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Fundamentals of Electric Field 
 
Introduction 
 
To quote legendary physicist Richard Feynman “Observation, reason, and experiment make 
up what we call the scientific method”. This is precisely true for electric field theory. 
Students often ask me that how you can discuss so many things about electric field when 
nobody has seen electric field. Yes, it is true that electric field cannot be directly seen. But 
observations on physical occurrences and related reasoning give theoretical understanding 
and when such understanding is validated by experimentation, then it is established that 
electric field does exist.  
 
Electric Charge 
 
Even in 17th century it was known that matters exert force on each other, which varies 
inversely as the square of the distance between them. It is the so called long range interaction, 
commonly known as gravitation. But what is the nature of interaction between two things 
when the distance between them is very small. Is it gravitation? The answer is no. Gravitation 
is very weak at that dimension. Then it must be some other force. Observation shows that it is 
analogous to gravitational force in the sense that it also varies inversely as the square of the 
distance between the two things. But it is also observed that there is a big difference between 
gravity and this short range force. In gravitation any one matter attracts another matter. But 
this is not the case in short range force. Here, dissimilar things attract and similar things repel 
each other. In other words, there are two different types of things involved in short range 
interactions. This thing, which causes the short range interaction, has been named as “electric 
charge”. It has been found that electric charge is a basic property of matter carried by 
elementary particles. Typically, electric charges are of two types: positive and negative 
charges. When the atomic structure was properly understood, it was found that the positive 
charges (primarily protons) are located at the centre of the atom, i.e. nucleus, and the negative 
charges (electrons) revolve around the nucleus.  
Experimental evidence shows that all electrons have the same amount of negative charge, 
which is also equal to the amount of positive charge of each proton. Consequently, it follows 
that charge exists in quantized unit equal to the charge of an electron or a proton (e), which is 
a fundamental physical constant. Thus electric charge of anything comes in integer multiples 
of the elementary charge, e, except for particles called quarks, which have charges that are 
integer multiples of e/3. The unit of electric charge in the SI system is coulomb (C). One 
coulomb consists of 6.241509324× 1018 natural units of electric charge, such as charge of 
individual electrons or protons. Conversely, one electron has a negative charge of 
1.60217657 × 10−19 coulomb and one proton has a positive charge of 1.60217657 × 10−19 
coulomb. Other particles (e.g. positrons) also carry charge in multiples of the electronic 
charge magnitude. However, those are not going to be discussed for the sake of simplicity. 
Electric charge is also conserved, i.e. in any isolated system or in any chemical or nuclear 
reaction; the net electric charge is constant. The algebraic sum of the elementary charges 
remains the same. In physical terms, it implies that if a given amount of negative charge 
appears in one part of an isolated system then it is always accompanied by the appearance of 
an equal amount of positive charge in another part of the system. In modern atomic theory, it 
has been proved that although fundamental particles of matter continually and spontaneously 
appear, disappear, and change into one another, they always obey the constraint that the net 
quantity of charge is preserved.  
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Electric Field Lines 
 
From logical reasoning it can be stated that if a charge is present in space, then another 
charge will experience a force when brought into that space. In other words, the effect of the 
first charge, which may also be called the source charge, extends into the space around it. 
This is known as the electric field which is caused by the source charge. If there is no charge 
in space, then there will be no electric field. If the source charge is of positive polarity and the 
test charge is of negative polarity, then the test charge will experience an attractive force. On 
the other hand, if the test charge is also of positive polarity then it will experience a repulsive 
force. If the test charge is free to move, then it will move in accordance with the direction of 
the force. The loci of the movement of the test charge within the electric field are known as 
electric lines of force or electric field lines.  
Behaviour of an electric field is conventionally analysed considering the test charge to be a 
unit positive charge. Hence, the test charge will experience repulsive force from a positive 
source charge and attractive force from a negative source charge. So the test charge will 
move away from the positive source charge and move towards the negative source charge. 
Accordingly, the directions of electric field lines are such that they originate from a positive 
charge and terminate on a negative charge, as shown in Fig.1.1. Fig. 1.1(a) shows the electric 
field lines originating from a positive source charge whose magnitude is integer (N) multiple 
of +e, while Fig.1.1(b) shows the electric field lines terminating on a negative source charge 
of same magnitude. The electric field lines are the directions of the force experienced by a 
unit positive charge +e as shown in Fig.1.1. 

+Q = 
N x +e

+e

-Q = 
N x -e

+e

(a) (b)  
Fig.1.1 Electric field lines due to (a) positive source charge and (b) negative source charge 

 
Fig.1.2 depicts the electric field lines due to a pair of positive and negative charges showing 
the field lines to be originating from the positive charge and terminating on the negative 
charge. 
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+Q = 
N x +e

-Q = 
N x -e

 
Fig.1.2 Electric field lines due to a pair of positive and negative charges 

 
According to SI unit system, one coulomb of source charge gives rise to one coulomb of 
electric field lines. 
 
Coulomb’s Law 
 
It is the law that describes the electrostatic interaction between electrically charged particles. 
It was published by the French physicist Charles Augustin de Coulomb in 1785. He 
determined the magnitude of the electric force between two point charges using a torsion 
balance to study the attraction and repulsion forces of charged particles. The interaction 
between charged particles is a non-contact force that acts over some distance of separation. 
There are always two charges and a separation distance between them as the three critical 
variables that influence the strength of the electrostatic interaction. The unit of the 
electrostatic force, like all forces, is Newton. Being a force, the strength of the electrostatic 
interaction is a vector quantity that has both magnitude and direction.  
According to the statement of Coulomb's law (i) the magnitude of the electrostatic force of 
interaction between two point charges is directly proportional to the scalar multiplication of 
the magnitudes of point charges and inversely proportional to the square of the separation 
distance between the point charges and (ii) the electrostatic force of interaction acts along the 
straight line joining the two point charges. If the two point charges are of same polarity, the 
electrostatic force between them is repulsive; if they are of opposite polarity, the force 
between them is attractive. 
It should be noted here that two conditions are to be fulfilled for the validity of Coulomb’s 
law: (i) the charges involved must be point charges and (ii) the charges should be stationary 
with respect to each other. 
Mathematically, the force between two point charges, as shown in Fig.1.3, could be written 
as follows: 
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Fig.1.3 Electrostatic forces of interaction between two point charges 

 
The distance vectors are given as 1221 rrr −=  and 2112 rrr −= , where 1r and 2r are the 
position vectors of the location of the point charges Q1 and Q2, respectively, wrt to a defined 
origin. 
When the scalar product of Q1 and ±Q2 is positive the force is repulsive and when the product 
is negative the force is attractive. 
 
Coulomb’s Constant 
 
The constant of proportionality k that appears in Coulomb's law is often called Coulomb's 
constant. In SI unit system 
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The product of Coulomb's constant and the square of the electron charge (k.e2) is often 
convenient in describing the electric forces in atoms and nuclei, since that product appears in 
electric potential energy and electric force expressions. 
 
Comparison between Electrostatic and Gravitational Forces 
 
The expression for electrostatic force as obtained from Coulomb's law bears a strong 
resemblance to the expression for gravitational force given by Newton's law for universal 
gravitation.  

2
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where, k ≈ 9×109 N.m2/C2 and G ≈ 6.67×10-11 N.m2/kg2 
Both the expressions show that the force is (i) inversely proportional to the square of the 
separation distance and (ii) directly proportional to the scalar product of the quantity that 
causes the force, i.e. electric charge in the case of electrostatic force and mass in the case of 
gravitational force. But, there are major differences between these two forces. Firstly, 
gravitational forces are only attractive, while electrical forces can be either attractive or 
repulsive. Secondly, a comparison of the proportionality constants reveals that the Coulomb's 
constant (k) is significantly greater than Newton's universal gravitational constant (G). 
Consequently, the electrostatic force between two electric charges of unit magnitude is 
significantly higher than the gravitational force between two masses of unit magnitude. 
From eqn.(1.3) it may be seen that the electrostatic force between two electric charges of 
magnitude 1C separated by a distance of 1m will be a colossal 9×109 N ! On the other hand, 
the gravitational force between two masses of magnitude 1kg separated by a distance of 1m 
will be a meagre 6.67×10-11 N ! These values clearly show the enormous difference between 
magnitudes of electrostatic and gravitational forces. 
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The comparison can also be made between the electrostatic and gravitation forces between 
two electrons separated by a given distance. Considering the charge of an electron as e 
(1.60217657 × 10−19 C) and the mass of the electron as me (9.10938291 × 10-31 kg), the ratio 
of electrostatic to gravitational forces between two electrons is given by 
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Equation 1.4 shows how strong electrostatic forces are compared to gravitational forces! If 
this reasoning is applied to the motion of particles in the universe, one may expect the 
universe to be governed entirely by electrostatic forces. However, this is not the case. The 
electrostatic force is enormously stronger than the gravitational force, but is usually hidden 
inside neutral atoms. On astronomical length-scales gravity is the dominant force, and 
electrostatic forces are not relevant. The key to understanding this paradox is that electric 
charges could be of either positive or negative polarity, whereas the masses that cause 
gravitational forces are only positive as there is nothing called negative mass. This means that 
gravitational forces are always cumulative, whereas electrical forces can cancel each other. 
For the sake of argument, consider that the universe starts out with randomly distributed 
electric charges. Initially, electrostatic forces are expected to completely dominate gravity. 
Because of the dominant electrostatic forces every positive charge tries to get as far away as 
possible from the other positive charges, and to get as close as possible to the other negative 
charges. After some time, the positive and negative charges come near enough (≈ 10-10m) to 
form close pairs. Exactly how close the charges would come is determined by quantum 
mechanics. The electrostatic forces due to the charges in each pair effectively cancel one 
another out on length-scales that are much larger than the mutual spacing of the charge pair. 
If the number of positive charges in the universe is almost equal to the number of negative 
charges, then only the gravity becomes the dominant long-range force. For effective 
cancellation of long-range electrostatic forces, the relative difference in the number of 
positive and negative charges in the universe must be extremely small. In fact, cancellation of 
the effect of positive and negative charges has to be of such accuracy that most physicists 
believe that the net charge of the universe is exactly zero. In other words, electric charge is a 
conserved quantity, i.e. the net charge of the universe can neither increase nor decrease. As of 
today, no elementary particle reaction has been discovered that creates or destroys electric 
charge.  
 
 
Effect of Departure from Electrical Neutrality 
 
The fine balance of electrostatic forces due to positive and negative electric charges starts to 
break down on atomic scales. In fact, interatomic and intermolecular forces are all electrical 
in nature. But, this is electric field on the atomic scale, usually termed as quantum 
electromagnetism. This book is about classical electromagnetism, which is electromagnetism 
on length-scales much larger than the atomic scale. Classical electromagnetism generally 
describes phenomena in which some sort of disturbance is caused to matter, so that the close 
pairing of positive and negative charges is disrupted. Such disruption allows electrical forces 
to manifest themselves on macroscopic length-scales. Of course, very little disruption is 
necessary before gigantic forces are generated, which may be explained with the help of the 
following example. 
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Fig.1.4 Lift of a copper sphere due to electrostatic force against gravity 

 
Fig.1.4 shows two copper spheres of volume 1 cubic centimetre (cc) lying on one another. 
Copper is a good electrical conductor and has one valence electron in the outermost shell of 
its atom, and that electron is fairly free to move about in the volume of solid copper material. 
The density of metallic copper is approximately 9 g/cc and one mole of copper is 63.55g. 

Thus one cc of copper contains approximately 8.5×1022 ( 2310022.6
55.63

9
×× ) copper atoms. 

With one valence electron per atom, and with the electron charge of 1.6×10-19 Coulombs, 
there are about 13,600 Coulombs of potentially mobile charge within a volume of one cc of 
copper. How much electron charge needs to be removed from two spheres of copper so that 
there is enough net positive charge on them to suspend the top sphere over the bottom? The 
force required to lift the top sphere of copper against gravity would be its weight, i.e. 0.0883 
(9×10-3×9.807)N. It is fair to assume that the net charge resides at the points of the spheres 
most distant from each other because of the charge repulsion. The radius of a sphere of 
volume one cc is 0.62 cm. So the repulsive force to be considered should be that between two 
point charges 2.48 cm apart, i.e. twice the sphere diameter apart. From Coulomb’s law 
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Compared to the total valence charge of approximately 13,600 C, this 7.75×10-8C amounts to 
removing just one valence electron out of every 175 billion copper atoms from each sphere. 
In summary, the removal of just one out of every 175 billion free electrons from each copper 
sphere would cause enough electrostatic repulsive force on the top sphere to lift it, 
overcoming the gravitational pull of the entire Earth!  
 
Force due to a System of Discrete Charges 
 
Consider N charges, Q1 through QN, which are located at position vectors 1r through Nr , as 
shown in Fig.1.5. Since the electrostatic forces obey the principle of superposition, the 
electrostatic force acting on a test charge q at position vector r is simply the vector sum of 
all of the forces from each of the N charges taken in isolation. Thus, the total force acting on 
the test charge q is given by 
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         1.6 

where, the distance vector ii rrR −= is directed from the ith charge Qi to the test charge q. 
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Fig.1.5 Force due to system of discrete charges 

 
Force due to Continuous Charge Distribution 
 
Instead of having discrete charges, consider a continuous distribution of charge represented 
by a charge density, which could be linear, surface or volume charge density, depending on 
the distribution of charge. For a continuous charge distribution, an integral over the entire 
region containing the charge is equivalent to a summation for infinite number of discrete 
charges, where each infinitesimal element of space is treated as a discrete point charge dq.  
For linear charge distribution, e.g. charge in a wire, considering linear charge density as ( )r′λ  
and the infinitesimal line element ld ′  at the position r′ ,  

( ) ldrdq ′′= λ  
For surface charge distribution, e.g. charge on a plate or disc, considering surface charge 
density as ( )r′σ  and the infinitesimal area element Ad ′  at the position r′ , 

( ) Adrdq ′′= σ  
For volume charge distribution, e.g. charge in the volume of a bulk material, considering 
volume charge density as ( )r′ρ  and the infinitesimal volume element Vd ′  at the position r′ , 

( ) Vdrdq ′′= ρ  
The force on a test charge q at position r in free space is given by the integral over the entire 
continuous distribution of charge as follows: 

( ) ∫
′−

′−
= 3

04 rr

rrdqqrF
επ

         1.7 

In eqn.(1.7) the integration is line, surface or volume integral according to the nature of 
charge distribution. The integral is over all space, or, at least, over all space for which the 
charge density is non-zero. 
 
