.(10.9). Therefore,

N(6)=A,, ....10.10

Then from eqgns.(10.4), (10.8) and (10.10), the zero separation constant solution can be
obtained as

V(r,e):3+c2 ...10.11
r

where, C1=A2,C1 and C,=A»Cx.
Determination of the equal and opposite separation constant solution:

The first term of eqn.(10.6) is L i(rz dM (r) j =+p,
M(r) dr dr

1 d (I HdN(G)j:O,or, i[siné’dN(g)] 0, or, smedN(e) A
do do

or, i(rZMj =+ pM(r) ....10.12
dr dr
Putting M (r)=Cr"in eqn.(10.12)

di(rZCnr”'l)=+ pCr", or, Cn(n+1)r"=pCr",or, n>+n—p=0
.

Hence, n=%(—li1/1+4p) ....10.13
11 i(sinedN(e)j -
N (@) sing do do

or, 1 d( anN(H)j pN(O) ....10.14
sing do do

The second term of egn.(10.6) is
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Putting N(8)=Bcoséin eqn.(10.14), ;—9(— Bsin? 0):— pBcosdsing, or, p = 2.
Hence, from eqn.(10.13) n = +1, -2.

Therefore, M (r)=C'r+ = and N(8)=Bcosé .... 10.15

From eqgns.(10.4) and (10.15),

V(r,&):(C3r+C—;‘jcose ....10.16
r

where, C,=C’'BandC,=C"B.

The complete solution for potential function is uniquely given as a linear combination of the
two solutions given by eqgns.(10.11) and (10.16).

V(r,@):%+C2+[C3r+%jcose ... 10.17

where, the constants are determined by satisfying the boundary conditions.
It is evident from eqn.(10.17) that the first term corresponds to a net charge on the sphere and
the second term to a finite potential.

Conducting Sphere in Uniform Field

Consider that the sphere is a conducting one and is isolated and uncharged. Further, consider
that the potential at the location of the center of the sphere due to the external field is Vo.
Since the perturbing action of the sphere is negligible at a large distance from the sphere, the
potential at a large distance from the sphere (r>>a) is given by

V(r,0)=V,+E,rcosé ... 10.18

If the sphere is charged with a finite amount of charge Q, then

V(r,0)= Q +V,+E,rcosé ....10.19
Areyr

In practical systems, floating metallic particles are usually not charged and hence eqn.(10.18)
is taken here for further discussion.

Comparing egns.(10.17) and (10.18) for r—co, C,=V,, C,;=E,. C; will be zero for
uncharged sphere.

So, eqn.(10.17) can be rewritten as V(r,0)=V,+ ( E,r +%jcos@ ....10.20
On the conductor surface, i.e. for r=a, V (a,0)=V, + ( an+%} cosé ....10.21

But conducting sphere surface is an equipotential and hence electric potential is independent
of #on the conductor surface.
So, from egn.(10.21), C,=—E,a°
Hence, the complete solution for electric potential in the domain r>a is given by
3
V(r,6?)=V0+EO(r—a—2jcosé? ... 10.22
r
The r and 8 components of electric field intensity could be obtained as follows

3
E--N__ E0£1+213jc059 ....10.23
or r
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3
E,—— 1N _ Eo[l—a—stinH ....10.24

r oo r
On the conducting sphere surface, tangential component of electric field intensity must be
zero as it is an equipotential surface. Eqn.(10.24) shows that for r=a, Egis zero, which in turn
validates the solution obtained.
Again, on the conducting sphere surface, E, is the normal component of electric field

intensity, which is given by Er|r:a =—3E,cosd. Thus the maximum value of electric field

intensity on the surface of the conducting sphere is 3Eo, i.e. three times the strength of
uniform external field.

This is the reason why metallic dust particles should be avoided at all costs for gas insulated
systems. Because presence of metallic dust particles will increase the local electric field
intensity three times, which will result into partial discharge within the GIS that is very
detrimental for GIS operation.

Induced surface charge density on the surface of the conducting sphere may be obtained as
follows

—=E,| =-3E,cos8,or, o, =-3g,E,c0s8 ....10.25
As stated_earlier, the sphere may be charged with an additional charge Q, which is distributed
uniformly on the sphere surface and its effect on the field could be found by superposition.

Dielectric Sphere in Uniform Field

In the case of dielectric sphere present in a uniform external field, there will be two solutions
to potential function, V; valid for the region within the sphere having dielectric of permittivity
& and V. valid for the region outside the sphere having dielectric of permittivity &. So from
eqn.(10.17)

Vi(r,9)=%+C2i+ (Csir+%jcose ....10.26

and Ve(r,é?):cr1e +C, + (C3er+ (I:";e)cose ... 10.27

The potential at large distance r (r>>a) from the sphere
V(r,0)=V,+E,rcosd ....10.28

where, Vo is the potential at the location of the center of the sphere due to the external field.
Comparing eqns.(10.27) and (10.28) for r—w, C, =V,, C,,=E,. Ci Will be zero as a

dielectric sphere is not considered to have any free charge.

Hence, eqn.(10.27) can be rewritten as V,(r,0)=V,+ [ E,r+ Cee jcosa .... 10.29

r.2
Inside the dielectric sphere electric potential must be finite at all the points. Hence, from
eqn.(10.26) C,;=C,,=0, C,, =V, . Hence, eqn.(10.26) can be rewritten as
V,(r,0)=V,+C,rcosd .... 10.30
At r=a, both eqns.(10.29) and (10.30) should yield the same electric potential. Therefore,

C“Zejcosezvo+C3iacose
a

V,+ ( E,a+

or, E0a+% =C,a ....10.31
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On the dielectric-dielectric boundary the normal component of electric field intensity should
be same on both sides of the boundary. For the spherical boundary, r-component of electric
field intensity is the normal component on the boundary. Hence,

oV, oV,
—&| — ==&,
( or jr_a [ or j

r=a

or, §Cy = ge(EO—Z;“ej ... 10.32
From eqns.(10.31) and (10.32)
4e = i a’E
2¢,+ &
and C,, = 3¢ E,
2e,+¢

Therefore, the complete solutions for potential functions inside and outside the dielectric
sphere are given by
3e,

V,(r,0)=V, +
|( ) 0 28 +

e i

E,rcosé ... 10.33

g,—¢g a
2¢,+¢&, 1°

and Ve(r,H):VO+(r+ JEocose ....10.34

Noting that rcosé=z, potential function inside the dielectric sphere can be written as
V,(X,y,2)=V, + 3¢, E,z ... 10.35

+é,

e 1
Hence, electric potential within the dielectric sphere varies in only z-direction, i.e. the
direction of the external field. Electric field intensity within the dielectric sphere will
therefore have only the z-component, which is given by
oV, 3¢,

E,=— =— E, ....10.36
0z 2¢,+ &

Eo,

& €e

\ 4
Eo

Fig.10.2 Electric field in and around dielectric sphere in uniform field

Eqgn.(10.36) shows that the magnitude of electric field intensity within the dielectric sphere is
constant. Typical field distribution in and around a dielectric sphere within a uniform external
field is shown in Fig. 10.2.

Eqn.(10.36) also shows that if <&, then |E,|>E,. Consider the case of a spherical air bubble
trapped within a moulded solid insulation of relative permittivity 4. If the magnitude of
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electric field intensity in solid insulation at the location of the air bubble is Ey, then the
magnitude of electric field intensity within the air bubble will be 1.33E,. The operating
electric field intensity within solid insulation is usually kept at a higher value as the solid
insulation has a higher dielectric strength and hence such increase in field intensity within the
air bubble often causes partial discharge within the air bubble as the dielectric strength of air
is much lower than solid insulation.

Cylinder in Uniform External Field

Consider a long cylindrical object of radius a within a uniform external field as shown in
Fig.10.3. Since the boundary is a circle of r=constant on the x-y plane, hence the system is
best described in cylindrical coordinates as shown in Fig.10.3. The uniform external field is

given by EO:— Eof and the potential at any point due to the external field is given by
E,rcos@=E x with respect to the axis of the cylinder. In order to get the complete solution

for electric field in this system, Laplace’s equation in cylindrical coordinates as given in
eqn.(10.37) needs to be solved.

1a(av) 1oV oV _,

Sl St T
rorl or r200*> o0z°

EEERREY

AX

... 10.37

Fig.10.3 Cylinder in uniform external field

For this arrangement electric field distribution does not vary along the length of the cylinder,
i.e. along z-coordinate. Hence, Laplace’s equation reduces to
10 ( avj 1 0%V

——|r— | +5—=—= =0

ror\ or r-oé

Separating the terms of the LHS into functions of only one variable by multiplying r* with
eqn.(10.38), it may be written that

ri(ra_Vj A ... 10.39
or\_ or 00

The two terms on the LHS of egn.(10.39) are functions of only one variable each, i.e. the first
term is function of r only while the second term is function of & only. The solution to
eqn.(10.39) can be obtained as the product of two functions of which one is dependent only
on r while the other is dependent only on é.

Let the assumed solution be V(r,8)=M(r)N(60) .... 10.40
The assumed solution is convenient as the boundary lies at r=constant.

.... 10.38
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Combining eqns.(10.39) and (10.40),

rﬁ(réM (r)N(@)J LOM(ION@) _,

or or 00°
or, N (0){ri(rM”+M (r)aZM(r—)ZNW) =0
or or 00
Dividing by M(r)N(6),
r i(rdl\/l(lr)j+ L_d°NO)_, ... 10.41
M (r) dr dr N(@) dé

The partial derivatives become total derivatives in eqn.(10.41) as each term is dependent on
only one coordinate.

As in the case of sphere in uniform field, zero separation constant solution and equal and
opposite separation constant solution are to be obtained separately in this case, too.
Determination of the zero separation constant solution:

The first term of eqn.(10.41) is ' i(r am (r) j =0, where M(r) is non-zero. So

M (r) dr dr
d rdM(r) 0. or rdM(r) _¢c,,or, dM (r) _ G
dr dr dr dr r
Integrating and incorporating constants of integration
M(r)=C,Inr +C,, ....10.42
1 d’N(9) .
Next the second term of eqn.(10.41) is >— =0, where N(¢) is non-zero. So
N(@) do
N(@)=A,0+A, ....10.43

But, from eqns.(10.42) and (10.43), it can be seen that there is discontinuity of potential at
r=0 and G=oo, which are not feasible in the given arrangement as potential must be a
continuous function. Hence, C,,=A,=0 in eqns.(10.42) and (10.43).