Electric Field Intensity 
 
At this juncture, it is useful to define a vector field ( )rE , called the electric field intensity, 
which is the force exerted on a unit test charge of positive polarity located at position vector 
r . Then, the force on a test charge could be written as 

( ) ( )rEqrF =            1.8 
The electric field intensity could be written from eqn.(1.6) as 
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or, from eqn.1.7 as 
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The electric field lines from a single charge Q located at a given position are purely radial 
and are directed outwards if the charge is positive or inwards if it is negative, as shown in 
Fig.1.1. So the electric field intensity at any point located at a radial distance r from the 
source charge Q will be the force experience by a unit test charge of positive polarity at that 
point and is given by 

( ) ru
r

QrE ˆ
4 2

0πε
=          1.11 

The unit of electric field intensity as per the above definition is N/C. However, the practical 
unit of electric field intensity is a different one and will be discussed in a later section. 
 
Electric Flux and Electric Flux Density 
 
Consider the case of air coming in through a window. The amount of air that comes through 
the window depends upon the speed of the air, the direction of the air and the area of the 
window. The air that comes through the window may be called the “air flux”.   
Similarly, the amount of electric field lines that pass through an area is the electric flux 
through that area. Consider the case of a source point charge of positive polarity as shown in 
Fig.1.1(a). If the source charge magnitude is Q Coulombs, then the total amount of electric 
field lines coming out of the source charge will be also Q Coulombs. Now, if a fictitious 
sphere of radius r is considered such that the source charge is located at the center of the 
sphere, then the electric flux through the surface of the sphere will be Q Coulombs, as the 
surface of the sphere completely encloses the source charge and all the electric field lines 
coming out radially from the source point charge passes through the spherical surface. 
Electric flux is typically denoted by ψ . 
Electric flux density is then defined as the electric flux per unit area normal to the direction of 
electric flux. In the case of a point charge the electric field lines are directed radially from the 
source charge and hence the electric field lines are always normal to the surface of the sphere. 
Hence, for a point source charge of magnitude Q Coulombs, the electric flux that passes 
through the spherical surface area of magnitude 4π r2 is Q. Then the electric flux density ( D ) 
at a radial distance r from the point charge is given by 

( ) ru
r

QrD ˆ
4 2π

=          1.12 

From eqns. (1.11) and (1.12), it may be written that 
( ) ( )rErD 0ε= , when the medium is free space 

or,  ( ) ( )rErD rεε0= , for any particular medium of relative permittivity εr.  1.13 
Electric flux density is a vector quantity because it has a direction along the electric field 
lines at the position where electric flux density is being computed.  
Eqn.(1.13) is known as one of the basic equations of electric field theory. 
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However, it is not necessary that electric flux will always be normal to the area under 
consideration. In such cases, the component of the area that is normal to electric flux has to 
be taken for computing electric flux density. Fig.1.6 shows such a case, where an electric flux 
of magnitude ψ passes through an area of magnitude A, which is not normal to the direction 
of electric flux.  

θ

Area A

Electric Flux
(ψ)

Normal

vector (un)

θ

Electric Flux 
Density 

= ψ / A cosθ

ur

 
Fig.1.6 Pertaining to the area related to electric flux density 

 
With reference to Fig.1.6, electric flux and electric flux density are related as  

θψ cosAD=          1.14 

Again, as depicted in Fig.1.6, θcosˆ.ˆ =nr uu  

So, from eqn.(1.14),  ADuAuDuuAD nrnr .ˆ.ˆˆ.ˆ ===ψ     1.15 

Eqn.(1.15) presents an important idea of introducing an area vector, which is a vector of 
magnitude equal to the scalar magnitude of the area under consideration but it has a direction 
normal to the area under consideration. In the case of closed surfaces, area vector is 
conventionally taken in the direction of the outward normal. For an open surface, any one 
normal direction can be taken as positive, while the opposite normal direction is to be taken 
as negative. 
 
Electric Potential 
 
Consider that a test charge of magnitude q is located at a given position within an electric 
field produced by a system of charges. The test charge will experience a force due to the 
source charges. If the test charge moves in the direction of the field forces, then the work is 
done by the field forces in moving the test charge from position-1 to position-2. In other 
words, energy is spent by the electric field. Hence, the potential energy of test charge at 
position-2 will be lower than that at position-1. On the other hand, if the charge is moved 
against the field forces by an external agent, then the work done by the external agent will be 
stored as potential energy of the test charge. Hence, the potential energy of the charge at 
position-2 will be higher than that at position-1. Here, it is to be noted that the force 
experienced by the test charge within an electric field is dependent on the magnitude of the 
test charge. Hence, the potential energy of the charge at any position is dependent on its 
magnitude and the distance by which it moves within the electric field. 
The concept of electric potential is introduced to make it a property which is purely 
dependent on the location within an electric field and is independent of the test charge. In 
other words, it is a property of the electric field itself and not related to the test particle. 
Hence, electric potential (φ) at any point within an electric field is defined as potential energy 
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per unit charge at that point and hence it is a scalar quantity. The unit of electric potential is 
Volt (V), which is equivalent to Joules per Coulomb (J/C). It is interesting to note that 
electric field intensity is defined as force per unit charge and electric potential is defined as 
potential energy per unit charge. 
However, it is also practically important to note that absolute values of electric potentials are 
not physically measurable, only difference in potential energy between two points within an 
electric field can be physically measured, i.e. only potential difference between two points 
within an electric field is measurable. The work done in moving a unit positive charge from 
one point to another within an electric field is equal to the difference in potential energies and 
hence difference in electric potentials at the two points. 

E

1

2
dl

1

2

+1

+1

+1

l1

l2

(a) (b)
 

Fig.1.7 Pertaining to the definition of electric potential 
 
As shown in Fig.1.7(a), consider that a unit positive charge is moved from point 1 to point 2 
by a small distance dl. The force experience by the unit positive charge at point 1 is the 
electric field intensity E . Then the potential difference between the ending point 2 and 
starting point 1 is given by 

dlE .12 −=− φφ          1.16 
In eqn.(1.16) dlE . is the work done by the field forces in moving a unit positive charge from 
point 1 to point 2. In this case the potential energy of point 2 will be lower than that of point 1 
and hence the potential difference ( )12 φφ − will be negative. For this purpose, the minus sign 
is introduced on the right hand side of eqn.(1.16). 
As shown in Fig.1.7(b), if the unit positive charge moves through a certain distance l within 
an electric field from point 1 to point 2, then the magnitude as well as direction of E  may not 
be same at every location along the path traversed by the unit positive charge. Hence, in such 
a case, the potential difference between point 2 and point 1 is evaluated by integrating the 
RHS of eqn.(1.16) over the line l from point 1 to point 2 as given in eqn.(1.17). 

∫−=−
2

1
12 .dlEφφ          1.17 

Eqn.(1.17) is known as the integral form of relationship between electric field intensity ( E ) 
and electric potential (φ). 
If the point 1 is chosen at an infinite distance wrt to the source charges causing the electric 
field, then the potential energy at point 1 due to the sources charges will be zero and hence 
the electric potential φ1 will be zero. Then eqn.(1.17) can be rewritten as 

∫
∞

−=
2

2 .dlEφ           1.18 
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Eqn.(1.18) shows that the electric potential at a point in an electric field can be defined as the 
work done in moving a unit positive charge from infinity to that point. Since work done is 
independent of the path traversed between the two end points, hence electric potential is a 
conservative field. It is important to note here that the reference point is arbitrary and is fixed 
as per nature and convenience of the problem. For most of the problems taking the reference 
point at infinity is a sound choice. However, for many others (e.g. long charged wire) a 
different choice may prove more useful. From eqn.(1.18) the practical unit of electric field 
intensity is obtained as Volt per unit length, e.g. V/m. 
It is also evident from eqn.(1.18) that the work done in moving a unit positive charge from 
infinity to a given point within an electric field could be same for several points within that 
electric field depending upon the distribution of electric field intensity vectors within the field 
region. Hence, electric potential of all such points will be same. If all these points are joined 
together then one may get a line or a surface on which every point has the same electric 
potential. Such a line or surface is called an equipotential. 
Fig.1.8 shows typical examples of equipotentials in two dimensional systems, where these 
will be lines. Fig.1.8(a) shows equipotential lines and electric field lines for an electric field 
for which E  is constant everywhere, which is called uniform field. Fig.1.8(b) shows 
equipotentials and electric field lines for a positive polarity point charge. In this case, E  
varies with position and is called non-uniform field. In the case of three-dimensional systems, 
such equipotentials will be surfaces. 
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Fig.1.8 Examples of equipotentials: (a) Uniform field, (b) Non-uniform field 

 
 
Equipotential vis-à-vis Electric Field Line 
 
Consider an equipotential of any electric field as shown in Fig.1.9. At any point P on this 
equipotential consider that the electric field line makes an angle θ with the tangent to the 
equipotential at that point. If an elementary length dl is considered along the equipotential at 
the point P, then the potential difference between the two extremities of dl will be given 
by θcosdlE . But if the elementary length dl lies on the equipotential, then there should not 

be any potential difference across dl. Again, the magnitude of electric field intensity is not 
zero at P and dl is also a non-zero quantity. Hence, the potential difference across dl could 
only be zero if cosθ is zero, i.e. if θ is 900. 
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Fig.1.9 Equipotential vis-à-vis electric field line 

 
Thus a basic constraint of electric field distribution is that the electric field lines are always 
normal to the equipotential surface. A practical example of this constraint is that the electric 
field lines will always leave or enter conductor surfaces at 900. This criterion is often used to 
check the accuracy of electric field computation by numerical techniques. The other 
properties of equipotential are (i) the tangential component of the electric field along the 
equipotential is zero and (ii) no work is required to move a charged particle along an 
equipotential. 
 
Electric Potential of Earth Surface 
 
The potential of earth surface could be determined with the help of the discussion of the 
previous section. Consider that a system of source charges has created an electric field over a 
region located in New York, USA. Now if one considers a test point on earth surface located 
in New Delhi, India, then the distance of this test point wrt the source charges is infinite. 
Hence, electric potential of the test point on earth surface in India will be zero due to the 
stated source charges at New York. Now, earth is an excellent conductor and in the absence 
of any conductive current the earth surface is an equipotential. So if the test point on the earth 
surface located in India is at zero potential, then all the points on the earth surface will be at 
zero potential. Extending the above mentioned logic, one may see that for any set of source 
charges located anywhere within this world, there will always be a point on the earth surface 
which will be at infinite distance wrt to the source charges. Hence, the earth surface potential 
will always be zero due to any set of source charges. 
 
Electric Potential Gradient 
 
It is defined as the positive rate of change of electric potential with respect to distance in the 
direction of greatest change. At any point in a field region it will be very difficult to 
comprehend the direction of greatest change. To understand it conveniently, consider that the 
equipotentials are known within the field region. Fig.1.10 shows three such equipotentials 1, 
2 and 3. Then from the point P on the equipotential 2 having an electric potential of φ, if one 
moves to any point on the equipotential having an electric potential φ+∆φ, the potential 
difference is +∆φ. But the minimum distance between the equipotentials 1 and 2 is the normal 
distance ∆n. Hence, the greatest rate of change will be along the normal to the equipotential. 
Moreover, there are two directions of the normal to the equipotential 2 at the point P. Electric 
potential gradient is defined to be the greatest rate of change of potential in the positive sense. 
Hence, with reference to Fig.1.10, the electric potential gradient at the point P will be given 
by 
Electric Potential Gradient (grad φ) = (∆φ / ∆n)     1.19 
where, ∆φ is the potential difference and ∆n is the normal distance between the two 
equipotentials 1 and 2 of Fig.1.10.  
Since, electric potential gradient has magnitude along with a specific direction, hence is a 
vector quantity. It is a spatial derivative of electric potential. 
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φ+∆φ

φ−∆φ
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∆n

P

Normal

 
Fig.1.10 Electric potential gradient and electric field intensity 

 
Electric Potential Gradient and Electric Field Intensity 
 
As discussed in section 1.7.1, electric field line or E  will be directed along the normal to the 
equipotential. But as there are two normal directions to the equipotential, the question is E  
will be in which direction. In this context, recall that if one moves along the direction of 
electric field then the potential energy decreases and hence the electric potential also 
decreases in the direction of electric field or E . So with reference to Fig.1.10, E  will act 
from equipotential 2 to equipotential 3 at the point P, i.e. E  will act along the direction of 
decreasing potential. Again, when one moves from equipotential 1 to equipotential 2 along 
the normal distance ∆n as shown in Fig.1.10, then the potential drop is ∆φ and the work done 
by the field forces is given by nE ∆ . Hence,  

nE ∆=∆φ   or, 
n

E
∆
∆

=
φ         1.20 

So, from eqns. (1.19) and (1.20) it may be seen that the magnitudes of E  and gradφ at the 
point P are the same. But, gradφ acts along the direction of increasing potential and E  acts 
along the direction of decreasing potential and both gradφ and E  act along the normal to the 
equipotential at the point P. Therefore, it could be concluded that 

φgradE −=           1.21 

E

1

2
θ

∆l

 
Fig.1.11 Pertaining to the relationship of electric potential gradient and electric field intensity 
 
As shown in Fig.1.11, the potential difference (φ1-φ2) between two points 1 and 2 within a 
field region is given by 

lE ∆−=∆ .φ  or, θφ coslE ∆−=∆       1.22 

where, l∆  is the distance vector from point 1 to point 2 and θcosE is the component of E  

along l∆ . 
Now, if l∆  lies along the direction of x-axis, then eqn.(1.22) can be rewritten in terms of the 
component of E  along the x-direction, i.e. Ex, and the distance ∆x, as 
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x
Ex ∆

∆
−=

φ           1.23   

Instead of discrete variation, for continuous variation of electric potential in x-direction the 
eqn.(1.23) could be written in partial derivative form as 

x
Ex ∂

∂
−=

φ           1.24 

Similarly, in the y- and z-directions, 
y

Ey ∂
∂

−=
φ  and 

z
Ez ∂

∂
−=

φ  

Thus, the electric field intensity vector in terms of the three components could then be written 
as 

φφφφ








∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

−
∂
∂

−
∂
∂

−=++= k
z

j
y

i
x

k
z

j
y

i
x

kEjEiEE zyx
ˆˆˆˆˆˆˆˆˆ   1.25 

On the RHS of eqn.(1.25), the vector operator within the parenthesis is the ‘del’ operator, ∇ . 
Thus, from eqn.(1.25) φ∇−=E       1.26 
The ∇  operator is an interesting operator. When it acts on a scalar quantity, the result is a 
vector quantity and physically it results into the spatial derivative of the scalar quantity, i.e. 
gradient of the scaler quantity. In this case when ∇  acts on scalar electric potential, it results 
into the vector quantity electric potential gradient. 
 