Therefore, V(r,8)=C,, A,,=C, ....10.44
Determination of the equal and opposite separation constant solution:

The first term of egn.(10.41) is r i(r am(r) J =+ p, where p is a positive constant
M(r) dr dr

2
2 d Mz(r) or dM(r) _
dr dr
Substituting M (r)=Cr"in egn.(10.45), it may be obtained that

n(n-1)+n=p, or, nzi\/B

or, + pM(r) .... 10.45

_C
Hence, M(r)_ﬁ +C"r ....10.46
2
Again, the second term of eqn.(10.41) is 1 d N(29) =-p
N@) dé
d’N(6)
or, =—pN(@ ... 10.47

Substituting N (6)=e*’ in eqn.(10.47), it may be obtained that

a% = —pe*, or, a=+i,/p
Hence, N(6)=Bcosl\/p6 + ) ....10.48

79



Eqgns.(10.46) and (10.48) lead to
V(r,0)=M (r)N(6)= ( “Cyr ]cos(\/_«9+a)) ....10.49

where, C,=C'Band C,=C"B

From eqgns.(10.44) and (10.49), the complete solution for potential function at all values of r
and 6 can be obtained as

C,
V(r,9)=C1+(rf iCr jcos(\/_9+a)) ....10.50
The potential at large distance r (r>>a) from the cylinder is given by
V(r,0)=V,+E,rcosé ... 10.51

Matching eqns.(10.50) and (10.51), \/leand o=0.
Hence, the complete solution as given by egn.(10.50) reduces to

V(r,H):Cl+(%+C3chose ... 10.52

Conducting Cylinder in Uniform Field

Comparing eqns.(10.51) and (10.52), C;=V, and C3=E,.
So, V(r,0)=V,+ (&+Eorjcose
r

On the conductor surface, i.e. for r=a, V (a,0)=V, + [% + anj cosé ... 10.53

But conducting cylinder surface is an equipotential and hence electric potential is
independent of & on the conductor surface.
So, from egn.(10.53), C,=—E,a’

Hence, the complete solution for electric potential in the domain r>a is given by
2

V(r,0)=V,+E, r—""T cosd ....10.54
The r and @ components of electric field intensity could be obtained as follows
2
E =Y El1+2 |coso ....1055
or r
2
=M _E[1-2 |sing ....1056
r oo r

Eqgn.(10.56) shows that for r=a, Ey is zero, i.e. the tangential component of electric field
intensity is zero on the cylindrical conductor surface as it is an equipotential surface.
Again, on the conducting cylinder surface, E, is the normal component of electric field

intensity, which is given by Er|r:a =—2E,cos@. Thus the maximum value of electric field

intensity on the surface of the conducting cylinder is 2E,, i.e. twice the magnitude of uniform
external field. Comparing this maximum electric field intensity with the value obtained for
conducting sphere in uniform field, it may be seen that the enhancement of field intensity is
more if the conducting object is spherical is shape.

Induced surface charge density on the surface of the conducting cylinder may be obtained as
follows
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=—2E,c0s0, or, o, = —2¢,E,Cc0s0 .... 10.57

Dielectric Cylinder in Uniform Field

Potential function valid for the region within the cylinder having dielectric of permittivity &
is

Vi(r,e):Cli+[%+C3irjcose ....10.58

and the potential function valid for the region outside the cylinder having dielectric of
permittivity & is

V,(r,0)=C,+ (%+C3erjcose .... 10.59

The potential at large distance r (r>>a) from the cylinder

V(r,0)=V,+E,rcosé .... 10.60
where, Vo is the potential at the location of the axis of the cylinder due to the external field.
Comparing egns.(10.59) and (10.60) for r—»x, C,=V,, C,.=E,.

Hence, eqn.(10.59) can be rewritten as V,(r,8)=V, + (%-{- Eorjcose ....10.61

Inside the dielectric cylinder electric potential must be finite at all the points. Hence, from
egn.(10.58) C, =V,, C,;=0. Hence, eqn.(10.58) can be rewritten as

V,(r,0)=V,+C,rcosd .... 10.62
At any point on the dielectric cylinder surface, i.e. for r=a, electric potential as may be

obtained from eqgns.(10.61) and (10.62) must be unique. Hence,

C;e +E,a=C, a ... 10.63

From the boundary condition of normal component of electric flux density at r=a

v, oV,
—&| = ==&
(ar jr_a [ or jr_a

or, &C, =ge(— (;22 +E0j ... 10.64

From eqns.(10.63) and (10.64)

Ee & 2
C,.= a’E,
&, t¢&

and C;, = 2%,

E

g+

Therefore, the complete solutions for potential functions inside and outside the dielectric
cylinder are given by

V.(r,6)=V, +—2%_E, rcoso ....10.65
€e+€i
— 2
and ve(r,9)=v0+(r+“;e g'a—]Eocose ....10.66
E,+g I

As rcosé=x, potential function inside the dielectric cylinder can be written as
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Vi(%,y)=V, +—25

E, X ... 10.67

e i
Hence, electric potential within the dielectric cylinder varies in only x-direction, i.e. the
direction of the external field. Electric field intensity within the dielectric cylinder will
therefore have only the x-component, which is given by

L WL ....10.68
OX & &
Similar to the case of dielectric sphere in uniform field, Eqn.(10.68) shows that the
magnitude of electric field intensity within the dielectric cylinder is constant. Typical field
distribution on the x-y plane in and around a dielectric cylinder within a uniform external
field will be the same as that shown in Fig. 10.2.
As in the case of dielectric sphere in uniform field, for dielectric cylinder in uniform field

aIso|Ezi|> E, if a<e. If a cylindrical air bubble is trapped within a moulded solid insulation of

relative permittivity 4, then the magnitude of electric field intensity within the air bubble will
be 1.6E,, where Eo is the magnitude of electric field intensity in solid insulation at the
location of the air bubble. Comparing this result with the corresponding value in the case of
dielectric sphere, it may be seen that field enhancement is more if the gas cavity in liquid or
solid insulation is cylindrical in shape.
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Electrostatic Pressures on Boundary Surfaces

Introduction

There could be two different approaches towards the calculation of electrostatic force acting
on any boundary. In the first approach, the macroscopic resultant force may be calculated by
summing up the elementary electrostatic forces as obtained from Coulomb’s law. On one
hand this approach should always give correct result, but on the other hand in most of the
practical cases it is very difficult, if not impossible, to perform such calculation as the actual
distributions of charges are mostly unknown.

The second approach is based on the principle of energy conservation and the electrostatic
forces are derived indirectly from energy relationship. This approach is advantageous in the
sense that the forces can be calculated conveniently even by analytical methods. But the
accuracy of the results obtained from this approach depends on the validity of the principle of
energy conservation for the specific case under consideration. Some argue that this condition
is not always satisfied and consequently this method can lead to wrong results in some cases.
Although majority of the scientific community firmly believe that the principle of energy
conservation has a general validity, and therefore this approach should always provide correct
results. On the whole, it is better to suggest that one should use it with due circumspection
and reservation by always verifying the results.

Mechanical Pressure on Conductor-Dielectric Boundary

As discussed in section 6.2, only same polarity charges reside on the boundary between a
perfect conductor and a dielectric medium. These same polarity charges, residing on the
surface of the conductor, exert repulsive forces on each other. These forces will be of such
nature that the distance between the charges should increase. In other words, the surface area
of the conductor-dielectric boundary will try to increase under the influence of these
repulsive forces. Hence, the electrostatic force on the conductor-dielectric boundary always
acts along the normal to the boundary directed from the conductor to the dielectric.

The force on a conductor-dielectric boundary could be calculated using the expression for
energy density. If an elemental area AAon a conductor-dielectric boundary is depressed by a
distance Al , the increase in stored energy (AW ) is equal to the work done against the
electrostatic force acting on the conductor-dielectric boundary trying to swell the surface.
Hence, considering the energy density of electric field within the dielectric to be Wg

AW =W_ AAAI

Here, it has been assumed that the charge on the conductor surface remain unchanged even
when the geometry is changed slightly. This assumption is valid when the conductor is an
isolated one, i.e. it is not connected to a source that could alter its charge, e.g. a voltage
source. Hence, the work done in depressing the boundary could be related directly to the
energy content of electric field according to the law of conservation of energy.

If the electrostatic force acting against the depression of the surface is given by F, then the
work done against this force is

F Al =W, AAAL, or, F =W AA ...81

Electrostatic force per unit area is the mechanical pressure due to electrostatic field acting on
the conductor-dielectric boundary, which is therefore given by

F

Pmech|cond = M = WE ..8.2
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Considering the surface charge density of the conductor-dielectric boundary to be o,

2
=WE =15E2 =iD2=O-—
2 2¢ 2¢

as D = D, = ¢, because Dy = ¢E; is zero on the conductor surface, as E=0.

.. 8.3

Pmech |cond

Electric Field Intensity exactly on the Conductor Surface

Dimensionally, the mechanical pressure acting on the charged conductor surface is equal to
the product of surface charge density (o) and the electric field intensity exactly on the

conductor surface (Esyrface), 1.€. from eqgn.(8.3)
2

(o) o o
P =okE =—,00 Eg o = —= ....8.4
mech|cond Surface 2¢ Surf 2¢ 28r &,
O (o)
From eqns.(6.8) and (6.10), Ejuq off the surtace = —= ... 8.5
E & &

Therefore, E =2xE ..8.6

just off the surface Surface

Problem 8.1
A metallic sphere of 20cm radius is charged with 1uC, spread uniformly over the surface and
is surrounded by a dielectric medium having a relative permittivity of 5. Find the electric
field intensity just off the sphere and also on the sphere. Find also the mechanical pressure
acting on the sphere.
Solution:
Sphere radius = 20 cm = 0.2m
Sphere surface area = 4 7x (0.2)> = 0.5026 m?
Therefore, surface charge density (o) = (1x10°) / 0.5026 = 1.989x10° C/m?
Electric field intensity just off the sphere surface
= (1.989x10°) / (5%8.854x10™%) = 44.94x10° V/m
Electric field intensity exactly on the sphere surface
= (44.94x10% /2 = 22.47x10°V/m
Therefore, mechanical pressure acting on the sphere surface
= 1.989x10°x22.47x10°% = 0.0447 N/m*

Electrostatic Forces on the Plates of a Parallel Plate Capacitor

In order to get a simple analytical solution, consider that the distance between the plates (I) of
the capacitor is much smaller than the area of the plates (A). In that case it may be assumed
that the E-field between the plates is homogeneous, and the effect of the inhomogeneity of E-
field at the edges, commonly known as fringing, may be neglected. The charge may also be
assumed to be distributed uniformly over the plates, i.e. the charge density may be assumed
to be known for the application of Coulomb’s law.

Capacitance of the parallel plate capacitor (C) = gl—A

Let, the potential difference between the two plates of the capacitor be V.

So, the uniformly distributed charge on the plates of the capacitor (Qpiaee) = CxV = eAV

and the electric field intensity within the dielectric of the capacitor is E:VT
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As discussed in section 8.2.1, electric field intensity exactly on the plate surface is given by
£ = e Qe 1 AV _V ...87

P 2 2eA 2&A I :E
So from Coulomb’s law, the electrostatic force acting on the capacitor plates is given by

2
ceAvV V 1 Vv
I:plate :Qplate Eplate :I—X E:ES (Tj ....8.8
Again, according to egn.(8.2) mechanical pressure acting on the plates
1 _, 1 (vY
Pmech|p|ate =WE =§‘C"E :Eg(l_j ....8.9
Hence, the electrostatic force acting on the capacitor plates is

2
Foiae = Pm90h|plate X A=%g A (VTJ , which is the same as that of eqn.(8.8)

Eqgn.(8.8) is very useful because if the force could be measured when the voltage is unknown,
then the voltage can be calculated from the above formula from the knowledge of the
capacitor dimensions. In fact the measurement of voltage by electrostatic voltmeter is based
on this principle.

Problem 8.2

For an air-filled parallel plate capacitor, the area of the plates is 50cm? and the separation
distance between the plates is 5mm. What will be the maximum electrostatic force on the
capacitor plates at standard temperature and pressure?

Solution

Breakdown strength of air at STP is 30kV/cm or 3x10° VV/m. That will be the maximum
possible electric field intensity within the parallel plate capacitor.

So the maximum electrostatic pressure on the capacitor plates is

:%x8.854><1012 x (3x10°)? = 39.84N /m?

plate

max

= 39.84x50x10*=0.199N

max

F

plate

Mechanical Pressure on Dielectric-Dielectric Boundary

Mechanical pressure due to electrostatic field that act on a dielectric-dielectric boundary arise
due to two reasons. The first one is the polarization of atoms and/or dipoles in the volume of
the dielectric media under the action of electric field, while the second one is the change in
the polarization vector that takes place at the boundary between two different dielectric
media. These two mechanical pressures need to be discussed separately.

Mechanical Pressure due to Dielectric Polarization

Consider a homogeneous isotropic dielectric piece of small volume placed in vacuum within
an electric field. The atoms and/or dipoles within this dielectric volume will be polarized
under the action of the electric field. Since, each atom and/or dipole consists of positive and
negative charge, it may be considered that under the action of the electric field a uniformly
distributed cloud of negative charges is shifted through a small distance from a uniformly
distributed cloud of positive charges. The same polarity charges by mutual repulsion develop
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an outward force, which tends to swell the small dielectric volume into the surrounding
vacuum.

The dielectric volume being small enough, it will not alter the electric field intensity due to
the external field within which it is placed. But due to dielectric polarization the electric flux
density within the dielectric volume will be higher due to higher permittivity of the dielectric
compared to vacuum for the same electric field intensity.

In the absence of dielectric medium, energy density of electric field will be given by

PN ... 8.10

E |vacuum 2

and in the presence of dielectric medium, energy density of electric field for the same electric
field intensity within the same volume will be given by
Ll ...8.11

E |dielectric 2

Due to electrostatic repulsive force, if unit area of the surface of the small dielectric volume
expands through a small distance dl in the normal direction, then the difference in stored
energy is equal to the mechanical work done by the repulsive forces, if no heat energy is lost.
Let the force on the dielectric boundary due to dielectric polarization be Fyo. Then the
mechanical work done by Fp is given by

Work Done = F, xdI :l(g—ao )JE? xdl x1
2

F
o, %Zg(S—SO)EZ ....8.12

This force per unit area, i.e. mechanical pressure, acts normally on the boundary directed
from the dielectric to vacuum.

When two different dielectric meet at a boundary, then the mechanical pressure by which
each dielectric tends to push the boundary normally outward could be computed using
eqn(8.12). The difference in these two pressures is the net pressure acting on the dielectric-
dielectric boundary due to dielectric polarization.

The mechanical pressure on the boundary due to dielectric-1 alone, i.e. when dielectric-2 is
replaced by vacuum, is given by

=3(g1 —&,)E? ....8.13

mech |die|ctricl—vacuum 2

This pressure given by eqn.(8.13) acts normally from dielectric-1 to vacuum on the boundary.
Again, the mechanical pressure on the boundary due to dielectric-2 alone, i.e. when
dielectric-1 is replaced by vacuum, is given by

:3(52 —&,)E? ....8.14

mech |dielctri02—vacuum 2

This pressure given by eqn.(8.14) acts normally from dielectric-2 to vacuum on the boundary.
The difference in these two pressures as given by eqns.(8.13) and (8.14) is the net pressure
acting on the boundary due to dielectric polarization. Considering the normal on the
dielectric-dielectric boundary to be from dielectric-1 to dielectric-2,

Pmech|p0| = %[(51 _‘90)|512 - (52 _go)Ezz] .... 8.15
or, Pmech|p0| = %[(51 _go)(Elzt + Elzn)_ (‘92 _go) (Ezzt +E;, )]
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-2 (81_82)Et2+(i_i] Dy _go[iz_inDr?}
2 & & & &

as E,=E, =E,andD,,=D,,=D,.

Mechanical Pressure on Surface Film at Dielectric-Dielectric Boundary

Consider a boundary between a homogeneous isotropic dielectric medium and vacuum as
shown in Fig.8.1. For a boundary having no free charge, the boundary conditions are Ej; = Ex
and D]_n = D2n.

Boundary
Dielectric (e1) Vacuum (&)
Py Ez D2
Normal to
Boundary
E1, D1,P1
P1:D1—80E1 P2:0

Fig.8.1 Change of polarization vector at dielectric-vacuum boundary

Within the dielectric medium D, =¢,E, =¢,E, +P,, where P is the polarization vector in the
dielectric medium. Hence, P, = D, —&,E, .
On the other hand, within vacuum D,=¢,E, and hence, P,=0.

Thus, as one crosses the boundary the polarization vector drops from a finite value within the
dielectric medium to zero in vacuum. But this change in polarization vector cannot occur at
one line of infinitesimal thickness representing the boundary. On the contrary, such change in
polarization vector occurs within a thin film of finite but very small thickness within the
dielectric medium just off the boundary.

Consequently, this boundary film needs to be studied closely. Since only a normal
displacement of the boundary film will expand the boundary, hence only the normal
components of electric flux density and polarization vector are considered. The normal
component of electric flux density remains constant inside the boundary film. But, the normal
component of electric field intensity as well as the normal component of polarization vector
vary gradually and finally assume the values equal to those just outside the film on the
vacuum side of the boundary. Such variation is schematically shown in Fig.8.2.
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Fig.8.2 Variation of electric field quantities within the boundary film

Within the boundary film, the polarization vector is P,=D, —&,E
Therefore, dP, = — &,dE, as Dy is constant within the film.

Now, consider a thin strip of thickness ds within the film such that the distance of the strip
from the beginning of the film is S, as shown in Fig.8.2. Also consider that ds be the
separation distance between the positive and negative charges of the atoms and/or dipoles
within this strip. At a distance S, the negative charges of the atoms lie in a field of intensity
En and at a distance S + ds , the positive charges lie in a field of E, + dE, . Hence, each dipole

charge is subjected to a force per unit of dE, towards right according to Fig.8.2. But the
polarization vector being P, there are P, charges per unit area. Thus the force per unit area,
i.e. mechanical pressure, acting towards right on the thin strip is

dP._.| =P dE —-LPdp

&y
So, total mechanical pressure acting on the entire film is

- _ PV]‘O ip dP = Plﬁ =(D1n—80 Eln)2
g " 2g, 2¢,

n

ech|fi|m

mech| film—dielectric—vacuum
Pn=P1n

(5 —& )2 2
=1 0 FS ... 8.17
2¢&,
Thus, when two dielectric media meet at a boundary, the normal pressure that acts on the

boundary film from dielectric-1 to dielectric-2 may be computed following the same logic as
in the case of eqgns. (8.13), (8.14) and (8.15). So,

1
PmECh|fi|m = 2_6‘0[(81_80)2 E12n - (‘92_‘90)2 E22n] ....8.18

As D, =¢,E

In* © mech | film—dielectric—vacuum

Total Mechanical Pressure on Dielectric-Dielectric Boundary

The total mechanical pressure on the boundary between two dielectric media pushing the
boundary from dielectric-1 to dielectric-2 is the sum of egns.(8.15) and (8.18). So,

2 =2 22
1 (51 —go)Ef - (52 —<90)E22 + (81_80) B _ (52_80) EZ”} ....8.19

P rech] =
mech g i
dielectric 2 ‘90 80

88



Noting thatE?=E2+E}, EZ=E2+EZ , E,=E, and D, =D, , eqn.(8.19) may be rewritten

as
2_

26,8, + & )Efn ~ (822 —26,6,+ &} )EZZn

= 1 (‘91 _50)(E12t + Elzn)_ (52 _50)(E22t + Ezzn)+ (51

I:)meCh|dieIectric 2

&y &
I 22 2E2
:l 6E;—&,E; —gEf +6,E5, +81—El”_ (2157 }
2 i & g
:l (glElt )2 — (82 E2t )2 _ (glEln )2 + (82 E2n )2
2 L (91 {;‘2 gl 52
- , ) )
:i & — th _ Dln + D2I’] B 8.20
2| ¢ &, & &,

Eqn.(8.20) may; also be written as

PmeCh|dieIectric = l|:(81 _82 )Etz + (i_ij D§:| e 821

2 2 &
as E,=E, =E,and D,,=D,, =D, .
Eqgn.(8.21) can be used to find the mechanical pressure acting on the conductor-dielectric
boundary, by considering &, =oo for the conductor and noting the boundary conditions on the

conductor-dielectric boundary as E:=0 and hence D=D,. Then putting ¢,=¢ for the dielectric

surrounding the conductor in eqn.(8.21)
2

Prech|oong = E—g , which is the same as eqn.(8.3).