Problem 1.1 
The potential field in a medium having relative permittivity of 3.5 is given by φ = 4x3y – 5y3z 
+ 3xz3 V. Find the electric field intensity at the point (0.1,0.5,0.2)m. 
Solution: 

32 312 zyx
x

Ex −−=
∂
∂

−=
φ  Hence, mVEx /084.02.035.01.012 32

)2.0,5.0,1.0(
−=×−××−=  

zyx
y

Ey
23 154 +−=

∂
∂

−=
φ  Hence, mVEy /746.02.05.0151.04 23

)2.0,5.0,1.0(
=××+×−=  

23 95 xzy
z

Ez −=
∂
∂

−=
φ  Hence, mVEz /589.02.01.095.05 23

)2.0,5.0,1.0(
=××−×=  

So, mVkjiE /ˆ589.0ˆ746.0ˆ084.0
)2.0,5.0,1.0(

++−=  

Hence, mVE /954.0
)2.0,5.0,1.0(

=  

 
 
 
Problem 1.2 
The potential field at any point in a space containing a dielectric medium of εr = 5 is given by 
φ = 7x2y – 3y2z – 4z2x V, where x, y and z are in meters. Calculate the y-component of electric 
flux density at the point (1,4,2) m. 
Solution: 

yzx
y

Ey 67 2 +−=
∂
∂

−=
φ   Hence, mVEy /4124617 2

)2,4,1(
=××+×−=  

So, 212
)2,4,1(

/815.110854.8541 mnCDy =×××= −  
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Problem 1.3 
The potential field in a space containing a dielectric medium of εr1 is given by φ1 = 7xy – 3yz 
– 4zx V, and another potential field in a space containing a dielectric medium of εr2 is given 
by φ2= -2x – 7yz + 5zx V, where x, y and z are in meters. If the x-component of electric flux 
density at the point (1,2,2)m is same in both the fields, then find the ratio of εr1 and εr2. 
Solution: 

zy
x

Ex 471
1 +−=

∂
∂

−=
φ  Hence, mVEx /62427

)2,2,1(1 −=×+×−=  

z
x

Ex 522
2 −=

∂
∂

−=
φ   Hence, mVEx /8252

)2,2,1(2 −=×−=  

Now,  2
011011 /6 mCED rxrx εεεε −=××=  

and  2
022022 /8 mCED rxrx εεεε −=××=  

As per the problem statement,  21 xx DD = , or, 0201 86 εεεε rr −=−  

Hence, 333.1
2

1 =
r

r

ε
ε  

 
Field due to Point Charge 
 
As shown in Fig.1.12, due to a point charge +Qi the electric field intensity at any point P at a 
distance r from the charge is given by 

r
i

r u
r

QE ˆ
4 2

0επ
=  

+Qi

rA
rB

r

ur

dl

A
Bθ

(xi,yi,zi)

(x,y,z)
P

 
Fig.1.12 Field due to a point charge 

 
If the point P is moved from point A to point B as shown in Fig.1.12, then the potential 
difference will be 









−=−=− ∫

AB

i
r

r
r

i
AB rr

Qdlu
r

QB

A

11
4

.ˆ
4 0

2
0 επεπ

φφ      1.27 

If the point A is located at infinity, then the potential of point B will be 

B

i
B r

Q

04 επ
φ =           1.28 

 
If the point charge +Qi is located at (xi,yi,zi) and the point B is located at (x,y,z), then  

( ) ( ) ( )kzzjyyixxr iiiB ˆˆˆ −+−+−=        1.29 

such that ( ) ( ) ( )222
iiiB zzyyxxr −+−+−=  and  

B

B
rB

r
ru =ˆ  
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The electric field intensity at the point B will then be given by  

( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( ) 





 −+−+−

−+−+−
−+−+−

=
222222

0

ˆˆˆ

4
iii

iii

iii

i
B

zzyyxx

kzzjyyixx
zzyyxx

QE
επ

 1.30 

Hence, the three components of electric field intensity at the point B are (dropping the suffix 
B for the sake of generalization)  

( )
( ) ( ) ( )

3
222

04 




 −+−+−

−
=

iii

ii
x

zzyyxx

QxxE
επ

 

( )
( ) ( ) ( )

3
222

04 




 −+−+−

−
=

iii

ii
y

zzyyxx

QyyE
επ

     1.31 

( )
( ) ( ) ( )

3
222

04 




 −+−+−

−
=

iii

ii
z

zzyyxx

QzzE
επ

 

In the presence of multiple point charges, at any point electric potential will be the scalar sum 
of electric potentials and electric field intensity will be the vector sum of electric field 
intensities at that point due to all the charges. In other words, the effect of all the charges will 
be superimposed at any point within the field region. 
 
Problem 1.4 
A point charge Q1 = +1.0µC is located at (3,1,1)m and another point charge Q2 = -0.5µC is 
located at (0.5,2,1.5)m. Find the magnitude and polarity of the point charge located at 
(1,2,2)m for which the z-component of electric field intensity will be zero at the origin. 
Medium is air. 
Solution: 
For the point charge-1:  
Distance vector to the origin )ˆˆˆ3(ˆ)10(ˆ)10(ˆ)30(1 kjikjirO −−−=−+−+−= m 

So, mrO 317.31 =  

Electric field intensity at the origin:  

( ) mVkjiAkjiEO /ˆ0274.0ˆ0274.0ˆ0822.0
317.3

ˆˆˆ3
14

10
3

0

6

1 −−−=
−−−

×
××

=
−

επ
,  

where 
0

6

14
10

επ ××
=

−

A  

 
 
For the point charge-2:  
Distance vector to the origin )ˆ5.1ˆ2ˆ5.0(ˆ)5.10(ˆ)20(ˆ)5.00(2 kjikjirO −−−=−+−+−= m 

So, mrO 549.22 =  

Electric field intensity at the origin:  

( ) mVkjiAkjiEO /ˆ045.0ˆ06.0ˆ015.0
549.2

ˆ5.1ˆ2ˆ5.0
14

105.0
3

0

6

2 ++=
−−−

×
××

×−
=

−

επ
 

So, the z-component of electric field intensity at the origin due to point charges 1 and 2 is  
(-0.0274 + 0.045)A = 0.0176A V/m 
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For the point charge-3: Let the magnitude of the charge be Q3 µC. 
Distance vector to the origin )ˆ2ˆ2ˆ(ˆ)20(ˆ)20(ˆ)10(3 kjikjirO −−−=−+−+−= m 

So, mrO 33 =  

Electric field intensity at the origin:  

( ) mVQkjiAkjiQEO /ˆ074.0ˆ074.0ˆ037.0
3

ˆ2ˆ2ˆ
14
10

33
0

6
3

3 −−−=
−−−

×
××

×
=

−

επ
,  

If the resultant values of z-component of electric field intensity at the origin is to be zero due 
to the three point charges, then 

CQorAAQ µ238.0,,00176.0074.0 33 ==+−  
 
Problem 1.5 
A right isosceles triangle of side 1m has charges +1nC, +2 nC and −1nC arranged on its 
vertices, as shown in Fig.1.13. Find the magnitude and direction of electric field intensity at 
the point P, which is midway between the line connecting the +1nC and -1nC charges. 
Medium is air. 

+1nC

- 1nC+2nC 1m

1m

(1/√2)m

(1/√2)m

P

36V/m

18V/m
Attractive

18V/m
Repulsive

Resultant Field Intensity

x-axis

y-axis

(1/
√2)m

A

CB

 
Fig.1.13 Pertaining to Problem 1.5 

Solution: 
Consider that a unit positive test charge is located at the point P. 
The distance of this test charge from +1nC is (1/√2)m.  

So electric field intensity at P due to +1nC is mV /18

2
110854.84

10
2

12

9

=







××× −

−

π
 

and it acts along the line AC shown in Fig.1.13 from P to C, as it is a repulsive force on the 
test charge located at P. 
The distance of the test charge from -1nC is also (1/√2)m. 
So electric field intensity at P due to -1nC is also 18 V/m and it also acts along the line AC 
shown in Fig.1.13 from P to C, as it is an attractive force on the test charge located at P. 
The distance of this test charge from +2nC is also (1/√2)m.  

So electric field intensity at P due to +2nC is mV /36

2
110854.84

102
2

12

9

=







×××

×

−

−

π
 

and it acts along the line BP shown in Fig.1.13 from B to P, as it is a repulsive force on the 
test charge located at P. The line BP is perpendicular to the line AC. 
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Hence, the electric field intensity acting along AC from P to C is 36V/m and that acting along 
BP from B to P is also 36V/m and these two are normal to each other. 
So, the resultant electric field intensity at the point P is mV /91.503636 22 =+  
It will make an angle of 450 wrt the line AC. In other words, it will act along the x-axis in the 
positive sense of the axis. 
 
Problem 1.6 
An α-particle with a kinetic energy of 1.5 MeV is projected towards a stationary nucleus of 
Platinum, which has 78 protons. Determine the distance of closest approach of the α-particle. 
Neglect the motion of the nucleus. 
Solution: 
The α-particle is positively charged. Hence, it experiences repulsive force from the nucleus 
and decelerates as it approaches the nucleus. At the closest approach point it stops before 
being repulsed back. At this point of closest approach all its kinetic energy is converted to 
potential energy. 
Initial kinetic energy of the α-particle = 1.5 MeV = 1.5×106×1.602×10-19J = 2.403×10-13J 
Let, the distance of closest approach be d meters. 
An α-particle has a charge of +3.204×10−19C. The nucleus of Platinum has charge of 
(78×1.602 × 10−19)C = +124.956×10−19C 
The electric potential at a distance of d from the Platinum nucleus due to all the protons is 

V
dd

7

12

19 10123.1
10854.84

10602.178 −

−

− ×
=

×××
××

π
 

Hence, the potential energy of the α-particle at a distance d from Platinum nucleus will be 

J
d

19
7

10204.310123.1 −
−

××
×  = J

d

2610598.3 −×  

Equating this potential energy to the initial kinetic energy of 2.403×10-13J,  d = 1.497×10-13m 
 
Field due to Uniformly Charged Line 
 
Fig.1.14 shows a line charge of uniform charge density λ. As a practical example, it may be 
considered to be a non-conducting rod which is uniformly charged. The length of the charge 
is L. For the sake of simplicity, the field is computed at a point P which located on the line 
perpendicular to the line charge and passing through the midpoint of the charge. The normal 
distance of the point P from the line charge is y. For the purpose of field computation, the 
origin is considered to be located at the mid point of the line charge as shown in Fig.1.14. 

O
+L/2- L/2 x-axis

y-axis

x dx

y R

P

z-axis

λ

θ

dEP dEP

θ

 
Fig.1.14 Field due to a uniformly charged line 
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Consider an elementary length of charge dx located at distance x from the origin. Then the 
charge on this elementary length is dq = λdx and it may be considered as a point charge.  
Hence, the electric potential at the point P due the elementary charge dq is given by 

( )22
00 44 yx

dx
R

dqd P
+

==
επ

λ
επ

φ  

So, the potential at P due to the entire line charge will be 

( ) ( )[ ] 2/

2/
22

0

2/

2/
22

0

ln
44

Lx

Lx

L

L
P yxx

yx
dx +=

−=

+

−

++=
+

= ∫ επ
λ

επ
λφ  

or, 
)2/()2/(
)2/()2/(ln

4 22

22

0 LyL
LyL

P
−+

++
=

επ
λφ       1.32 

As electric potential at the point P is dependent only on y, hence electric field intensity at the 
point P will have only the y-component, which will be given by 















++
−

−++
=

∂
∂

−=
)2/()2/(

1
)2/()2/(

1
)2/(4 222222

0 LyLLyLyL
y

y
E P

yP επ
λφ  

or, 
22

0 )2/(4 yLy
LEyP

+
=

επ
λ        1.33 

The direction of electric field intensity at the point P along the y-axis can be explained with 
the help of Fig.1.14. For the elementary length of charge dx on the RHS of the origin O, 
another elementary length of charge can be assumed to be there at the same distance x from 
the origin on the LHS of the origin. Then the electric field intensity at the point P due to these 
two elementary charges will be same in magnitude, say dEp. But they will be directed along 
the distance vectors from the elementary charges to the point P as shown in Fig.1.14. They 
will make the same angle θ with the y-axis. Hence the x-components of these two field 
intensity vectors dEp at the point P will cancel each other and only the y-component will be 
present, as the y-components of dEp vectors will be additive at the point P. 
 