Problem 8.3

There is a paper insulated transformer coil immersed in oil. & for paper=3 and & for
transformer oil=2.1. There is a normal electric stress of 25 kV/cm and a tangential electric
stress of 10kV/cm just within the paper at the paper-oil boundary. Calculate the total
mechanical pressure acting on the paper-oil boundary.

Solution

Given: Ey, = 25kV/cm = 25x10°V/m and Ey, = 10kV/cm = 10°V/m

So, D, =¢&,, & E,,=3x &, x 25x10° =75x &, x10° V/m

Total mechanical pressure acting on the paper-oil boundary

=% (38-2.1)x2, x (10°f +i(%—%] (75 &, xloS)Z} = 39.56 N/m?’.
&\ 2.
Problem 8.4

A rectangular slab of porcelain (&=5) is placed in air within an electric field such that the
surface of the porcelain slab is perpendicular to the electric field lines. Find the maximum
possible mechanical pressure acting on the porcelain-air boundary at standard temperature
and pressure.

Solution

Since the boundary is perpendicular to the electric field lines in air, hence on the air side of
the boundary, E=0. Again the maximum value of electric field intensity in air is 30kV/cm at
standard temperature and pressure. So, on the air side of the boundary En-max = 30kV/cm or
3x10°V/m.

So, the maximum possible mechanical pressure acting on the porcelain-air boundary is
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1(1 1
:Z—%(I—EJX (e, x(3x10° f =31.9N /m?

Two Dielectric Media in series between a Parallel Plate Capacitor

Consider a parallel plate capacitor having two dielectric media in series between the plates
such that the boundary between the dielectric media is parallel to the plates, as shown in
Fig.8.3. In this case, electric field lines will be perpendicular to the boundary. According to
the boundary condition, normal component of electric flux density will be same in both the
dielectric media, but the magnitude of electric field intensity will be different in the two
dielectrics. Further, since the tangential component of electric field is zero because the
electric flux lines are perpendicular to the boundary, hence D=D,.

b =+V Plate area (A) +c

2 |v

1 F >

o > > ' D

5 e1<€2 | E;>E,| o F3

o

N 4 A 4 \ 4 \ 4 A 4 vV 0% V¥

— > F

IR NCRG NG

\ 4 A 4 A 4 A 4 A 4 A 4 A 4
d=0 Plate area (A) -0

Fig.8.3 Two dielectric media in series between a parallel plate capacitor

Let, the potential difference across the dielectric-1 (&) is Vi and that across the dielectric-2
(&) is V. Then

V=V1+V2:E1I1+E2I2:2Il+BI2
& &
or, D=—2% _y
&l +el,
D
Hence, E=C=— % v and E,=2=— 8y . 8.22
& &l+egl, & &l+el,

Mechanical pressure acting on the plates will be equal to energy density of electric field just

off the plates, i.e. %g E*. Considering the area of the plates to be A,

2
Mechanical force acting on the top plate (Fy) = %6‘1 E’A = igl (LIJ V2A
2

2 \gl+g
1 ’ F 1 i
or, F,= f% |y2a=" where F= | 2% |y2p ...8.23
2 \ &l +¢gl, & 2\ &, +¢l,
- . . F
Similarly, mechanical force acting on the bottom plate (F;) = %52 EJA= — ....8.24
&

The force F; acts on the top plate directed towards dielectric-1, while the force F, acts on the
bottom plate directed towards dielectric-2. Thus F; and F, are in opposite direction and
Fi>F; as g<e.

So it appears that there is a resultant unidirectional reaction-less force acting on the capacitor.
But this is not true, because the force acting on the boundary surface between the two
dielectric media has to be taken into account, too.
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From eqn.(8.21) the mechanical force on the dielectric-dielectric boundary is given by

2
roifl Tipepatft _t)_&& |yepF_F 8.25
) & & 2\e, g )\l&l+el, & &

In eqn.(8.21) the mechanical pressure is assumed to be acting from dielectric-1 to dielectric-
2. As <&, F3 as per eqn.(8.25) is negative indicating that the force F3; acts towards the
dielectric of smaller permittivity, i.e. towards dielectric-1.

: : : F F (F F
Thus net electrostatic force acting on the capacitor =F, —F, + F; :———+(———j:0
& & \& &

Two Dielectric Media in parallel between a Parallel Plate Capacitor

Consider a parallel plate capacitor having two dielectric media in parallel between the plates
such that the boundary between the dielectric media is perpendicular to the plates, as shown
in Fig.8.4. In this case, electric field lines will be tangential to the boundary. According to the
boundary condition, tangential component of electric field intensity will be same in both the
dielectric media, but the magnitude of electric flux density will be different in the two
dielectrics.

+G,  Plate area (A) D =+V Plate area (A;) +G

Aol e 9

_)
P E| Dzl R R | % | E | D
€1<€2] > o>|> o
—> E1=E,{D1<D; I

Fs
Rl R
vV VvV VY T A 4 A 4 A 4 A 4 A 4
-0 Plate area (A,) o= 0 Plate area (A1) -0

Fig.8.4 Two dielectric media in parallel between a parallel plate capacitor

. \Y
In this case, E1:E2:I—, D,=¢ Eand D,=¢,E,

The mechanical force acting on the part of the plate in contact with dielectric-1 is given by

1 1 (VY
F1=§€1 E12A1=§81(|—) A ....8.26

The forces acting on the two plates within the section of the capacitor containing dielectric-1
will be equal to F; but will act in opposite directions.
The mechanical force acting on the part of the plate in contact with dielectric-2 is given by

1 1 (VY
FZZE‘?Z EZZAZZESZ(T] AZ 827

The forces acting on the two plates within the section of the capacitor containing dielectric-2
will be equal to F, but will act in opposite directions. If A;=A,, then F,>F; as &>&. But the
net force on the capacitor plates will always be zero due to the presence of equal and opposite
forces on the plates.
But there will be mechanical force acting on the boundary between the two dielectric media,
which according to eqn.(8.21) is given by

1 1 v?
F3=E(gl—gz)E2A)=E(gl—gz)|—2,% ... 8.28
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where, A, = area of the dielectric-dielectric boundary.

As stated earlier, in eqn.(8.21) the mechanical pressure is considered to be acting from
dielectric-1 to dielectric-2. As <&, F3 as per eqn.(8.28) is negative, which indicates that the
force F3 acts towards the dielectric of smaller permittivity, i.e. from dielectric-2 to dielectric-
1.

Electrostatic Pump
The mechanical force acting on the dielectric-dielectric boundary, as discussed in section 8.5

above, can be demonstrated practically with the help of the arrangement shown in Fig.8.5,
which is also known as electrostatic pump.

Fig.8.5. Demonstration of electrostatic pump

If a charged parallel plate capacitor with air between the plates is partially submerged in a
liquid dielectric as shown in Fig.8.5, then the mechanical force on liquid-air boundary within
the capacitor will act from the liquid dielectric to air, as the permittivity of air is smaller than
the permittivity of liquid dielectric. Hence, this mechanical force will push the liquid up
between the plates against the force of gravity. When the electrical force on the boundary and
the weight of the liquid column between the capacitor plates become equal, then the upward
movement of the liquid dielectric between the plates stops, and the surface of the liquid
dielectric between the capacitor plates remains at a higher level than the surface of the liquid
dielectric in the container.

As per eqn.(8.28), the mechanical force on the liquid-air boundary acting towards air is

1 V? 1 V2 1 V2

Z(e—s,) Ab:z(g_EO)_IXIWZE(g_EO)I_I ... 8.29

ielectric—boundary — w
y 2 I 2 I 2

Fy

where, |, = width of the plates normal to the plane of the paper, | = separation distance
between the capacitor plates and V = potential difference between the capacitor plates.

The gravitational force on the liquid column between the capacitor plates is

Foaiy =2 N1, 19 ....8.30

where, h = height of the liquid column between the capacitor plates, p = density of the liquid
dielectric and g = acceleration due to gravity.

At equilibrium Fgravity = Fdielectric-boundary, i.e.
2

1 Vv
phl,l g:E(g—go)I—IW

1 vY 1
or, h=——(¢-¢,)| — | =——(¢e—¢,)E? ....8.31
2/09( 0)(|j 2pg( 2
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In the case of electrostatic pump, for a given liquid dielectric and for fixed dimensions of the
capacitor, the height of the liquid column between the capacitor plates can be controlled by
controlling the voltage applied across the plates.

Problem 8.5

A parallel plate capacitor with air between the plates is submerged into transformer oil in a
container in such a way that the top surface of transformer oil in the container is
perpendicular to the capacitor plates. The potential difference between the capacitor plates is
15kV and the separation distance between the plates is 6mm. Density of transformer oil is
860kg/m?. Calculate the height of the transformer oil column between the capacitor plates if
& for transformer oil = 2.1. What will be height of the liquid column if transformer oil is
replaced by water for which density is 1000kg/m® and & is 80.

Solution

Given: pyii = 860kg/m®, & of oil = 2.1, V = 15kV = 15x10°V and | = 6mm = 6x10°m
Acceleration due to gravity (g) = 9.81 m/s?

So.h -t
Lo 9% 860x9.81

If transformer is replaced by water, then puaer = 1000kg/m®, & of water = 80

1 15x10°
SO, r T A A o
M 2x1000x9.81 -3

15x10°

-3

2
x(2.1-1)x8.854x10™"2 x( ] =3.6mm

6x10

2
x (80-1)x8.854x107™" x( ] =222.3mm

6x10
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Conformal Mapping

Introduction

Analytical solutions to many field problems, particularly Dirichlet problems, can be obtained
using methods like Fourier Series and integral transforms. These methods are applicable only
for simple regions and the solutions are either infinite series or improper integrals, which are
difficult to evaluate. Closed form solutions to many Dirichlet problems can be obtained using
conformal mapping, which is a similarity transformation. If a function is harmonic, i.e. it

satisfies Laplace's equation V2 f =0, then the transformation of such a function via conformal

mapping is also harmonic. Hence, equations in relation to any field that can be represented by
a potential function can be solved with the help of conformal mapping. However, conformal
mapping can only be employed in two dimensional fields. If the solution for potential field is
required in three dimensional cases, then conformal mapping is applicable to only those
configurations where the potential field is translationally invariant along any one of the three
axes. The two dimensional potential fields that can be solved by conformal mapping are static
electric fields, static magnetic fields, static electric flow fields, stationary thermal flow fields,
stationary hydrodynamic flow fields to name a few. According to Riemann Mapping
Theorem any two regions with same connectivity may be conformally mapped to one
another. But in practical applications conformal mapping is used only in those cases where
the maps take simpler, explicit forms, so that one may carry out actual calculations with those
maps.