Field due to Uniformly Charged Ring 
 
Consider a uniformly charged ring of radius a, as shown in Fig.1.15. The uniform charge 
density is λ. As a practical example, it may be considered to be a non-conducting annular 
strip of very small width which is uniformly charged. To determine the electric potential at 
the point P located on the axis of the ring at a height of z from the plane of the ring, consider 
an elementary arc length adθ as shown in Fig.1.15. Then this elementary arc length will have 
a charge dq=λadθ and it may be considered as a point charge.  
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Fig.1.15 Field due a uniformly charged ring  

 
Hence, the electric potential at the point P due the elementary charge dq is given by 

( )22
00 44 za

ad
R

dqd P
+

==
θ

επ
λ

επ
φ  

So, the potential at P due to the entire ring charge will be 

( )∫ +
=

π θ
επ

λφ
2

0
22

04 za
ad

P         1.34 

In the integral of eqn.(1.34), it may be seen that as θ is varied from 0 to 2π along the ring, the 
distance R to the point P from any point on the ring always remains the same, i.e. ( )22 za + . 
Hence, this integral is only over θ. Hence, 

( ) ( )22
0

22
0 2

2
4 za

a
za

a
P

+
=

+
=

ε
λπ

επ
λφ       1.35 

Eqn.(1.35) shows that electric potential at the point P is dependent only on z, hence electric 
field intensity at the point P will have only the z-component, which will be given by 

( ) 2/322
02 za

za
z

E P
zP

+
=

∂
∂

−=
ε
λφ        1.36 

With the help of Fig.1.15, it can be explained why the resultant electric field intensity at the 
point P is directed along the z-axis. Similar to the case of uniformly charged line, for any 
elementary arc length adθ, another elementary arc length adθ can be assumed to be located 
diametrically opposite to the first elementary arc length. Then the electric field intensity at 
the point P due to these two elementary arc lengths will be same in magnitude, say dEp. But 
these two field intensity vectors of magnitude dEp will act along the distance vectors from the 
two elementary arc lengths to the point P, as shown in Fig.1.15. It is obvious that these two 
vectors will make the same angle with the three axes. Hence, considering the directions of 
these two vectors, it can be seen that the components of electric field intensity in x and y-
directions will cancel each other, while the z-components will be additive in nature. 
Therefore, the net electric field intensity at the point P due to the ring charge will have only z-
component. 
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Field due to Uniformly Charged Disc 
 
Consider a uniformly charged disc of radius a having a surface charge density σ, as shown in 
Fig.1.16. As a practical example, it may be considered to be a non-conducting disc which is 
uniformly charged. Point P is located on the axis of the disc at a height z from the plane of the 
disc. For computing the electric potential at the point P, consider an annular strip of radius dr 
at a radius r, as shown in Fig.1.16. Then take a small arc segment of angular width dθ of this 
annular strip. Then this elementary surface of area dA=rdθdr will have an elementary charge 
dq=σdA=σrdθdr. This elementary charge dq can be considered as a point charge. 
Hence, the electric potential at the point P due the elementary charge dq is given by 

( )22
00 44 zr

drrd
R

dqd P
+

==
θ

επ
σ

επ
φ  

So, the potential at P due to the entire annular strip of charge of radius r will be 

( ) drr
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d
P


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
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



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Fig.1.16 Field due to a uniformly charged disc 

 
because, when θ varies from 0 to 2π along the annular strip of radius r, then the distance R to 
the point P from any point on this strip remains the same, i.e. ( )22 zr + , and the radial 
distance from the axis of the disc also remains the same, i.e. r. Hence the integration of 
eqn.(1.37) is carried out over θ only. Therefore, 

( ) ( )22
0

22
0 2

2
4 zr

rdr
zr

rdr
P

+
=

+
=′

ε
σπ

επ
σφ  

Thus, the potential at P due to the entire disc of radius a will be 
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=
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0 222 ε
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Eqn.(1.38) shows that electric potential at the point P is dependent only on z, hence electric 
field intensity at the point P will have only the z-component, which will be given by  

( )











+
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∂
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−=
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0
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E P
zP ε

σφ        1.39 
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The charged disc comprises large number of annular strips, as shown in Fig.1.16. Each 
annular strip of very small radial width dr can be considered as a ring charge of uniform 
charge density. In the previous section, it has been discussed that the electric field intensity 
due a ring charge at any point located on the axis of the ring has only z-component. Hence, 
the electric field intensity at the point P of Fig.1.16 due to large number of co-axial ring 
charges representing the annular strips of charges will also have only z-component as given 
by eqn.(1.39). 
From eqn.(1.38) it may be seen that the electric potential at the centre of the disc is finite. 

Putting z=0 in eqn(1.38), 
02ε

σφ a
O =  

The total charge on the entire disc is Q = πa2σ. Hence,  
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Eqn.(1.40) shows that the electric potential at the centre of the disc is equivalent to twice the 
work done to bring a unit positive charge from infinity to the circumference of the disc (r=a) 
when the entire charge of the disc is assumed to be concentrated as a point charge at the 
centre. 
When z is very large compared to a, then  
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Then from eqn.(1.38), 
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When the point P is located at a very large distance from the disc of finite radius a, then the 
disc could be considered to be a point charge of magnitude Q. Eqn. (1.41) is the expression 
for potential at a point located at distance z from a point charge of magnitude Q. 
The significance of the above discussion is that the accuracy of field computation for any 
given charge distribution can be checked by choosing a point P which is located sufficiently 
far away from the charge distribution under consideration. If the charge distribution is of 
finite extent, then the electric field should behave as if the charge distribution is like point 
charge, and decreases with the square of the distance. 
 
Problem 1.7 
A circular disc of charge of radius 1m having a uniform charge density σ = +1nC/m2 lies in 
the z=0 plane, with centre at the origin. There is also a point charge of -0.4nC at the origin. 
Find the magnitude and polarity of uniform charge density of a circular ring of charge of 
radius 1m lying in the z=0 plane, with centre at the origin, which would produce the same 
electric field intensity at the point (0,0,6)m as that due to the combined effect of the disc and 
point charges. Medium is air. 
Solution: 
As stated, the point P is located at (0,0,6)m. According to the problem statement, the point P 
lies on the axis of the disc as well as on the axis of the ring. 
Hence, for the disc charge located in the x-y plane having centre at the origin:   
σ = +1nC/m2, a = 1m and z = 6m. 
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Again, for the point charge located at origin: Q = -0.4nC, r = 6m 

mVE PoP /314.0
610854.814

104
212

10

int −=
××××

×−
= −

−

−  

Let the uniform charge density of the ring charge be λ C/m. 
Then, for the ring charge located in x-y plane having centre at the origin: a = 1m and z = 6m 

( ) mVE RingP /10505.1
61
61

10854.812
9

2/32212 λλ
××=

+

×
×××

= −−  

As per the statement of the problem: EP-ring = EP-disc + EP-Point 
or, 454.0314.0768.010505.1 9 =−=×× λ  
So, λ = 0.302 nC/m of positive polarity. 
 
Problem 1.8 
Consider a ring charge of radius 10cm and uniform charge density of λ C/m and also a disc 
charge of radius 15cm and uniform charge density σ C/m2. Both the two charges are placed 
in the x-y plane with their centre at the origin. If the electric field intensity at a point of height 
20cm lying on the z-axis is same due the ring and disc charges individually, then find the 
ratio of λ and σ. Relative permittivity of the medium is 2.1. 
Solution: 
The point P is located at (0,0,0.2)m. Hence, it is located on the axis of both the ring and disc 
charges. 
For the ring charge: a = 0.1m and z = 0.2m 
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2.01.0
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For the disc charge: a = 0.15m and z = 0.2m 
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But as per the problem: EP-Ring = EP-disc 
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Gauss’s Law and Related Topics 
 
Introduction 
 
German mathematician and physicist Karl Friedrich Gauss published his famous flux 
theorem in 1867, which is now well known in physics as Gauss’s Law. It is one of the basic 
laws of classical field theory. Gauss's Law is a general law that can be applied to any closed 
surface. With the help of Gauss’s law the amount of enclosed charge could be assessed by 
mapping the field on a surface outside the charge distribution. By the application of Gauss' 
law the electric field in many practical arrangements could be evaluated by forming a 
symmetric surface, commonly known as Gaussian surface, surrounding a charge distribution 
and then determining the electric flux through that surface. 
In electric field theory, distinction is made between free charge and bound charge. Free 
charge implies a charge that is free to move over distances large as compared to atomic scale 
lengths. Free charge typically comes from electrons, e.g. in the case of metals, or ions, or in 
the case of aqueous solutions. Bound charge implies charges of equal magnitude but opposite 
signs that are held close to each other and are free to move only through atomic scale lengths. 
Bound charges arise in the context of polarizable dielectric materials. Typical example of 
bound charge is the positive charge of an atomic nucleus and the negative charge of its 
associated electron cloud. The microscopic charge displacements in dielectric materials are 
not as dramatic as the rearrangement of charge in a conductor, but their cumulative effects 
account for the characteristic behaviour of dielectric materials. Typically the detailed effect 
of bound charge is represented through electrical permittivity of dielectric materials, which 
will be discussed in a later chapter. The Gauss's law, as discussed in this chapter, is in terms 
of electric flux and the free charge only. 
 
 
 
Useful Definitions and Integrals 
 
Electric Flux through a Surface 
 
Consider that the total flux through the surface S of area A needs to be evaluated, as shown in 
Fig.2.1. The first important point to be noted here is that the electric flux density at different 
locations on the surface S may not be the same. So the total flux through the surface S has to 
be computed by subdividing the entire surface into large number of smaller surfaces, such 
that over each small surface area the electric flux density vector is uniform. As shown in 
Fig.2.1, for any small surface area dA, the area vector Ad


and the electric flux density vector 

D


 could be along different directions. Then the electric flux through the small area dA is 
given by AdD


.  

Then the total flux through the surface S is given by the summation ...... 2211 ++ AdDAdD


 
When the sizes of the individual areas become infinitesimally small, then the total flux 
through the surface S is given by the integral  ∫∫∫ = AdDAdD

S


..    ….. 2.1 
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dA1

D1

D2
dA2

 
Fig.2.1 Evaluation of electric flux through a surface 

 
Charge within a Closed Volume 
 
Consider that the total charge within the volume V enclosed by the surface S needs to be 
evaluated, as shown in Fig.2.2. Here also it is to be kept in mind that the distributed charge 
distribution may not be uniform through out the volume V. Then the entire volume needs to 
be subdivided into large number small volumes such that within each small volume charge 
density is constant. Then the total charge within the volume V is given by the summation 

.......332211 +++ dVdVdV vvv ρρρ  
When the sizes of the individual volumes become infinitesimally small, then the total charge 
within the volume V is given by the integral  ∫ ∫∫∫=

V
vv dVdV ρρ  

S
dV1

V

ρv1

dV2
ρv2

dV3

ρv3

 
Fig.2.2 Evaluation of total charge within a volume 

 
Solid Angle 
 
The concept of solid angle is a natural extension of two-dimensional plane angle to three 
dimensions. The solid angle subtended by an area A at the point O is measured by the area Ω 
on the surface of the unit sphere centred at O, as shown in Fig.2.3. This is the area which 
would be cut out on the unit sphere surface by lines drawn from O to every point on the 
periphery of A. It is measured in terms of the unit called steradian, abbreviated as str.  
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Fig.2.3 Solid angle subtended by an area at a point 

 
Consider an elementary area dA as shown in Fig.2.4. If all the points on the periphery of the 
area dA are joined to the point O, then these lines cut out an area dΩ on the surface of the unit 
sphere. In other words, the area dA subtends a solid angle dΩ at the point O. Since the area is 
infinitesimally small, all points on dA could be considered to be equidistant from O. Let the 
distance of dA from the point O be r. The unit vector in the direction of the distance vector 
r is rû . Since the area dA is infinitesimally small, it may be taken as flat for practical 
purposes and hence nû is defined as the unit vector in the direction normal to this area dA as 
shown in Fig.2.4. The angle between rû and nû is φ. Then the projection of the area dA on the 
sphere of radius r will be φcosdAdS =  
The areas dS and dΩ have the same general shape and are related to the respective radii of the 
spheres having the following proportionality, 

2

21
rdS

d
=

Ω ,    or,  22
.ˆcos
r

Adu
r

dAd r



==Ω
φ       …. 2.2 

When an area completely encloses the point O, then Ω due that area on the unit sphere will be 
4π. Hence, the solid angle subtended at a point by an area which completely encloses that 
point is 4π steradians, which happens to be maximum possible value of solid angle. 

Radius = r

O
Radius = 1

dAdSdΩ

un

ur

φ

 
Fig.2.4 Evaluation of solid angle subtended by an elementary area 

 
Integral Form of Gauss’s Law 
 
Gauss’s law states that the net electric flux through any closed surface enclosing a 
homogeneous volume of material is equal to the net electric charge enclosed by that closed 
surface. In other words, the surface integral of electric flux density vector over a closed 
surface is equal to the volume integral of charge densities within the volume enclosed by that 
surface. 
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In integral form,   ∫∫ =
V

v
A

dVAdD ρ


.        …. 2.3 

Gauss’s law is valid for any discrete set of point charges. Nevertheless, this law is also valid 
when an electric field is produced by charged objects with continuously distributed charges, 
since any continuously distributed charge may be viewed as a combination of discrete point 
charges.  
Fig.2.5 shows a certain volume V of homogeneous material enclosed by a surface A. This 
volume is continuously charged by distributed charges. Consider these distributed charges to 
be represented by N number of discrete point charges as shown in Fig.2.5.  

V

A

q1

dΩ

φ

un

ur
dA

r

 
Fig.2.5 Pertaining to integral form of Gauss’s law 

 
Take a point charge q1 located within the volume V. Then consider an elementary area dA on 
the surface A as shown in Fig.2.5. The distance of the area dA from q1 is, say, r.  

Then at a distance r from q1, ru
r

qE ˆ
4 2

0

1
1 πε
=


  and   ru

r
qD ˆ

4 2
1

1 π
=


   …. 2.4 

Then, the total flux through the area A due to q1 could be obtained as  

∫∫∫ Ω==
AA

r

A

dq
r

AduqAdD
ππ 4

.ˆ
4

. 1
2

1
1




,   as Ω=d
r

Adur
2

.ˆ


     …. 2.5 

Since the area A completely encloses the point charge q1, hence the solid angle subtended by 
the area A at the location of the point charge q1 is 4π. Thus, 

1
1

1 4
4

. qqAdD
A

=×=∫ π
π


        …. 2.6 

Considering, N no of point charges within the volume V, total electric flux density at the 
location of dA as shown in Fig.2.5, will be 

NDDDDD


++++= ......321         …. 2.7 
So, the total flux through the surface A will be 

( )
N

A
N

AAAA
N

A

qqqq

AdDAdDAdDAdDAdDDDDAdD

++++=

++++=++++= ∫∫∫∫∫∫
......

..................

321

321321



 …. 2.8 

The right hand side of eqn.(2.8) is equal to the total electric charge enclosed within the 
volume V. Considering continuously distributed charge within the volume V, 
Total charge within the volume V = ∫

V
v dVρ  
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where, ρv is the volume charge density within the volume V.  
Hence, eqn.(2.8) can be rewritten as ∫ ∫=

A V
v dVAdD ρ


.  

From a physical point of view, the above expression indicates that the sum of all sources 
(positive electric charges) and all sinks (negative electric charges) within a volume gives the 
net flux through the surface enclosing the same volume. 
Gauss's law in integral form is only useful for exact solutions when the electric field has 
symmetry, e.g. spherical, cylindrical or planar symmetry. The symmetry of the electric field 
follows from the symmetry of the charge distribution that is given. So the electric field of a 
symmetrically charged sphere will also have the spherical symmetry.  
 
Gaussian Surface 
 
A closed surface in three dimensional space through which the flux of a vector field is 
calculated is known as Gaussian surface. It is an arbitrary closed surface over which surface 
integral is performed to evaluate the total amount of enclosed source quantity, e.g. electric 
charge.  A Gaussian surface could also be used for calculating the electric field due to a given 
charge distribution.  
Gaussian surfaces are normally carefully chosen in order to exploit symmetries to simplify 
the evaluation of the surface integral. If the symmetry is such that a surface can be found on 
which the electric field is constant, then evaluation of electric flux can be done by 
multiplying the value of the field with the area of the Gaussian surface.  
Two commonly used Gaussian surfaces are:  
(a) the spherical Gaussian surface, which is chosen to be concentric with the charge 
distribution. It can be used to determine the electric field or electric flux due to a point charge 
or a spherical shell of uniform charge density or any other charge distribution with spherical 
symmetry as shown in Fig.2.6. 

Gaussian surface for a point charge

+Q +Q

Gaussian surface for a charged sphere

E,D E,D

 
Fig. 2.6 Spherical Gaussian Surface 

 
(b) the cylindrical Gaussian surface, which is chosen to be co-axial with the charge 
distribution. It can be used to determine the electric field or electric flux due to an infinitely 
long line of uniform charge density or an infinitely long cylinder of uniform charge density, 
as shown in Fig.2.7. 
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Gaussian surface due to an 
infinitely long line of uniform 

charge density

E,D

+q

E,D

+q

Gaussian surface due to an 
infinitely long cylinder of uniform 

charge density  
Fig. 2.7 Cylindrical Gaussian Surface 

 
Differential Form of Gauss’s Law 
 
If the electric field is known everywhere, then with the help of integral form of Gauss's law 
the charge in any given field region can be deduced by integrating the electric field. 
However, in most of the practical cases, the electric field needs to be computed when the 
electric charge distribution is known. This is much more difficult because even if the total 
flux through a given surface is known, the information about the electric field may be 
unknown as electric flux could go in and out of the surface in complex patterns. In this 
context, the differential form of Gauss’s law becomes useful. 

x
y

z

Dy Dy+∆DyA

B

C

D

E
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G

H
∆x

∆y
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Fig.2.8 Application of Gauss’s law to a differential volume 

 
Consider that Gauss’s law is to be applied for the infinitesimal parallelepiped as shown in 
Fig.2.8. The volume of the infinitesimal parallelepiped is ∆V=∆x∆y∆z. Let, the component of 
electric flux density going normally into the surface ABCD is Dy and that coming out of the 
surface EFGH is Dy+∆Dy. The surfaces ABCD and EFGH are lying along the x-z plane. Then 
the net electric flux coming out in the y-direction which is normal to x-z plane is given by 

( ) V
y

D
zyx

y
D

zxDzxDzxDD yy
yyyy ∆

∂
∂

≈∆∆∆
∆
∆

=∆∆∆=∆∆−∆∆∆+    …. 2.9 
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Similarly, the net electric fluxes coming out in x- and z-directions are given by V
x

Dx ∆
∂
∂  

and V
z

Dz ∆
∂
∂ , respectively. Hence, 

Net electric flux coming of the volume ∆V  = V
z

DV
y

D
V

x
D zyx ∆

∂
∂

+∆
∂
∂

+∆
∂
∂  

= V
z

D
y

D
x

D zyx ∆
∂
∂

+
∂
∂

+
∂
∂ )(  

Let, ρv be the volume charge density of the small volume ∆V. Then according to Gauss's law, 
the above expression for the net flux coming out of the volume ∆V is equal to the total charge 
within the volume, i.e. ρv∆V. Therefore, 
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+
∂
∂         …. 2.10 

Eqn.(2.10) is known as the differential form of Gauss’s law. It can be expanded as 

( ) vzyx kDjDiDk
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x

ρ=++
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



∂
∂

+
∂
∂

+
∂
∂ ˆˆˆˆˆˆ ,  or,  vD ρ=∇


.     …. 2.11 

In section 1.7.4, it has been mentioned that when the ∇  operator acts on a scalar quantity, it 
is denoted as gradient. As depicted in eqn.(2.11), when the ∇  operator acts on a vector 
quantity with a dot product, then it is denoted as divergence.  
The physical meaning of divergence of a vector field can be explained from the left hand side 
of eqn.(2.10). From the above discussion it may be seen the LHS of eqn.(2.10) is the net flux 
coming out per unit volume at a given location. Consequently, the divergence of a vector 
field at any location is the net flux of that vector field coming out per unit volume at that 
given location. If the divergence of a vector field is positive at any location then the flux 
coming out of unit volume is higher than the flux going into the unit volume at that location. 
On the other hand, if the divergence of a vector field is negative then the flux going into the 
unit volume is higher than the flux coming out of the unit volume.  
 
 
Divergence Theorem 
 
Integral form of Gauss’s law,   ∫ ∫=

A V
v dVAdD ρ


.  

and differential form of Gauss’s law,  vD ρ=∇


.  
By substituting ρv on the RHS of the integral form by the LHS of the differential form, the 
above two equations could be combined as follows: 

( )dVDAdD
A V
∫ ∫ ∇=


..          …. 2.12 

where, the volume V is enclosed by the surface A. 
Eqn.(2.12) shows that the Divergence theorem could be used to convert a volume integral 
over the volume V to a surface integral over the boundary surface A enclosing the volume V.  
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Poisson’s and Laplace’s Equations 
 
A useful approach to the calculation of electric potentials is to relate electric potential to 
electric charge density, which causes electric potential. Since electric potential is a scalar 
quantity, this approach has advantages over calculation of electric field intensity, which is a 
vector quantity. Once electric potential has been determined, the electric field intensity can be 
computed by taking the gradient of electric potential. 
The relationship between electric flux density and electric charge density is given by the 
differential form of Gauss’s law, i.e. vD ρ=∇


.  

For homogeneous medium having uniform dielectric permittivity throughout the volume, the 
electric flux density and electric field intensity are related as ED


ε= .  

The above two equations could be combined as 

( ) vE ρε =∇


. ,  or,  vE ρε =∇


. ,  or,  
ε
ρvE =∇


.      …. 2.13 

Further, electric field intensity and electric potential are related as φ∇−=


E . Hence, from 
eqn.(2.13), it may be written that 

( )
ε
ρφ v=∇−∇


. ,   or,  

ε
ρφ v−=∇∇


. ,   or,  

ε
ρφ v−=∇2


    …. 2.14 

Eqn.(2.14) is a partial differential equation of elliptic form and is named after the French 
mathematician Siméon Denis Poisson. Thus, it is commonly known as Poisson’s equation. 
In eqn.(2.14), the mathematical operation, the divergence of gradient of a function 
( 2. ∇=∇∇


), is called the Laplacian, such that 
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So, eqn.(2.14) can be written as  

ε
ρφφφ v
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        …. 2.16 

Expressing the Laplacian in different coordinate systems to take advantage of the symmetry 
of a charge distribution simplifies the solution for the electric potential in many cases. 
In electro-static field problems, the dielectric media may be considered to be ideal insulation. 
In such case, free charges reside only on the conductor boundaries. Hence, the volume charge 
density (ρv) within the field region is zero. Then eqn.(2.14) reduces to 

02 =∇ φ


,  or, 02

2

2
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=
∂
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+
∂
∂

+
∂
∂

zyx
φφφ        …. 2.17 

Eqn.(2.17) is a second-order partial differential equation named after French Mathematician 
Pierre-Simon Laplace and is commonly known as Laplace’s equation. There are an infinite 
number of functions that satisfy Laplace's equation and the proper solution is found by 
specifying the appropriate boundary conditions, which will be discussed in a later chapter. 
In real life problems, however, the dielectric media are never ideal dielectrics. Hence, there 
could be volume leakage as well as surface leakage currents. Moreover, there could be 
discharges occurring within a particular zone of the insulation or there may be space charges 
that have accumulated over time within the field region of interest. In all such cases, volume 
charge density will be non-zero and hence Possion’s equation needs to be solved to get the 
correct results. 
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Field Due to a Continuous Distribution of Charge 
 
The electric potential at a point p due to a number of discrete charges could be obtained as 
simple algebraic superposition of the electric potentials produced at the point p by each of 
discrete charges acting in isolation. If q1,q2,q3,….,qn are discrete charges located at distances 
r1,r2,r3,…,rn, respectively, from the point p, then the electric potential at p is given by 

∑
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44 πεπεπεπε
φ      …. 2.18 

Now, if the charges are distributed continuously throughout the field region, instead of being 
located at discrete number of points, the field region can be divided into large number of 
small elements of volume ∆V, such that each element contains a charge ρv∆V, where ρv is the 
volume charge density of the small element ∆V. The potential at a point p will then be given 
by 

∑
=

∆
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p r

V
14

1 ρ
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φ          …. 2.19 

where, ri is the distance of the ith volume element from the point p.  
As the size of volume element becomes very small, the summation becomes an integration, 
that is 

∫=
V

v

r
dVρ

πε
φ

4
1          …. 2.20 

The integration is performed over the volume where the volume charge density has finite 
value. However, it must be noted here that it is not valid for charge distribution which 
extends to infinity. 
Eqn.(2.20) is often written in the form 

∫=
V

v dVGρφ           …. 2.21 

In eqn.(2.21) the function G (
rπε4

1
= ) is the potential due to a unit point charge and is often 

referred as the electrostatic Green’s function for a unbounded homogeneous region. 
 
Problem 2.1  
The potential field at any point in a space containing a dielectric material of relative 
permittivity 3.6 is given by φ = (3x2y - 2y2z+5xyz2) V, where x,y,z are in meters. Calculate the 
volume charge density at the point P(5,3,2)m. 
 
Solution:  
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So, 0)1046( εερ r
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v xyzy
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+
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Hence, at the point P(5,3,2), 1.510854.86.3160 12 −=×××−= −
vPρ nC/m3 

 
Problem 2.2  
The electric flux density in free space is given by ( )jxixeD y ˆsinˆcos −= −


 C/m2. Prove that the 

field region is charge free, i.e. no free charge is present in the field region. 
Solution:  
It is required to be proved that ρv is zero in the field region. The given expression for electric 
flux density vector indicates that it is a case of two-dimensional field. 
As given: xeD y

x cos−=   and  xeD y
y sin−−=  

Hence, xe
x

D yx sin−−=
∂
∂   and  xe

y
D yy sin−=
∂
∂

 

So, 0sinsin =+−=
∂

∂
+

∂
∂

= −− xexe
y

D
x

D yyyx
vρ    

Thus it is proved that no free charge is present in the field region. 
 
 
Problem 2.3 
A sphere of radius R carries a volume charge density ( ) krrv =ρ , where r is the radial distance 
from the centre and k is a constant. Determine the electric field intensity inside and outside 
the sphere. 
Solution: 
Inside the sphere, at any radius ri, the amount of charge enclosed is given by 

( )
15

4
3

4
3

4 5

0

4

0

3 i
rr

i
rkdrrkdrrkrrq

ii πππ
=== ∫∫  

Therefore, considering a spherical Gaussian surface of radius ri (<R) within the given sphere, 
the electric flux is normal to the Gaussian surface and electric field intensity Ei(ri) is constant 
over the Gaussian surface. Thus, applying Gauss’s law, 

∫ = )(.)(0 iii rqAdrE


ε ,  or,  
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4)(4
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Since the electric field is directed radially, hence in vector form r
i

ii urkrE ˆ
15

)(
0

3

ε
=


 

Again, total charge within the sphere of radius R is 
15

4 5Rkπ  

Hence, considering a spherical Gaussian surface of radius ro(>R) outside the given sphere, the 
electric flux is again normal to the Gaussian surface and electric field intensity Eo(ro) is 
constant over the Gaussian surface. Thus, applying Gauss’s law, 
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Problem 2.4 
The electric flux density vector in a field region is given by kxjxyizyD ˆ2ˆ3ˆ)2( +++=


C/m2. 

Determine the total charge enclosed by the cube defined by 0≤x≤1, 0≤y≤1 and 0≤z≤1. 
Solution: 
According to Gauss’s law, the total charge enclosed by the cube will be equal to net flux 
through the cube.  

x
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z

(1,0,0)

(1,0,1)

(1,1,0)

(0,0,0)

(0,0,1)

(1,1,1)
(0,1,0)

(0,1,1)

D=(2y+z) i +3xy j +2x k
 

Fig.2.9 Pertaining to Problem 2.4 
For x=0, the flux going into the cube through y-z plane, ∫ ∫ +

1

0

1

0
)2( dydzzy  

Again, for x=1, the flux coming out of the cube through y-z plane, ∫ ∫ +
1

0

1

0
)2( dydzzy  

Since these two integrals are same, the net flux coming out of the cube in x-direction, i.e. 
through y-z plane, is zero. 

For y=0, the flux going into the cube through x-z plane, 0
2

33
0

1

0

1

0
==

=
∫ ∫

y

ydxdzxy  

For y=1, the flux coming out of the cube through x-z plane, 5.1
2

33
1

1

0

1

0
==

=
∫ ∫

y

ydxdzxy C 

So, the net flux coming out of the cube in y-direction, i.e. through y-z plane is 1.5C. 
For z=0, the flux going into the cube through x-y plane, ∫ ∫

1

0

1

0
2 dxdyx  

Again, for z=1, the flux coming out of the cube through x-y plane, ∫ ∫
1

0

1

0
2 dxdyx  

Since these two integrals are same, the net flux coming out of the cube in z-direction, i.e. 
through x-y plane, is zero. 
So, considering all three directions, net flux coming out of the cube is 1.5C. 
Hence, the total charge enclosed by the given cube is also 1.5C. 
 
Problem 2.5 
A cylinder of unit volume is placed in a uniform field with its axis parallel to the direction of 
field. Determine the total charge enclosed by the unit cylinder. 
Solution: 
On the curved surface of the cylinder, the direction of the area vector is radially outward and 
hence is perpendicular to the electric field intensity which is directed along the axis of the 
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cylinder. Hence, on the curved surface ∫ =
A

AdE 0.0


ε , i.e. net flux through the curved surface 

of the cylinder will be zero. 