As the application of conformal mapping is limited to variables which solve the Laplace's
equation for two dimensional fields, one such variable of practical interest is the electrostatic
potential in a region of space that is free of charges. This chapter, therefore, focuses on
application of conformal mapping to determine electrostatic potential field by solving two
dimensional Laplace’s equation.

Basic Theory of Conformal Mapping

Conformal transformation is based on the properties of analytic functions. Let, z=x+iybe a

complex variable such that the real and imaginary parts x and y are real valued variables, and
f(2) =u(z)+iv(z)=u(x,y)+iv(x,y)be a complex valued function such that the real and

imaginary parts u and v are real and single valued functions of real valued variables x and y.

If the derivative of f(z) exists at a point z, then the partial derivatives of u and v exist at that
point and obey the Cauchy-Riemann equations as follows.
ou ov ou ov

—=—and—=- —

OX oy oy OX

A function f(z) is analytic at a point zo if its derivative f'(z)exists not only at zo but at every
point in the neighborhood of z,. It can also be shown that if f(z) is analytic, the partial
derivatives of u and v of all orders exist and are continuous functions of x and y. So,

@_Q(a_uj_i ov)_ oY _i(ﬂj_i _ou)_ o
ox2 ox\ox) ox\ay) oxoy oylox) oyl oy) %y

or, —+——=0 .. 112
X
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In the same way one may get, —-+—=0 ... 11.3

y y 9 PYPEYE
Egns.(11.2) and (11.3) show that both the functions u(x,y) and v(x,y) satisfy Laplace’s
equation.

Any function that has continuous second order partial derivatives and satisfies Laplace's
equation is called a Harmonic function. Thus both the real part, u(x,y), and imaginary part,
v(x,y), of the complex function f(z) are harmonic functions. If the function f(z) =
u(x,y)+iv(x,y) is analytic, then u(x,y) and v(x,y) are conjugate harmonic functions. If one of
two harmonic functions is known, then the other can be found using Cauchy-Riemann
equations.

Thus both the conjugate harmonic functions u(x,y) and v(x,y) can be used to find the potential
since they satisfy Laplace's equation.

Mapping of Shapes

From a different point of view, the complex function f(z) can be considered as a tool for
change of variables, i.e. a transformation from the complex z-plane to the complex w-plane,
as shown in Fig.11.1, where

Z=X+1y and W=U+iv

It can also be shown that if the function f is analytic at a point z=z, on the z-plane, where the
first order derivative f'(z,)is non-zero, there exists a neighborhood of the point wp in the w-
plane in which the function w=f(z) has a unique inverse z=F(w). The functions f(z) and F(w),
therefore, define a change of variables from (x,y) to (u,v) and from (u,v) to (x,y), respectively.

AY AY

z-plane or, w-plane or,
X-y plane u-v plane
® Wo
® Zp
> '
X u

Fig.11.1 Mapping between z-plane and w-plane

On the z-plane, dz=dx+idy and on the w-plane dw=du+idv

So, |dz|2:dx2+dy2 L. 114
and [dw|’ =du? +dv? 115
Then, on the z-plane, square of the length element can be written as

dI?=dx? +dy? =|dZ|’ ... 116
and, on the w-plane, square of the length element can be written as

dL?=du? +dv? =|dw]’ 117
Therefore, from egns.(11.6) and (11.7), it may be written that

aL _Jaw 118
dl |dz

Thus, in the neighborhood of each point in z-plane, if w(z) is analytic and have a non-zero
derivative, i.e. finite slope at that point, then the ratio of length elements in two planes
remains constant. The net result of this transformation is to change the dimensions in equal
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proportions and rotate each infinitesimal area in the neighborhood of that point. In general, a
linear transformationw= f(z)=az+b, where a and b are complex numbers, rotates by

arg(a) in the anti-clockwise direction, dilates or compresses by |a| and translates by b. Thus

the ratio of linear dimensions, which may also be represented as the angle, is preserved. As a
result, conformal mapping is isogonic because it preserves angles. Hence, all curves in the z-
plane that intersect each other at particular angles are mapped into curves in the w-plane that
intersect each other at exactly the same angles. This property is most useful for electric field
analysis as the equipotentials and the field lines, which are normal to each other in z-plane,
are mapped to corresponding curves in w-plane, which are also mutually orthogonal.

dw|| dz

dz ||[dw
conformal. Because of this uniqueness and conformal property of inverse mapping, solution
obtained in the w-plane can be mapped back to z-plane.

When infinitesimally small region is considered, then every shape in the z-plane is
transformed into a similar shape in the w-plane, e.g. a rectangle in the z-plane remains a
rectangle in w-plane. However, shape will not be preserved in general, particularly in a large

dw . . o
—— may vary considerably at different points in the z-plane. As a result
z

Furthermore, f'(z) F'(w)= =1, which means that the inverse mapping is also

scale as the value of

rotation and scaling will vary from one point in the z-plane to its neighboring point and hence
the similarity of shape is not achieved for large regions.

At this juncture, it is pertinent to mention that conformal mapping does not provide a solution
to any arbitrary problem. Another question that arises is why one should use conformal
mapping instead of numerical methods. The answer to this question is two-fold: firstly
analytical solutions to field problems provides insight and secondly it provides useful
approximations to difficult problems, which in many cases is valuable to practicing
engineers.

Preservation of Angles in Conformal Mapping

As shown in Fig.11.2, two curves A and B intersect each other at an angle « at the point z; in
the z-plane. With the help of the tangent vectors to the curves, the angle between the curves
could be computed. Let, t,4 and t,g be the tangent vectors to the curves A and B, respectively.
Then from the law of cosines it may be written that

a=cos™ o+l s ~t| ... 119
20t [t

The corresponding transformed curves A" and B’ intersect at an angle £ in the w-plane. Let,

t', and t/; be the tangent vectors to the curves A’ and B, respectively. Then g can be

obtained as

ﬂ:cos-1 |t;VA|2+|'[;VB|’2_|'f;vA_t;vB|2 ....11.10
2[tofte|
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z-plane

Fig.11.2 Preservation of angles in conformal mapping

Let, a curve is parameterized in z-plane by z=z(p) and the complex analytic function
w=f(z(p)) defines the mapped curve in the w-plane. Then application of chain rule to
w=f(z(p)) gives t/,=f'(z(p))t,(p). Since the curves intersect in z-plane at z=z;, then

t,=1'(z)t,and t ;= f'(z)t; . Since f'(z,)#0, hence eqn.(11.10) can be re-written as

ﬁzcos*l |f,(zi)tZA|2 +| f ’(Zi)tzB|2_| f l(zi)tzA_ f’(zi)tzB| ? 11.11
2| f'(z)) ]| f'(z) ] 11

2 .
f’(zi)| cancels from the numerator and denominator and

In egn.(11.11), the absolute value
eqn.(11.11) gets reduced to
2 2 2
tal +tal —[,—t
ﬂzcosfl | ZA| | ZB| | ZA ZB| . 11.12
2fts]
From eqgns.(11.9) and (11.10), « = S, which proves that angles are preserved in conformal
mapping.

Problem 11.1

For the point z=1+i in the z-plane, find the mapped point in the w-plane under the linear
transformation w=(1+i)z +(2 +2i).

Solution

The given transformation functionw = f(z) = 1+i)z +(2+2i) = J2e' iz + (2+2i)

Hence, the transformation of the point (1+i) in the z-plane to the corresponding point in the
w-plane can be obtained in three steps as shown in Fig.11.3.

Step-1: The length OP Qz|) is multiplied by |1+i|:\/§to get the length AB as shown in
Fig.11.3(b).

Step-2: The length AB is rotated by an angle (#/4) in the anti-clockwise direction to get the
length AC, as shown in Fig.11.3(c).

Step-3: The point C is then translated by (2+2i) to get the point P’'(2+4i) in the w-plane
which is the conformally mapped point corresponding to the point P in the z-plane.
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Fig.11.3 Pertaining to Problem 11.1

Problem 11.2

Let Q be the rectangular region in the z-plane bounded by x=1, y=1, x=3 and y=2. Find the
mapped region Q' in the w-plane under the linear transformation w=(1+i)z +(2 +2i).
Solution

Given, w=f(z)=(1+1)z + (2+2i) = (1+i)(x+1y) + (2+2i) = (x-y+2) + i (x+y+2)

Hence, u = x-y+2 and v = x+y+2

Therefore, for x=1, u = -y+3 and v = y+3 or, u+v = 6, i.e. the line x=1 in the z-plane is
mapped to the straight line u+v=6 in the w-plane.

Similarly, fory=1,u=x+1andv =x+3 or, u-v=-2

Forx=3,u=-y+5andv=y+5 or,u+v=10

Fory=2,u=xandv=x+4 or,u-v=-4

So, the four straight lines in the z-plane defined by x=1, y=1, x=3 and y=2 are mapped to
four straight lines defined by u+v = 6, u-v = -2, u+v = 10 and u-v = -4, respectively, in the
w-plane. The mapping is shown in Fig.11.4. Under the linear transformation w=az+b, where
a=1+i and b=2+2i, it may be seen that the rectangular region Q in the z-plane is translated
by b(=2+2i), rotated by an angle 45° (=arg(a)=arg(1+i)) in the anti-clockwise direction and

dilated by V2(=[a|=[L+1|) to another rectangular region Q' in the w-plane.

z-plane

N
[
1o

y=2 C
(s2)

Region Q

X

y=1 1B
I I
1 3

>y

n
»
X
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Concept of Complex Potential

Let, #(X,y)be a harmonic function in a domainQ. It is possible to define a harmonic
conjugate function,y(x,y), uniquely by Cauchy-Riemann equations in the same domain.
Thus an analytic function of z=x+1iy in the domain Q can be written as

F(2)=¢(x,y)+iy(X,Y) ... 11.13
Consequently, F(z) conformally maps the curves in the z-plane onto the corresponding curves
in the w—plane and vice-versa preserving the angles during mapping.