E

S1 S2
Axis

dA

 
Fig.2.10 Pertaining to Problem 2.5 

 
As shown in Fig.2.10, the two end surfaces of the cylinder S1 and S2 are normal to the 
direction of electric field intensity. Thus, the electric flux going into the cylinder through the 
surface S1 on the left hand side will be AE


0ε , where A is the area of the surface S1. 

Similarly, the electric flux coming out of the cylinder through the surface S2 on the right 
hand side will also be AE


0ε , as the area of the surface S2 is also A. Since the field is stated 

to be uniform, hence electric field intensity is same everywhere. So the net flux through the 
end surfaces of the cylinder is also zero. 
Thus the net flux through the cylinder considering all the surfaces of the cylinder is zero. 
Hence, the total charge enclosed by the cylinder is zero. 
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Orthogonal Coordinate Systems 
 
Basic Concepts 
 
The concept that unifies the different coordinate systems is surfaces of constant coordinates. 
It means that an equation of the form (coordinate=value) defines a surface. In order to 
specify a point uniquely in three dimensional space three different types of surfaces are 
needed. The values associated with the three constant coordinate surfaces which intersect at a 
specific point are the three coordinates, which uniquely define that point.  
Consider that three surfaces are defined by three functions f1, f2 and f3, respectively, in three 
dimensional space. The coordinate, i.e. the value, which describes a surface could be defined 
by the equation fi=ui. Here, u is introduced to represent a generalized coordinate. In the stated 
equation, ui refers to one of the coordinates in a particular system. Thus the three values 
(u1,u2,u3) define a point where the three surfaces defined by eqn.(3.1) intersect. These three 
values (u1,u2,u3) are then called the coordinates of that particular point.  

332211 , ufandufuf ===         …. 3.1 
The three functions, however, could not be chosen arbitrarily. The three functions are to be 
chosen in such a way that for any choice of the three coordinates (u1,u2,u3) the three surfaces 
generated by eqn.(3.1) will intersect only at one point. It will ensure that a given set of three 
coordinate values (u1,u2,u3) always specifies only one point in space. Moreover, the constant 
coordinate surfaces are always perpendicular to each other, i.e. orthogonal, at the point where 
they intersect. The intersection of any two constant coordinate surfaces defines a coordinate 
curve. 
 
Unit Vector 
 
An important concept associated with coordinate system is unit vector. It will be easy to 
understand the concept if it is explained with the help of a specific example involving 
Cartesian coordinate system as shown in Fig.3.1. Each value of z, e.g. z1, z2 or z3, defines a 
plane normal to z-axis. The unit vector k̂  is defined in such a way that it is normal to all such 
z=constant planes and points in the direction of the planes with increasing values of z as 
shown in Fig.3.1. The magnitude of the vector k̂  is taken as unity. The other two unit vectors 
in Cartesian coordinate system could be visualized in the same manner. 

z = z1

z = z2

z = z3

z

y

x

k

z3 > z2 > z1

 
Fig.3.1 The unit vector k̂  

 
In a generalized manner, the properties of the unit vector associated with a constant 
coordinate surface defined by the function fi are as follows: i) it is perpendicular to the 
surface fi=ui at any point (u1,u2,u3), ii) it points in the direction of the surfaces with increasing 
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value of ui and iii) it is one unit in magnitude. Orthogonality of the constant coordinate 
surfaces as discussed earlier demands that the dot product of any two different unit vectors 
will always be zero. Conversely, the dot product of two same unit vectors, e.g. k̂ . k̂ , will be 
always 1. 
 
Right-Handed Convention 
 
Since three constant coordinate surfaces are involved in determining the coordinates of any 
point, the question that arises is in which order the three coordinates are to be mentioned 
while specifying a point. In this context, the choice of the first coordinate (u1) or surface (f1) 
is arbitrary. Once f1 is chosen, then the order in which the other two constant coordinate 
surfaces f2 and f3 is to be taken is determined by the right handed system as governed by the 
definition of vector cross product. In other words, the cross product of the first and second 
unit vectors must be equal to the third unit vector. 
This right handed property of coordinate system is an arbitrary convention. But once that 
choice is made for one coordinate system, then it has to be followed for all other coordinate 
systems to ensure that the expressions for the laws of electric field have the same form in all 
the coordinate systems. 
 
Differential Distance and Metric Coefficient 
 
The constant coordinate surfaces could be of many different types. The simplest of them is 
constant distance surfaces for which the differential change dui in the coordinate ui is the 
same as the differential distance dli between the surfaces ii uf = and iii duuf += . However, 
there are other types of surfaces like constant angle surfaces, in which case the differential 
distance is related to differential coordinate (angle) change as 

iiiii dhduhdl θ==          …. 3.2 
where, the scale factor hi is the corresponding radius.  
The scale factors for each of the coordinate system are called the metric coefficients of the 
respective coordinate system. The three metric functions of any coordinate system (h1,h2,h3) 
constitute a unique set and hence are often known as the signature of a coordinate system. 
Metric coefficients are also very important in writing the vector operators in general 
orthogonal curvilinear coordinate system as will be explained in a later section. 
 
Choice of Origin 
 
A basic element of any coordinate system is the choice of origin. If any object or any 
arrangement is given, then any point within the object or within the whole arrangement could 
be chosen as origin.  
From the earlier discussions, it is clear that the same point will have very different 
coordinates when defined in different coordinate systems. So the question that needs to be 
answered is that whether there is any property of the position of the point that remains the 
same in different coordinate systems. The answer to this question is that the distance of the 
point from the origin remains the same in all the coordinate systems if the origin is kept the 
same in all the cases. As a logical extension it may be stated that the distance between any 
two points remains the same no matter how their coordinates are defined in any coordinate 
system. 
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Cartesian Coordinate System 
 
The invention of Cartesian coordinates in the 17th century by French mathematician René 
Descartes revolutionized mathematics by providing the first systematic link between 
Euclidean geometry and algebra. In this coordinate system, the three constant coordinate 
surfaces are defined by eqn.(3.3) 

zfyfxf === 321 ,,          …. 3.3 
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Fig.3.2 Constant coordinate surfaces in Cartesian coordinate system 

 
Fig.3.2 shows such constant coordinate surfaces, which are three planes. Cartesian coordinate 
system has the unique feature that all the three constant coordinate surfaces are constant 
distance surfaces.  
Each point P in space is then assigned a triplet of values (x,y,z), the so called Cartesian 
coordinates of that point. The ranges of the values of three coordinates are: -∞<x<∞, -∞<y<∞ 
and -∞<z<∞. The coordinates can be defined as the positions of the normal projections of the 
point onto three mutually perpendicular constant coordinate surfaces passing through the 
origin, expressed as signed distances from the origin.  
In Cartesian coordinate system, three mutually perpendicular axes are commonly defined as 
follows. The intersection of two mutually perpendicular planes y=constant and z=constant 
passing through the origin gives a coordinate curve, which is a straight line. This line is then 
defined as the x-axis. Similarly, the intersections of other two pairs of mutually perpendicular 
constant coordinate planes passing through origin define the y-axis and z-axis. 
The unit vector î  is perpendicular to all the surfaces described by x=constant and points in 
the direction of increasing value of x-coordinate. In the same manner, unit vectors ĵ  and k̂  
are defined in y- and z-directions, respectively. Another unique feature of Cartesian 
coordinate system is that the directions of the three unit vectors remain the same irrespective 
of the location of the point in space. The orthogonality of Cartesian coordinate system is 
defined by eqn.(3.4) 

0ˆ.ˆ,0ˆ.ˆ,0ˆ.ˆ === ikkjji         …. 3.4 
and the right handedness is defined by eqn.(3.5) 

jikikjkji ˆˆˆ,ˆˆˆ,ˆˆˆ =×=×=×         …. 3.5 
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Fig.3.3 Differential line element in Cartesian coordinate system 

 
As shown in Fig.3.3, the differential line element in Cartesian coordinate system is given by 
eqn.(3.6) 

kdzjdyidxkdljdlidlld


++=++= ˆˆˆˆˆ
321       …. 3.6 
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Fig.3.4 Differential area and volume elements in Cartesian coordinate system 

 
As shown in Fig.3.4, the differential area element corresponding to the surface of a 
differential cubical volume is given by eqn.(3.7) 

kdydxkdldlAd xy
ˆˆ

21 ==


        …. 3.7 
As shown in Fig.3.4, the differential volume element is given by eqn.(3.8) 

dzdydxdldldldV == 321         …. 3.8 
As depicted in eqn.(3.6), the differential distance in x-direction is dl1=dx=h1dx, i.e. h1=1. 
Similarly, in y- and z-directions h2=h3=1. The metric coefficients of Cartesian coordinate 
system are therefore h1=1, h2=1 and h3=1. 
 
Cylindrical Coordinate System 
 
Cylindrical coordinates are an alternate way of describing points in three dimensional space. 
In this coordinate system, one of the rectangular coordinate planes, viz. the x-y plane as 
described by Cartesian coordinate system, is replaced by a polar plane. In the cylindrical 
coordinate system, everything is measured with respect to a fixed point called the pole and an 
axis called the polar axis. The pole is the equivalent to the origin in the Cartesian coordinate 
system and the polar axis corresponds to the positive direction of x-axis. The cylindrical 
coordinates of a point are then the ordered triplet (r,θ,z) as defined in Fig.3.5.  
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Fig.3.5 Depiction of cylindrical coordinates of a point 

 
As shown in Fig.3.5, r is the distance from the pole to the projection of the point P on the 
polar plane, i.e. the x-y plane passing through the pole, θ is the azimuthal angle, i.e. the angle 
from the polar axis spinning around the z-axis in counter-clockwise direction, and z is the 
vertical height from the polar plane. The ranges of the values of the three coordinates are: 
0≤r<∞, 0≤θ≤2π and -∞<z<∞.  
In cylindrical coordinate system, the three constant coordinate surfaces are defined by 
eqn.(3.9) 

zffrf === 321 ,, θ          …. 3.9 
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Fig.3.6 Constant coordinate surfaces in cylindrical coordinate system 

 
Fig.3.6 shows the three constant coordinate surfaces in cylindrical coordinate system. Out of 
these three surfaces, the first and the third surfaces, viz. zfandrf == 31 , are constant 
distance surfaces, while the second one, i.e. θ=2f , is a constant angle surface. As shown in 
Fig.3.6, the surfaces θ=constant and z=constant are planes, while the surface r=constant is a 
cylindrical surface. 
In this coordinate system, two unit vectors are defined on the x-y plane. The unit vector 

rû points in the direction of increasing r, i.e. radially outward from the z-axis and the unit 
vector θû points in the direction of increasing θ, i.e. it points in the direction of the tangent to 
the circle of radius r in the counter-clockwise sense. The third unit vector zû points in the 
direction of increasing z, i.e. vertically upward from the x-y plane. The unit vectors are shown 
in Fig.3.5. The orthogonality of cylindrical coordinate system is defined by eqn.(3.10) 
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0ˆ.ˆ,0ˆ.ˆ,0ˆ.ˆ === rzzr uuuuuu θθ        …. 3.10 
and the right handedness is defined by eqn.(3.11) 

θθθ uuuuuuuuu rzrzzr ˆˆˆ,ˆˆˆ,ˆˆˆ =×=×=×        …. 3.11 
Unlike Cartesian system, in cylindrical coordinate system the directions of all the three unit 
vectors do not remain the same as one move around the space. As shown in Fig.3.7, the 
directions of the unit vectors rû and θû get changed at different points in space keeping 

zû unchanged. 
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Fig.3.7 Unit vectors at different points in cylindrical coordinate system 

 
As shown in Fig.3.8, the differential line element in cylindrical coordinate system is given by 
eqn.(3.12) 

zrzr udzurdudrudludludlld ˆˆˆˆˆˆ 321 ++=++= θθ θ


     …. 3.12 
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Fig.3.8 Differential line element in cylindrical coordinate system 

 
As shown in Fig.3.9, in cylindrical coordinate system the differential area element on the 
surface of a cylinder of radius r is given by eqn.(3.13) 

rrz udzrdudldlAd ˆˆ32 θθ ==


        …. 3.13 
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Fig.3.9 Differential area element on the cylinder surface in cylindrical coordinate system 

 
and the differential area element on the surface of a disc in the x-y plane as shown in Fig.3.10 
is given by eqn.(3.14) 

zzr urddrudldlAd ˆˆ21 θθ ==


        …. 3.14 
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Fig.3.10 Differential area element on the disc surface in cylindrical coordinate system 

 
As shown in Fig.3.11, the differential volume element is given by eqn.(3.15) 

dzrddrdldldldV θ== 321         …. 3.15 
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Fig.3.11 Differential volume element of a cylinder in cylindrical coordinate system 
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As depicted in eqn.(3.12), the differential distance in r-direction is dl1=dr=h1dr, i.e. h1=1, in 
θ-direction it is dl2=rdθ=h2dθ, i.e. h2=r, and in z-direction dl3=dz=h3dz, i.e. h3=1. The metric 
coefficients of cylindrical coordinate system are therefore h1=1, h2=r and h3=1. 
 