Since, both the real and imaginary parts of F(z), viz.¢(x,y)andw(X,y), are harmonic
functions, they satisfy Laplace’s equation and hence either one of these two could be used to
find potential. Thus the complex analytic function F(z) is known as complex potential.
Laplace’s equation is one of the most important partial differential equations in engineering
and physics. The theory of solutions of Laplace’s equation is known as Potential Theory. The
concept of complex potential relates potential theory closely to complex analysis.

If ¢(x,y)is considered to be real potential, then ¢(x, y) =const represents equipotential lines

in the z-plane. Since, ¢(x,y)and w(x,y)are orthogonal, hence, w(X,y)=const represents

electric field lines in the z-plane. For example, consider the complex potential function as
F(z)=Az+B=Ax+B+iAy. Then the equipotential lines corresponding to

#(X,y) = Ax+ B =const are straight lines parallel to y-axis and the electric field lines
corresponding to (X, y) = Ay=const are straight lines parallel to x-axis.

The introduction of the concept of complex potential is advantageous in the following ways:
1) it is possible to handle equipotential and electric field lines simultaneously and ii) Dirichlet
problems with difficult geometry of boundaries could be solved by conformal mapping by
finding an analytic function F(z) which maps a complicated domain € in the z-plane onto a
simpler domain Q' in the w-plane. The complex potential F'(w) is solved in the w-plane by
satisfying Laplace’s equation along with the boundary conditions. Then the complex potential
in the z-plane can be obtained by inverse transform from which the real potential is obtained
as ¢(x,y)=Re{F(z)}. This is a practicable way of solution as harmonic functions remain

harmonic under conformal mapping.

Procedural Steps in Solving Problems using Conformal Mapping

1) Find an analytic function w=F(z) to map the original regionQin the z-plane to the
transformed region Q' in the w-plane. The region Q'should be a region for which explicit
solutions to the problem at hand are known.

2) Transfer the boundary conditions from the boundaries of the regionQ in the z-plane to
the boundaries of the transformed region Q2" in the w-plane.

3) Solve the problem and find the complex potential F'(w) for the transformed region Q'in
the w-plane.

4) Map the solution F'(w) for the region Q'in the w-plane back to the complex potential
F(z) for the region Q in the z-plane through inverse mapping.

The steps are schematically shown in Fig.11.5. The most important step is to find an

appropriate mapping function w=F(z), which fits the problem at hand. Once the right

mapping function has been found, the problem is as good as solved.
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Boundary Condition:

(x,y)=const Boundary Condition:

¢'(u,v)=const

Mapped back Complex Potential €———— Sollved Colmplex _Po|tentia|
F(2) = o(x,y)+ i w(x.y) F(w) = ¢'(u,v)+ i y'(u,v)

Fig.11.5 Schematic representation of solution of potential problem by conformal mapping

Applications of Conformal Mapping in Electrostatic Potential Problems

Conformal mapping is a powerful method for solving boundary value problems in two-
dimensional potential theory through transformation of a complicated region into a simpler
region. Electric potential satisfies Laplace’s equation in charge free region. Therefore,
electrostatic field that satisfies Laplace’s equation in a two-dimensional region in xy-plane,
will also satisfy Laplace’s equation in any plane to which the region may be transformed by
an analytic complex potential function F(z). For each value of complexz=x+1y, there is a

corresponding value of complexw=F(z). In other words, for every point in the z-plane,

there is a corresponding point in the w-plane. As a result, the locus of any point in the z-plane
will trace another path in w-plane. Let, the locus in the z-plane maps onto a path
¢'(u,v) =const in the w-plane, which corresponds to an equipotential and may also be the

surface of a conductor. Then the problem can be solved in the w-plane incorporating the
appropriate boundary condition, i.e. the value of the conductor potential, and the results can
be mapped back to z-plane to get the real potential and then the electric field lines can be
obtained from the conjugate harmonic function. This section discusses some of the
applications of conformal mapping in solving two-dimensional electrostatic potential
problems.

Conformal Mapping of Co-Axial Cylinders

The cross-sectional view of a single-core cable is shown in Fig.11.6, where the co-axial
cylindrical conductors are of infinite length in the direction normal to the plane of the paper.
Hence, the field varies only in the cross-sectional plane and is translationally invariant in the
direction of the length of the cable. Let, the cross-sectional plane of the cable be the x-y plane
or the z-plane. Then the field in the region between the two cylindrical conductors can be
found by conformal mapping. Let, the radii of the inner and the outer conductors be ry and ry,
respectively, and the potential of the inner and the outer conductors be V and zero
respectively.

Consider the complex analytical function for conformal mapping be

w=u+iv=C, In(z) + C, ... 1114

where, z=x+iy = re'’ such that r=4/x?>+ y? and #=tan*(y/x)
So, u+iv=C,In(re")+C, =C,Inr+C,+iC, 8
or, u=C,In(r)+C,and v=C, ¢ ....11.15
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Fig.11.6 Conformal mapping of co-axial cylinders

For the inner conductor, x>+y?=r;% and hence it maps to a straight line u, = const parallel to v-
axis in the w-plane. Similarly, the outer conductor for which x?+y*=r,* maps to another
straight lineu, = const parallel to v-axis in the w-plane, as shown in Fig.11.6. In other words,

the field within the two cylindrical conductors in the z-plane is conformally mapped to field
between two infinitely long parallel plates, i.e. the field within a parallel-plate capacitor, in
the w-plane. From Fig.11.6 it may be seen that the orthogonality of the equipotentials in the
form of circles and electric field lines in the form of radial lines in the z-plane are maintained
in the w-plane, where the equipotentials are straight lines parallel to v-axis and the electric
field lines are straight lines parallel to u-axis.

From the boundary conditions on the conductor surfaces

C,Inr,+C,=V ... 11.16
and C,Inr,+C,=0 ... 1117
From eqns. (11.16) and (11.17),
C=——Y and =Y ...11.18
r r
In-2 In-2
n n
The potential at any radius r is given byu=C, Inr + C, . Correspondingly, in the z-plane
r
Vin-%
B0, y)=—2 ";r Y '”rrz -t ... 11.19
In2  In2 In2
n n n
Then, E, (X, y)=—% -V . ... 11.20
o rint
rl

Eqgn.(11.20) gives the value of electric field intensity at any radius r, which is the same as the
one given by eqn.(4.30).
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Conformal Mapping of Non Co-Axial Cylinders

Fig.11.7 shows two non co-axial cylinders in the z-plane, such that for the outer cylinder C,,
|z|:1. Radius of the inner cylinder C; is (1/5) and its center is located at a distance of (1/5)

from the center of the larger cylinder. In this case also the length of the two cylinders is taken
to be infinite in the direction normal to the plane of the paper. Hence, the field in the space
between the two cylinders does not vary in the direction of the length of the cylinders. So the
cross-sectional plane is shown to be the z-plane in Fig.11.7. The inner cylinder is at a
potential of V while the outer cylinder is earthed. Direct solution of the field between the two
cylinders is difficult in the z-plane. However, it is possible to conformally map the non co-
axial cylinders in the z-plane onto two co-axial cylinders in the w-plane keeping the boundary
conditions, i.e. boundary potentials, same.
In this transformation, the unit radius outer circle C, in the z-plane is mapped onto a unit
radius circle C'; in the w-plane in such a way that the inner circle C'; becomes concentric with
a radius ri, as shown in Fig.11.7. The mapping function for this linear fractional
transformation is
w=—2=K .. 1121
kz-1

z-plane w-plane

Fig.11.7 Conformal mapping of non co-axial cylinders

As shown in Fig.11.7, the two points on the inner circle A(0,0) and B(%,O) in the z-plane are

mapped onto two points A'(r;,0) and B'(-r;,0) on the inner circle in the w-plane.
0-k

Hence, from eqn.(11.21) for the points A(0,0) and A'(r;,0) =ﬁ_k
2/ _k B
and for the points B(E,O) and B'(-r;,0) —r= é _ 2-5r,
5 kg1 2r-5

or, r’—5r +1=0, or, r;=4.79 and 0.208.

But, r; cannot be greater than 1 and hence, ri= 0.208. Therefore, k = r; = 0.208.

Thus the mapping function for this problem is w:ﬂ ... 11.22

0.208z-1
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Writing the complex potential function in the w-plane as F'(w)=alnw+b, the real part of the
complex potential can be written as

¢'(u,v)=Re{F'(w)}=alnjw|+b ....11.23
Two conditions on boundary potentials in the w-plane are as follows: i) ¢'=0 for |W|:1 and ii)
¢'=V for [w|=r,

Application of first boundary condition on eqn.(11.23) yields
alnl+b=0,0r,b=0
Similarly, applying the second boundary condition on eqgn.(11.23) one would get
alnr+b=V,or In0.208=V , or, a = -0.6368V
Thus the desired solution for complex potential in the z-plane is

z—-0.208

F(z)=-0.6368V In————— ... 11.24
0.208z-1
The real potential within the two cylinders is then given by
z—0.208
X,y)= Re{F(z);=—0.6368V In———— ... 11.25
#(x.y)= RelF (2)] 0.2082_1‘

If the potentials are +V and -V instead of V and 0, then from the first boundary condition
alnl+b=-V,orb=-V

and from the second boundary conditionalnr,+b=V, or, aln0.208 -V =V or, a = -1.273V
Hence, the desired solution for complex potential in the z-plane is

F(2)=—1.273v In2=%2%8 _y _y[_12731n220208 _4 ... 11.26
0.208z-1 0.208z-1
The real potential within the two cylinders is then given by
z—-0.208
X,y)=Re\F(z);=V|-1.273 In———— -1 ... 11.27
#(x,y)=Re{F (2)} [ 0_2082_1‘ j

Conformal Mapping of Unequal Parallel Cylinders

Fig.11.8 shows two unequal parallel cylinders in the z-plane, such that for the larger cylinder
C2,|z|:1. Radius of the smaller cylinder C; is (1/2) and its center is located at a distance of

(7/2) from the center of the larger cylinder. In this case also the length of the two cylinders is
taken to be infinite in the direction normal to the plane of the paper. Hence, the field in the
space between the two parallel cylinders does not vary in the direction of the length of the
cylinders. So the cross-sectional plane is shown to be the z-plane in Fig.11.8. The smaller
cylinder is at a potential of V while the larger cylinder is earthed. It is possible to map these
two parallel cylinders onto two co-axial cylinders in the w-plane as follows.

In this transformation, too, the unit radius larger circle C, in the z-plane is mapped onto a unit
radius circle C', in the w-plane in such a way that the smaller circle C'; becomes concentric
with a radius rj, as shown in Fig.11.8. The mapping function for this linear fractional
transformation is also

z—k

w= ....11.28
kz-1

103



712 w-plane

Fig.11.8 Conformal mapping of two unequal parallel cylinders

However, as shown in Fig.11.8, the two points on the inner circle A(3,0) and B(4,0) in the z-

plane are mapped onto two points A'(-r;,0) and B'(r;,0) on the inner circle in the w-plane.

Hence, from eqn.(11.26) for the points A(3,0) and A'(-r;,0) —r :33k;k1

and for the points B(4,0) and B'(r;,0) r _A-k k=3
4k-1 3k-1

or, 7k?—26k+7=0, or, k = 3.42 and 0.292.

For k=3.42, r;=0.046 and for k=0.292, ri=21.84.
But r; cannot be greater than 1 in the w-plane, so the solution is k=3.42 and r;=0.046.
Writing the same complex potential function in the w-plane as F'(w)=alnw+b, as in section

11.5.2, and applying the same boundary conditions for potential, as shown in Fig.11.8,

b=0 and a=L— v =-0.3247V

Inr, In0.046
Thus the desired solution for complex potential in the z-plane is

F(2)=-0.3247V In2=342
3.427-1

The real potential between the two unequal parallel cylinders is then given by
z—342‘

... 11.29

... 11.30

#(x,y)= Re{F(2)}=-0.3247V In 2 i1

If the potentials are +V and -V instead of V and 0, then from the first boundary condition
alnl+b=-V,orb=-V

and from the second boundary conditionalnr,+b=V , or, aln0.046 -V =V or, a = -0.6494V
Hence, the desired solution for complex potential in the z-plane is

F(2)=—06494V In 232 _y _y|_0.6494 1n 22342 _4 ...11.31
3.42z-1 3.42z-1
The real potential between the two unequal parallel cylinders is then given by
z-3.42
X,y)=ReF(2);=V|-0.6494 In -1 ... 11.32
#(x,)=Re{F ()} [ 3.422_1‘ J
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Conformal Mapping of Equal Parallel Cylinders

With reference to Fig.11.8, if the radius of the cylinder-1, i.e Cy, is taken to be unity, then
k=2.906 and r;=0.064

Hence, if the potentials of the two cylinders are V and O, respectively, then the desired
solution for complex potential in the z-plane is

F(2)=-03638V In2=2906 ... 11.33
2.906z-1
The real potential between the two equal parallel cylinders is then given by
2—-2.906
X,¥)=Re\F(z);=—0.3638V In————— ... 11.34
#(x,y)= RelF (2)] 290611

If the potentials of the two cylinders are +V and -V, respectively, then the desired solution for
complex potential in the z-plane is

F(2)=—07276v In2=299 _\, _y[_07276 1n2=29% _4 ...11.35
2.906z-1 2.906z-1
The real potential between the two equal parallel cylinders is then given by
z2—-2.906
X,y¥)=Re\F(z);=V| -0.7276 IN—— -1 ... 11.36
#(x,)=Re{F ()} ( > 90671 J
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Graphical Field Plotting

Introduction

Most of the practical problems have such complicated geometry that no exact method of
finding the electric field is possible or feasible and approximate techniques are the only ones
which can be used. Out of the several approximate techniques, numerical techniques are now
extensively used to determine electric field distribution with high accuracy. Numerical
techniques, which are widely used, will be discussed in details in the later chapters. In this
chapter, experimental and graphical field mapping methods are discussed. Experimental field
mapping involve special equipments such as electrolytic tank, a device for fluid flow,
conducting paper and associated measuring system. The other mapping method is a graphical
one and needs only paper and pencil. In both these methods, the exact value of the field
quantities could not be determined, but accuracy level which is sufficient for practical
engineering applications could be achieved. Graphical field plotting is economical compared
to experimental method and is also capable of providing good accuracy when used with skill.
Accuracy of the order of 5 to 10% in capacitance determination could be achieved even by a
non-expert simply by following the rules.

Experimental Field Mapping

Experimental method of field mapping is based on the analogy of stationary current field with
static electric field, as presented in Table 12.1, rather than directly on measurement of electric
field. If the medium between electrodes is isotropic, then volume conductivity and dielectric
constant do not vary with position. Then current density (J) in stationary current field and
electric field intensity (E) and electric flux density (D) in static electric field will be in the
same direction. In other words, current density and electric field lines are the same. Thus for
a given electrode system, if a slightly conducting material, e.g. conducting paper or an
electrolyte, is placed instead of a dielectric material between the electrodes, then electric field
lines and equipotential lines will remain the same.

It is well known that if one travels along a line through an electric field and measures electric
scalar potential V as one goes, then the negative of the rate of change of V is equal to the
component of electric field intensity E in the direction of travel. In other words,

E:—a—va, ..121

ol
If —a—IS maximum, then it gives the value of E itself. If electric potential does not change

with position, then the path of travel is at right angles to the electric field and is along an
equipotential. Thus electric field could be mapped by a voltmeter that will measure potential
difference and two metal rods acting as probes. The probes are connected to the terminals of
the voltmeter and are placed in various positions in an electric field to monitor the potential
differences between the positions of the two probes.
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Table 12.1 Analogy between static electric field and stationary current field

Static Electric Field Stationary Current Field
Electric Flux Electric Current
I3=g E j=K E
Dielectric constant VVolume conductivity
Q:jﬁlj.dé' |=§5.d§
S S

For the determination of equipotential lines one probe is kept still, while the other probe is
moved. In whichever position of the moving probe the voltmeter registers a zero reading; the
potential of the moving probe is same as that of the standstill probe. By marking each such
position, equipotentials could be traced.

For tracing electric field lines the two probes are kept at a constant separation distance and
one probe is rotated around the other. The position of the rotating probe where the voltmeter
registers a maximum reading, the electric field is changing at its maximum rate. Hence, the
electric field at that location of the rotating probe is parallel to the line joining the two probes.
By repeating this measurement process at several positions, the electric field could be
mapped.

Since a real-life voltmeter draws a current, however small it may be, measurement of the
potential differences using voltmeter could not be done with vacuum or air as the medium. In
practice, measurement is carried out for the electric field that is set up in a medium, which is
slightly conducting.

Commonly slightly conducting paper, e.g. paper impregnated with carbon, is used. Since the
paper is slightly conducting, the electric field due to the charged electrodes is almost the same
as the one that would be produced in air or vacuum with similar geometry. At the same time
the paper is sufficiently conducting to supply the small current needed by the voltmeter.
Alternately electrolytic tank setup is used which consists of a specially fabricated insulating
tray. A large sheet of laminated graph paper is pasted on the base plate of the tray. The tray is
then half-filled with an electrolyte and the height of the electrolyte is kept same throughout
the tray. Metallic electrodes are placed in the electrolytic tank, which are shaped to conform
to the boundaries of the problem, and appropriate potential difference between the electrodes
IS maintained.

Field Mapping using Curvilinear Squares

Field mapping by curvilinear squares is a graphical method based on the orthogonal property
of a pair of conjugate harmonic functions and also on the geometric considerations. This
method is suitable for mapping only those fields in which there is no variation of field in the
direction normal to the plane of the sketch, i.e. the field is two-dimensional in nature. Many
practical electric field problems may be considered as two dimensional, e.g. the co-axial
cylindrical system or a pair of long parallel wires. In these cases the field remains same in all
cross-sectional planes. It is a fact that no real system is infinitely long, but the idealization is
a useful one for electric field analysis and visualization.
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Fig.12.1 A typical curvilinear square

In this method the field region of interest is discretized into a network of curvilinear squares
formed by flux or field lines and equipotentials. Curvilinear square is a planar geometric
figure which is different from a true square as its sides are slightly curved and slightly
unequal, but which approaches a true square as its dimensions become small. A typical
curvilinear square is shown in Fig. 12.1. The field map thus obtained is unique for a given
problem and helps in understanding the behaviour of electric field through visualization. The
method of curvilinear square is capable of handling problems with complicated boundaries. A
curvilinear field map is also independent of field property coefficients and could be directly
applied from one physical field to another if an analogy exists between the concerned fields.
Theoretically curvilinear field mapping is based on Cauchy-Riemann relations, which ensures
that the Laplace’s equation is satisfied by a conjugate pair of harmonic functions in any
orthogonal coordinate system. Hence, this method utilizes the fieldline coordinate
representation of electric field such that electric field is always tangent to the fieldlines and
depends only on the distribution of fieldlines and equipotentials.

Foundations of Field Mapping

Construction of field map using curvilinear squares is based on some significant features of
electric field as described below:

i) A conductor boundary is one of the equipotentials.

ii) Equipotential and electric field intensity (or electric flux density) are normal to each other.
As a conductor boundary is an equipotential, hence electric field intensity and electric flux
density vectors are always perpendicular to the conductor boundaries.

iii) Electric flux lines (often termed as streamlines) originate and terminate on charges.
Hence, in the case of a homogeneous and charge free dielectric medium, electric flux lines
originate and terminate on conductor boundaries.