Spherical Coordinate System 
 
Spherical coordinates are particularly useful for analysing fields having spherical symmetry. 
In spherical coordinate system the coordinates of any point in space are the ordered triplet 
(r,θ,φ) as shown in Fig.3.12. The coordinate r measures the radial distance from the origin to 
the point P. The coordinate θ is the angle that the r vector makes with the positive direction 
of z-axis, while the coordinate φ is the azimuthal angle with respect to the positive direction 
of x-axis spinning around the z-axis in counter-clockwise sense. The angle φ is defined on the 
x-y plane. The ranges of the values of the three coordinates are: 0≤r<∞, 0≤θ≤π and 0≤φ≤2π.  
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Fig.3.12 Depiction of spherical coordinates of a point 

 
In spherical coordinate system, the three constant coordinate surfaces are defined by 
eqn.(3.16) 

φθ === 321 ,, ffrf          …. 3.16 
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Fig.3.13 Constant coordinate surfaces in spherical coordinate system 

 
Fig.3.13 shows the three constant coordinate surfaces in spherical coordinate system. Out of 
these three surfaces, the first surface, viz. rf =1 , is a constant distance surface, while the other 
two surfaces, i.e. φθ == 32 fandf , are constant angle surfaces. As shown in Fig.3.13, 
r=constant is a spherical surface, θ=constant is a conical surface and φ=constant is a plane. 
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In this coordinate system, the unit vector rû points in the direction of increasing r, i.e. radially 
outward from the origin. The unit vector θû points in the direction of increasing θ along the 
tangent to a circle of radius r in the plane containing the z-axis and the r vector. The unit 
vector φû points in the direction of increasing φ along the tangent to a circle in the x-y plane 
which is centered on the z-axis. The unit vectors are shown in Fig.3.12. The orthogonality of 
spherical coordinate system is defined by eqn.(3.17) 

0ˆ.ˆ,0ˆ.ˆ,0ˆ.ˆ === rr uuuuuu φφθθ        …. 3.17 
and the right handedness is defined by eqn.(3.18) 

θφφθφθ uuuuuuuuu rrr ˆˆˆ,ˆˆˆ,ˆˆˆ =×=×=×        …. 3.18 
Similar to cylindrical coordinate system, in spherical coordinate system the directions of all 
the three unit vectors do not remain the same as one move around the space. As shown in 
Fig.3.14, the directions of all the three unit vectors rû , θû and φû get changed at different 
points in space.  
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Fig.3.14 Unit vectors at different points in spherical coordinate system 

 
As shown in Fig.3.15, the differential line element in spherical coordinate system is given by 
eqn.(3.19) 

φθφθ φθθ udrurdudrudludludlld rr ˆsinˆˆˆˆˆ 321 ++=++=


    …. 3.19 
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Fig.3.15 Differential line element in spherical coordinate system 
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As shown in Fig.3.16, in spherical coordinate system the differential area element on the 
surface of a sphere of radius r is given by eqn.(3.20) 

rrr uddrudrrdudldlAd ˆsinˆ)sin)((ˆ 2
32 φθθφθθφθ ===


    …. 3.20 
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Fig.3.16 Differential area element on the sphere surface in spherical coordinate system 

 
As shown in Fig.3.17, the differential volume element is given by eqn.(3.21) 

φθθφθθ dddrrdrrddrdldldldV sin)sin)()(( 2
321 ===     …. 3.21 
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Fig.3.17 Differential volume element of a sphere in spherical coordinate system 

 
As depicted in eqn.(3.19), the differential distance in r-direction is dl1=dr=h1dr, i.e. h1=1, in 
θ-direction it is dl2=rdθ=h2dθ, i.e. h2=r, and in φ-direction dl3=rsinθdφ=h3dφ, i.e. h3=rsinθ. 
Therefore, the metric coefficients of spherical coordinate system are h1=1, h2=r and h3= 
rsinθ.  
 
Generalized Orthogonal Curvilinear Coordinate System 
 
From the discussions of the previous sections, it may be seen that a major hindrance in 
treating the three commonly used orthogonal coordinate systems, viz. Cartesian, cylindrical 
and spherical coordinate systems, on an equal footing is that the unit vectors are not the best 
way to visualize these three coordinate systems. In this context, a generalized orthogonal 
curvilinear coordinate system provides insight for useful linkage between such orthogonal 
coordinate systems. Generalized orthogonal curvilinear coordinate system emphasizes the 
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similarities between different orthogonal coordinate systems rather than highlighting their 
differences. Thus the definition and utilization of generalized orthogonal curvilinear 
coordinate system is very important for proper understanding of the formulation and solution 
of electric field problems.  
Consider that f(x,y,z)=u is a function of three independent space variables x,y,z in the 
Cartesian coordinate system that specify a surface characterized by the constant parameter u. 
Setting such function equal to three different constant parameters u1, u2 and u3 defines three 
different surfaces as follows 

332211 ),,(),,(,),,( uzyxfanduzyxfuzyxf ===      …. 3.22 
Considering that these three surfaces are orthogonal, they intersect in space only at one point. 
In other words, any point in space could be uniquely defined by a set of values of the three 
parameters (u1,u2,u3), which are then called the orthogonal curvilinear coordinates of the 
point being defined. The constant coordinate surfaces for a generalized orthogonal curvilinear 
coordinate system are shown in Fig.3.18.  

u
3 =constant

u2=constant

u
1 =

constant

P

a3

a2a1

x

y

z

ax i=

ay j=
az k=

O

 
Fig.3.18 Constant coordinate surfaces in generalized orthogonal curvilinear coordinate 

system 
 
As shown in Fig.3.18, the unit vectors 21 ˆ,ˆ aa and 3â are normal to the surfaces u1=constant, 
u2=constant and u3=constant, respectively, and point towards the increasing values of the 
coordinates u1, u2 and u3, respectively. The orthogonality of the generalized curvilinear 
coordinate system is defined by eqn.(3.23) 

0ˆ.ˆ,0ˆ.ˆ,0ˆ.ˆ 133221 === aaaaaa         …. 3.23 
and the right handedness is defined by eqn.(3.24) 

213132321 ˆˆˆ,ˆˆˆ,ˆˆˆ aaaaaaaaa =×=×=×        …. 3.24 
As shown in Fig.3.19, the surfaces u=u1 and u=u1+du1 are separated by a differential length 
element dl1 which is normal to the surface u=u1, where dl1=h1(u1,u2,u3)du1. The scale factor 
or the metric coefficient h1 is a function of the three curvilinear coordinates (u1,u2,u3). The 
other two metric coefficients, i.e. h2(u1,u2,u3) and h3(u1,u2,u3), are also similarly defined. 
As shown in Fig.3.19, the differential line element in generalized orthogonal curvilinear 
coordinate system is given by eqn.(3.25) 

333222111332211 ˆˆˆˆˆˆ aduhaduhaduhadladladlld ++=++=


    …. 3.25 
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Fig.3.19 Differential line, area and volume elements in generalized orthogonal curvilinear 

coordinate system 
 
As shown in Fig.3.19, the differential area elements in generalized orthogonal curvilinear 
coordinate system are given by eqn.(3.26) 

321213221112 ˆˆ))(( aduduhhaduhduhAd ==


     

132321332223 ˆˆ))(( aduduhhaduhduhAd ==


 

213132113331 ˆˆ))(( aduduhhaduhduhAd ==


       …. 3.26 
and the differential volume element in generalized orthogonal curvilinear coordinate system 
is given by eqn.(3.27) 

321321332211 ))()(( dududuhhhduhduhduhdV ==       …. 3.27 
In the light of the generalized orthogonal curvilinear coordinate system, the three commonly 
used orthogonal coordinate systems could be summarized as in Table3.1. 
 

Table 3.1 Characterization of orthogonal coordinate systems 
Orthogonal 

Coordinate System Coordinates Unit vectors Metric Coefficients 

Generalized (u1,u2,u3) ( 321 ˆ,ˆ,ˆ aaa ) (h1,h2,h3) 
Cartesian (x,y,z) ( kji ˆ,ˆ,ˆ ) (1,1,1) 

Cylindrical (r,θ,z) ( zr uuu ˆ,ˆ,ˆ θ ) (1,r,1) 
Spherical (r,θ,φ) ( φθ uuur ˆ,ˆ,ˆ ) (1,r,rsinθ) 

 
Recall that the metric coefficients were earlier stated to be functions of the coordinates 
(u1,u2,u3). Table 3.1 clearly shows such dependence of the metric coefficients on the 
respective coordinates in cylindrical and spherical coordinate systems. Cartesian coordinate 
system is unique in the sense that its metric coefficients are constant. 
 
Vector Operations 
 
In field analysis it is often required to perform vector operations to get vector and scalar 
derivatives of scalar and vector fields, which are scalar and vector functions of position, 
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respectively. Most commonly used vector operations are: gradient, divergence, curl and 
Laplacian operation. It is possible to get expressions for all these vector operations in 
generalized orthogonal curvilinear coordinate system. In order to get such expressions, 
consider an arbitrary scalar field like electric potential or temperature as ),,( 321 uuuU  
and an arbitrary vector field like electric flux density or force as 

332132321213211 ˆ),,(ˆ),,(ˆ),,( auuuSauuuSauuuSS ++=


     …. 3.28 
 
Gradient 
 
In electric field analysis, a common application of gradient operation is to determine electric 
field intensity from the knowledge of electric potential. In order to understand this concept 
clearly, a change dU in the scalar function U is expressed in terms of the changes in 
differential distances dl1, dl2 and dl3 in generalized orthogonal curvilinear coordinate system, 
as follows: 

3
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+
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=        …. 3.29 

Introducing the differential distance as 332211 ˆˆˆ adladladlld ++=


, eqn 3.29 could be rewritten 
as 
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where, 3
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  …. 3.31 

Eqn.(3.30) indicates that the change dU in the scalar function U over the differential distance 
dl at any point in space is maximum when U∇


 and ld


 are in the same direction. In other 

words, the magnitude of the vector U∇


, which is the spatial derivative of the scalar function 
U and is called the gradient of U, is equal to the maximum value of dU/dl and it is in the 
direction in which dU/dl is maximum. 
With the help of the metric coefficients and other parameters mentioned in Table 3.1, the 
gradient function can be written in different orthogonal coordinate systems as detailed below: 
Cartesian coordinate system: 

k
z
Uj

y
Ui

x
UU ˆˆˆ

∂
∂

+
∂
∂

+
∂
∂

=∇


        …. 3.32 

Cylindrical coordinate system: 

zr u
z
UuU

r
u

r
UU ˆˆ1ˆ

∂
∂

+
∂
∂

+
∂
∂

=∇ θθ


       …. 3.33 

Spherical coordinate system: 

φθ φθθ
uU

r
uU

r
u

r
UU r ˆ

sin
1ˆ1ˆ

∂
∂

+
∂
∂

+
∂
∂

=∇


      …. 3.34 

 
 
Del Operator 
 
Eqn.(3.30) introduces a vector differential operator ∇


 such that when ∇


is applied on a scalar 

function it results into a vector function. Such vector operation is called Gradient.  
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From eqn.(3.31) 
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     …. 3.35 

It has been discussed in Chapter-2 that when ∇


is applied on a vector function as scalar or dot 
product, then it results into a scalar function and such operation is called Divergence. On the 
other hand when ∇


is operated on a vector function with vector or cross product then it 

results into another vector function and this operation is called Curl. 
 
Divergence 
 
In electric field analysis divergence is used to relate electric field with the source, i.e. the 
charges, as given by the differential form of Gauss’s law.  
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Fig.3.20 Divergence in generalized orthogonal curvilinear coordinate system 

 
It has already been discussed in Chapter-2 that the divergence of a vector field S


could be 

evaluated by finding the net flux coming out per unit volume. In this context, consider the 
differential volume element dV(=dl1dl2dl3) as shown in Fig.3.20. Consider that the point O is 
located at the center of the volume element dV and also that the vector S


 is known at the 

point O. The points 1 and 2 are the midpoints of the surfaces ABCD and EFGH, respectively, 
which are normal to u1 direction. So along the line 1-O-2 the derivatives of S1, which is the u1 
component of S


, wrt u1 will be finite, while the derivative of S1 wrt u2 and u3 will be zero as 

S1 is orthogonal to u2 and u3. Considering the differential distance dl1 between the two 
surfaces under reference, viz. ABCD and EFGH, S1 at the points 1 and 2 can be evaluated 
from the knowledge of S1 at the point O with the help of Taylor series. Noting that the 
distances between the point O and both the points 1 and 2 are dl1/2, from Taylor Series 
expansion it can be written neglecting higher order terms that 

2
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1
111

dl
l
SSS

∂
∂

−=  (as the distance from O to 1 is in the negative sense of u1) 

2
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1
121

dl
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SSS
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+=  (as the distance from O to 2 is in the positive sense of u1) 
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where, S1 stands for the value of S1 at the point O. 

Therefore, 
22
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+=  

The area of the surface ABCD is given by 323232 duduhhdldl = . So the flux of S


going into the 
differential volume through the surface ABCD in the u1 direction is given by 

( ) ( ) ( ) ( )
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as ( 321 ,, hhh ) are functions of ( 321 ,, uuu ), the product h2h3 is kept within the partial derivative 
term. 
Similarly, the flux of S


coming out of the surface EFGH in the u1 direction is given by 
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Hence, the net flux coming out of the differential volume in the u1 direction is given by 
( )
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1 dududu

u
hhSddd ABCDEFGH ∂

∂
=−= ψψψ      …. 3.36 

So considering all the three directions, i.e. u1, u2 and u3 directions, the net flux coming out of 
the volume dV is  
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Therefore, the divergence of S


, which is the net flux coming out per unit volume, is given by 
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The divergence function can be written in different orthogonal coordinate systems as detailed 
below: 
Cartesian coordinate system: 
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Cylindrical coordinate system: 
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Spherical coordinate system: 
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Laplacian 
 

Let, 3322113
33

2
22

1
11

ˆˆˆˆ1ˆ1ˆ1 aSaSaSa
u
U

h
a

u
U

h
a

u
U

h
US ++=

∂
∂

+
∂
∂

+
∂
∂

=∇=


 

so that 
11

1
1

u
U

h
S

∂
∂

= ,  
22

2
1

u
U

h
S

∂
∂

= and 
33

3
1

u
U

h
S

∂
∂

=  

Then SUU


..2 ∇=∇∇=∇  
So from eqn.(3.38) 

( ) ( ) ( )

















∂
∂

∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂

=









∂
∂

+
∂
∂

+
∂
∂

=∇=∇

33

21

322

13

211

32

1321

321
3

213
2

132
1321

2

1

1.

u
U

h
hh

uu
U

h
hh

uu
U

h
hh

uhhh

Shh
u

Shh
u

Shh
uhhh

SU


  …. 3.42 

The Laplacian can be written in different orthogonal coordinate systems as detailed below: 
Cartesian coordinate system: 
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Cylindrical coordinate system: 
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…. 3.44 
Spherical coordinate system: 
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…. 3.45 
 
Curl 
 
The curl is evaluated as closed line integral per unit area. The closed line integral of a vector 
is also known as circulation. The circulation of a vector is obtained by multiplying the 
component of that vector parallel to the specified closed path at each point along it by the 
differential path length and summing the results of multiplication as the differential lengths 
approach zero. Since there are three planes which are normal to the three components of a 
vector, hence the circulation of a vector is to be computed separately for these three planes, 
each one of which will give one component of the curl. The curl of any vector thus results 
into another vector. Any component of the curl is given by the quotient of the closed line 
integral of the vector about a small path and the area enclosed by that path, as the path 
shrinks to zero. The small path is to be chosen in a plane normal to the desired component of 
the curl. 
With reference to Fig.3.21, consider that the values of three components of S


, viz. S1, S2 and 

S3, are known at the midpoint O of the differential areas as shown. 
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Fig.3.21 Curl in generalized orthogonal curvilinear coordinate system 

 
Considering the differential path length AB, the value of S1 at the midpoint of AB is 
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Again, considering the differential path length CD, the value of S1 at the midpoint of CD is 
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Similarly, considering the differential path length BC the value of S2 at the midpoint of BC is 
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Again, considering the differential path length DA the value of S2 at the midpoint of DA is 
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From eqns. (3.46) through (3.49) ∫∫∫∫∫ +++=
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Dividing the eqn.(3.50) by the area of the integration, i.e. dl1dl2,  
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Noting that the area enclosed by the path ABCDA is an area normal to u3 direction, eqn.(3.51) 
gives the u3 component of curl S


. 