Fig.12.2 shows two coaxial cylindrical conductor boundaries having a specified potential
difference (V) and extending 1m into the plane of the paper. A field line is considered to
leave the boundary with more positive electric potential making an angle of 90° with the
boundary at the point X. If the line is extended following the rule that it is always
perpendicular to the equipotentials and if the dielectric medium is considered to be
homogeneous and charge free, then the fieldline will terminate normally on the boundary of
the less positive conductor at the point X' as shown in Fig.12.2. In a similar manner, another
fieldline could be drawn in such a way that it starts from the point Y on the more positive
conductor boundary and terminates on the point Y’ on the less positive conductor boundary.
As the fieldlines are drawn perpendicular to the equipotentials everywhere, electric field
intensity and hence electric flux density will be tangent to a fieldline everywhere on it.
Consequently, no electric flux can cross any fieldline thus drawn. Therefore, if there is a
charge of AQon the surface of the conductor between the points X and Y, then a flux of

Aw =AQ will originate in this region and must terminate on the surface of the other
conductor boundary between the points X'and Y'. Such a pair of fieldlines is known as a
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“flux tube” as it seems to carry flux from one conductor to the other without losing any flux
in between the two conductors. For simplification of interpretation of the field map, another
flux tube YZ may be drawn in such a way that the same amount of flux is carried in the flux
tubes XY and YZ. The method of determination of dimensions of the curvilinear square for
drawing such flux tubes is described in the next section.

Fig.12.2 Field map between two co-axial cylinders
Sketching of Curvilinear Squares

Considering the length of the line joining the points X and Y to be As, the flux in the tube XY
to be Ay and the depth of the tube to be 1m into the paper, the electric flux density at the

midpoint of this line is then given by

=AY 122
As

So, considering the permittivity of dielectric medium to be &, electric field intensity at the
midpoint of the line XY is then given by
g-LlAv ...12.3

g AS
Alternately, electric field intensity could also be determined from the potential difference
between the points X and X1 lying on the same fieldline on two equipotentials as shown in
Fig.12.2.
Considering the length of the line joining the points X and X1 to beAland the potential

difference between the two consecutive equipotentials to be A¢, electric field intensity at the
midpoint of the line X-X1 is then given by
E _Ad ... 124

Al
Considering Asand Al to be small, the two values of electric field intensity as given by eqns.
(12.3) and (12.4) may be taken to be equal. Hence,

1Ay _Ag

& AS Al

or, A—I = gA—¢ .. 125
AS Ay
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For sketching the field map, consider the following: a) homogeneous dielectric having a
constant permittivity &, ii) constant amount of electric flux per tube, i.e. Ay is constant, and
iii) constant potential difference between two consecutive equipotentials, i.e. A¢ is constant.

Al : .
Then from eqn.(12.5), A—:constant. In other words, the ratio of the distance between
S

fieldlines as measured along an equipotential and the distance between equipotentials as
measured along a fieldline must be maintained constant and not the individual lengths. The
simplest ratio of lengths that can be maintained is unity, so that Al=As . Then the field region

is divided into curvilinear squares by the fieldines and equipotentials.

The field map thus obtained is composed of curvilinear squares of the same kind such that
each square has the same potential difference across it and also has the same amount of flux
through it. For a givenAgandAy , the sides of a curvilinear square are thus inversely

proportional to electric field intensity. For a non-uniform field electric field intensity varies
with location and hence Al and As vary with the strength of electric field. In the region of
higher field strength, Al and As are to be kept small, i.e. the squares are to be made smaller in
size where the magnitude of the field intensity is high. On the other hand, the squares are
made larger in size in the field region where the field intensity is low.

It may be recalled that the product of electric charge and electric potential difference is the
energy of electric field. Moreover, electric charge and electric flux has a one to one
correspondence. Thus for a field map if Agand Ay are kept constant, then their product

remains constant and hence, energy of electric field remains constant. Therefore, curvilinear
squares having the same ratio as give by eqn.(12.5) have the same energy stored in electric
field regardless of the size of the square. A curvilinear square can thus be scaled up or down
keeping the energy stored in the curvilinear square unaltered as long as the ratio given by
eqn.(12.5) remains unaltered.

Construction of Curvilinear Square Field Map

The fieldines and equipotentials are typically drawn on the original sketch which shows the
conductor boundaries. Arbitrarily one fieldline is begun from a point on the surface of the
more positive conductor with a suitable value of Al and an equipotential is drawn
perpendicular to the fieldline with a value of As=Al. Then another fieldline is added to

complete the curvilinear square. The field map is then gradually extended throughout the
field region of interest. As the field map is extended, the condition of orthogonality of
fieldline and equipotential should be kept paramount, even if this results in some squares with
ratios other than unity. Construction of a satisfactory field map using curvilinear squares is a
trial and error process that involves continuous adjustment and refinement. Typically the field
maps are started as a course map having large curvilinear squares. Then the field map is fine
tuned through successive subdivisions to form a dense field map having higher accuracy. In
the process of subdivision, the lengths between consecutive fieldlines as well as
equipotentials are kept equal. Before starting the construction of a field map, it is a judicious
practice to examine the geometry of the system and take advantage of any symmetry that may
exist in the system under consideration. This is because of the fact the lines of symmetry
serve as boundaries with no flux crossing and thereby separate regions of similar field maps.

Capacitance Calculation from Field Map

Once the field map is drawn, it is possible to determine the capacitance per unit length
between the two conductors using the field map. It is well known that capacitance between
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two conductors having a potential difference of V is given byC:V, where Q is the charge on

the conductor. Applying Gauss’s law on a Gaussian surface enclosing the conductor having

more positive potential, Q=i , where  is the flux coming out of the conductor. Thus, C :%.

Ay
As Ab
Al

Fig.12.3 An isolated curvilinear rectangle

To calculate the capacitance with the help of curvilinear rectangle, consider first an isolated
curvilinear rectangle as shown in Fig.12.3. Let the flux through it be Ay and the potential

difference across it be Ag. Considering the curvilinear rectangle to be small, the flux density

may be assumed uniform within the curvilinear rectangle so that
Ay=¢EAsxl ... 12.6

where, the depth is taken to be 1m into the plane of the field map.
Electric field intensity (E) and the potential difference A¢ are related as

Ap=ExAl . 127
Combining eqns. (12.6) and (12.7)

Ag
Ay =g ASx ——
v Al

Therefore, the capacitance of the small curvilinear rectangle, which may be taken as a small
field cell, is given by
AC _AV & as

Ag Al
The total amount of flux () emanating from one conductor and terminating on the other
conductor may be obtained by adding all the small amounts of flux (A ) through each flux
tube so that
1//=ZA1//=NWA1// ...12.9

N

W

..12.8

where, Ay is assumed to be same for each flux tube and N, is the number of flux tubes in

parallel, i.e. the number of curvilinear rectangles in parallel.
The total potential difference between the two conductors (V) may be obtained by adding all
the small amounts of potential differences (A¢) between consecutive equipotentials starting

from one conductor and finishing at the other conductor, i.e.
V=) Ag=N,A¢ ...12.10
Ny

where, Agis assumed to be same between any two consecutive equipotentials and N, is the

number of equipotentials (including the two conductors) minus one, i.e. the number of
curvilinear rectangles in series between the two conductors.
Thus capacitance per unit length of the two conductors is given by
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N N N
V. N, Ap N, Al N,
where, As=Al, considering the ratio of the lengths to be unity, i.e. considering curvilinear

squares.
Hence, determination of capacitance from the field map involves counting of curvilinear
squares in two directions, one in series between the two conductors and the other in parallel
around either conductor.

Field Mapping in Multi-dielectric Media

From eqn.(12.5), it may be seen that for the same value of electric flux per tube and same
potential difference between two consecutive equipotentials,

A—Iocg e 12,12

AS

Dielectric
Permittivity (e2)

Dielectric
Permittivity (e1)

Dielectric
Interface

Normal to
Interface

Fig.12.4 Mapping in two-dimensional configuration with multi-dielectric media

Thus in the case of a two dielectric configuration as shown in Fig.12.4, the ratio of the sides
of curvilinear element is to be made proportional to the relative permittivity of the dielectric
medium in which the field map is drawn. In other words, curvilinear rectangles are to be
used.

Moreover, the deviation of the fieldlines takes place at the boundary between the two
dielectric media, as shown in Fig.12.4, which is given for charge free dielectric media by

tanb _& ... 1213
tand, ¢,

For two-dimensional configurations comprising multi-dielectric media, the field map is first
drawn in the field region where there is only one dielectric media. Then the directions of the
fieldlines are changed at the boundary between the two dielectric media according to
eqn.(12.13). Subsequently the ratio of the sides of the curvilinear rectangles is changed as per
eqn.(12.12) and the field map is extended into the field region comprising a different
dielectric medium. In this way the field map could be obtained in configurations comprising
several dielectric media.
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Field Mapping in Axi-Symmetric Configuration

Consider a curvilinear rectangle in an axi-symmetric configuration as shown in Fig.12.5. Let
the radial distance of the centroid of the curvilinear rectangle from the axis of rotational
symmetry ber.

Dielectric
Permittivity (g)

$+Ad

Al Equipotentials

Fieldline

Axis of Symmetry
Fieldline

Fig.12.5 Field mapping in axi-symmetric configuration

Considering the flux through the rectangle to be Ay and assuming the square to be small, the
electric flux density can be taken to be uniform within the rectangle and is given by

__Ay

27T AS

or. E=_ 2V ... 1214
27T ErNAS

Alternately, electric field intensity as obtained from the potential difference between two
consecutive equipotentials, which are the two sides of the rectangle perpendicular to the
fieldlines, is given by
e A0
Al

Considering a small curvilinear rectangle, these two values of electric field intensity could be
taken as same such that

Ay _Ad
2rerAs Al

or, A—I=27Z'8|"A—¢ ....12.15
AS Ay

Considering i) homogeneous dielectric having a constant permittivity &, ii) constant amount
of electric flux per tube, i.e. Ay is constant, and iii) constant potential difference between
two consecutive equipotentials, i.e. Ag is constant,

A—Ioc r ... 12.16

AS
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Hence, to draw field maps in axi-symmetric configurations comprising a homogeneous
dielectric, the ratio of the sides of the curvilinear rectangles is to be increased in direct
proportion to the radial distance of the square from the axis of rotational symmetry.

For axi-symmetric configurations comprising multiple dielectric media, egn.(12.16) is to be
rewritten in the light of eqn.(12.15) as

A—Ioc er ... 12.17
AS

So for multi-dielectric media in axi-symmetric configurations, the ratio of the sides of the
curvilinear rectangles is to be increased not only in direct proportion to the radial distance of
the square from the axis of rotational symmetry, but also in direct proportion to the relative
permittivity of the dielectric medium in which the field map is drawn. The directions of the
fieldlines at the boundary between the two dielectric media are to be changed according to
eqn.(12.13).
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