Considering the closed path EFGHE normal to u1 direction, the u1 component of curl S


 can 
be evaluated as 









∂

∂
−

∂
∂

=







∂

∂
−

∂
∂

=∫
3

22

2

33

32
32

3

22

2

33

323232

)()(1)()(1.1
u
Sh

u
Sh

hh
dudu

u
Sh

u
Sh

duduhh
ldS

dldl EFGHE


  .. 3.52 

and considering the closed path JKLMJ normal to u2 direction, the u2 component of curl S


 
can be evaluated as 
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Here, it is to be mentioned that for evaluating the integral the closed paths have to be 
traversed in a manner that if a right handed screw is rotated in that direction then the screw 
will move in the positive direction of the coordinate to which the plane containing that path is 
perpendicular, i.e. ABCDA for the u1 direction, EFGHE for the u2 direction and JKLMJ for 
the u3 direction with reference to Fig.3.21.  
From eqns. (3.51), (3.52) and (3.53) 
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Eqn.(3.54) could be written in the following form 
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The Laplacian can be written in different orthogonal coordinate systems as detailed below: 
 
Cartesian coordinate system: 
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Cylindrical coordinate system: 
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Spherical coordinate system: 



54 
 

φθ

φθ

θ
φθ

θ

θ
SrrSS

r

ururu

r
S

r

r

sin

ˆsinˆˆ

sin
1

2 ∂
∂

∂
∂

∂
∂

=×∇


      …. 3.58 

 
Curl of Electric Field 
 
With reference to the derivation of section 3.6.5, consider that the vector quantity be electric 
field intensity E


. Then the closed line integral ∫ ldE


. along any of the three paths as shown 

in Fig.3.21, viz. ABCDA, EFGHE and JKLMJ, will be zero, as the work done over a closed 
path is zero. Hence, the results of the integrals as given by eqns. (3.51), (3.52) and (3.53) will 
be zero. In other words all the three components of curl E


 will be zero. Consequently, 

0=×∇= EEcurl
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         …. 3.59 
which holds good at every point within an electric field. It shows that an electric field is path 
independent and irrotational. 
Alternately, it can be proved by considering UE ∇−=


, where U is electric potential, which 

is a scalar quantity. Then 
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Eqn.(3.59) is commonly used to prove that a valid electric field is conservative. 
 
Problem 3.1 
Determine whether kzjyixE ˆˆˆ ++=


is a valid form of electric field or not. 

Solution 
In order to find whether an electric field is valid or not, the curl of the given electric field 
needs to be evaluated. So for the given electric field 
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So the given electric field is a valid one. 
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Single Dielectric Configurations 
 
Introduction 
 
Mother Nature has presented the mankind an insulation as a gift which is available in 
abundance and also is free. This dielectric is nothing but the atmospheric air. It is not difficult 
to conceive that no electrical system would have worked had air been not an insulating 
medium. Since air is present everywhere, hence most of the real life arrangements are multi 
dielectric configurations where the equipment insulation, whether it is solid, liquid, or 
gaseous or a combination of two or more of these insulating media, is commonly surrounded 
by atmospheric air. However, there are specific cases where the configuration could be single 
dielectric one, e.g. a co-axial cable having only one dielectric medium. Analysis of single 
dielectric arrangement is necessary to grasp the theoretical aspects of electric field in a 
meaningful way. Moreover, there are certain aspects like displacement current and energy 
stored in an electric field, which need to be understood from a single dielectric point of view 
to start with. 
 
Displacement Current 
 
Consider a capacitor with a perfect dielectric or, say vacuum, in between its two plates. In 
such a case no charge can move through the perfect dielectric or vacuum. In other words, 
there could be no current flowing between the two plates within the capacitor. Now if a dc 
voltage is applied between its two plates, then a charging current flows from the source to 
supply the charges to the plates of the capacitor for the short duration of charging. When the 
capacitor is fully charged, the charging current ceases to flow. It is to be noted here that this 
charging current is measurable only in the circuit between the source and the capacitor. If one 
tries to measure the current between the plates within the capacitor, then the result of the 
current measurement will be zero. It means that this charging current does not flow through 
the entire closed loop formed by the source and the capacitor. But why these charges are to be 
supplied by the source to the capacitor plates? The answer is that the capacitor with a perfect 
dielectric or vacuum is an open circuit and hence the potential difference between the 
capacitor plates will be equal to the source voltage. Accordingly there will be an electric field 
established between the capacitor plates. In order to establish this electric field, charges have 
to be supplied from the source to the capacitor plates. 
Depending upon the area and separation distance between the plates, there is a finite 
capacitance of the capacitor. Hence, if an ac voltage is applied between the plates of the 
capacitor, a capacitive current will flow in the circuit, which will be a continuous current 
varying with time that could be measured by an ammeter placed in between the source and 
the capacitor. However, due to perfect dielectric or vacuum, as stated earlier, there could be 
no movement of charge between the plates within the capacitor. Hence, this continuous 
capacitive current is measurable only in the circuit between the ac source and the capacitor 
plates. Then the question is how this continuous capacitive current is appearing in a section of 
the circuit external to the capacitor plates and not through the whole circuit? The answer to 
this question lies in the fact that this current is not conduction current. It appears due to 
displacement of charges between the source and the capacitor plates, even when there is no 
charge movement between the plates within the capacitor. Consequently, this current is 
termed as displacement current. The concept of displacement current may be explained as 
detailed below. 
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(a)                        (b)                        (c)                       (d)                        (e) 

Fig.4.1 Physical explanation of displacement current of a capacitor 
 
Take the example of a capacitor with vacuum between its plates as shown in Fig.4.1. If the 
separation distance between the plates is much smaller than the plate length/diameter and if 
fringing of flux at the edges is neglected, then the electric field between the capacitor plates 
will be uniform. If the potential difference between its plates at any time instant is v and the 
separation distance between the plates is d, then the magnitude of electric field intensity 
between the capacitor plates at that time instant will be (v/d). Thus a unit positive charge 
placed in vacuum between the plates within the capacitor will experience this force on it due 
to the charges present on the capacitor plates. Due to application of alternating voltage, the 
electric field intensity within the capacitor (= v/d) will vary in direct proportion to the 
potential difference between the plates. Consequently, for this variation in electric field 
intensity, the amount of charge on the capacitor plates will again have to vary in direct 
proportion to the potential difference between the plates. Let the amount of charge on the 
capacitor plates corresponding to the peak value (Vm) of the sinusoidal applied voltage be qm.  
At θ = 0º, the potential difference across the capacitor plates is zero and hence the charge on 
the plates is also zero, as shown in Fig. 4.1(a). Then the charge on the plates increases with 
time as the sinusoidal voltage magnitude increases with time from to θ = 0º to θ = 90º as 
shown in Figs.4.1(a), (b) and (c). These charges are supplied by the ac source to the capacitor 
plates and hence in the circuit between the source and the capacitor plates, there is a change 

in charge with time (
dt
dq ).  Whenever there is such change in charge with time, there is a 

measurable current. So if an ammeter is placed in between the source and the capacitor, this 
current can be measured. The magnitude of this current will be determined by the rate of 
change of charge, which is the same as the rate of change of voltage with time as explained 
earlier in this section. As shown in Fig.4.2, the rate of change of sinusoidal voltage is 
maximum at the zero crossing of the voltage waveform, i.e. at θ = 0º, and is zero at the 
voltage peak, i.e. at θ = 90º. In between this time span, this current will also have a sinusoidal 
variation with time.  

∆t

∆V1

∆t

∆t
∆V2

∆V3

 
Fig. 4.2 Slope of sinusoidal voltage waveform 

 
From θ = 90º to θ =180º, the negative slope of sinusoidal voltage waveform increases from 
zero to maximum at the voltage zero crossing at θ =180º. The magnitude of voltage starts 
decreasing from θ = 90º and hence the charges on the capacitor plates also start decreasing 
from qm corresponding to θ = 90º. In other words, the charges start to move from the 
capacitor plate back to the source. Hence, the ammeter between the source and the capacitor 
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will record a current in the opposite direction which will increase in magnitude from θ = 90º 
and will become maximum at θ =180º, in this opposite direction. The same sequential 
process will be repeated from θ =180º to θ = 360º albeit the direction will be just the opposite 
of that between θ = 0º and θ = 90º.  
So it could be seen that although there is no charge movement between the plates within the 
capacitor itself, but there is continuous displacement of charges between the source and the 
capacitor plates in the external circuit. As a result, the Displacement Current flows in the 
external circuit. From the above discussion, it can be noted that (a) the current is positive 

maximum when
dt
dq and consequently

dt
dv  is positive maximum at θ = 0º, (b) the current is 

zero when 
dt
dq and consequently

dt
dv is zero when θ = 90º, (c) the current is at its negative 

maximum when 
dt
dq and consequently

dt
dv

 
is at its negative maximum at θ =180º and so on. 

Considering the facts from (a) to (c), it can be concluded that there is a phase difference of 
90º between the voltage across the capacitor plates and the displacement current and this 
displacement current leads the voltage by 90º. 
In real life, the dielectric between the capacitor plates is never a perfect one and hence a small 
amount of conduction current flows between the capacitor plates. Consequently, the current 
through a real life capacitor leads the voltage by an angle slightly less than 90º.  
 
Parallel Plate Capacitor 
 
A capacitor is an arrangement of conductors along with dielectrics that is used primarily to 
store electric charge. A very simple capacitor is a system consisting of two parallel metallic 
plates with free space or any dielectric in between as shown in Fig.4.3. 
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Fig. 4.3 Parallel Plate Capacitor Arrangement 

 
In order to understand the electric field within a parallel plate capacitor, it is necessary to 
know the electric field due to infinitely long charged planar sheet having uniform surface 
charge density (σ). As an infinitely long plane possesses a planar symmetry and the charge is 
uniformly distributed on the planar surface, the electric field intensity acts in the direction of 
the normal to the plane. In other words, the magnitude of the electric field intensity is 
constant on all the planes that are parallel to the charged sheet.  
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Fig.4.4 Field due to infinitely long charged sheet 

 
To analyze the field due to such a charged sheet, the best choice for a Gaussian surface is a 
cylinder whose axis is perpendicular to the plane, as shown in Fig.4.4. As the surface charge 
density is assumed to be uniform, the charge enclosed by the Gaussian surface is given by 
(σA). As shown in Fig.4.4, the electric field intensity vector is parallel to the area vector at 
the two end surfaces and is normal to the area vector on the curved wall surfaces. Hence, 
applying Gauss’s law on the cylindrical Gaussian surface 
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Fig.4.5 E-field within a parallel plate capacitor 
 

When two plates of equal and opposite charge density are placed near and parallel to each 
other with free space between them, the electric field intensities due to the two plates add 
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between the plates while they cancel each other outside the plates as shown in Fig.4.5. Thus 

the electric field intensity between the two plates is given by 
0ε

σ
=E  

When the separation distance between the two plates is small compared to the sides of the 
plate, electric field intensity between the plates is constant through out the interior of the 
capacitor. The flux lines are parallel to each other near the centre of the capacitor, while 
concentration of flux lines occurs at the edges, which is known as fringing of flux as shown 
in Fig.4.6. Neglecting fringing of flux and considering the potential difference between the 

two plates to be V, the electric field intensity can also be written as 
d
VE =  

Noting that the charge on the plates Q=σA, it may be written as 

d
V

=
0ε

σ     or, 
d
VAQ

=
0ε

   or, 
d

A
V
Q 0ε

=    or,  
d
AC 0ε

=      …. 4.2 

where, C is the capacitance of the parallel plate capacitor. Eqn.(4.2) shows that the 
capacitance of a parallel capacitor is independent of the charge on the plates or the potential 
difference across the capacitor plates. 

d

L

+V
+Q

ε0

ED

Flux
Fringing

 
Fig.4.6 Flux lines in a parallel plate capacitor 

 
If any dielectric medium of relative permittivity (εr) is inserted between the plates, then the 

electric field intensity within the capacitor remains unchanged (=
d
V ), but the capacitance (C) 

is changed to  
d

Ar 0εε . 

 
Energy Stored in a Parallel Plate Capacitor 
 
Consider that a parallel plate capacitor has no charge at the beginning. Now, if a voltage 
source is connected across its plates so that the potential difference between the two plates 
becomes V, then the capacitor gets charged and these charges are supplied by the source to 
the capacitor plates. In order to supply these charges to the capacitor plates, some work have 
to be done by the external source which is then stored as electrostatic energy in the capacitor. 
Let at any instant the charge on the capacitor plates be +q and –q, respectively and the 
potential difference between the plates is v. At this instant consider that an additional amount 
of charge dq is supplied by the source to the plates. Then the energy spent by the source to 
deliver this charge is vdq and this energy is stored in the electric field of the capacitor. 
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So if the total charge on the plates are +Q and –Q, respectively and the corresponding 
potential difference between the plates is V, then the total energy stored in the electric field is 
given by 
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Now, surface charge density on the plates (σ) = (Q/A) = D. So,
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(Ad) being the volume of the parallel plate capacitor, the total energy stored in electric field 
per unit volume, i.e. energy density, is given by  

2

2
1 EWE ε=           …. 4.4 

However, such a derivation for energy stored in electric field is only valid for a parallel plate 
capacitor. A more generalized way of obtaining the energy stored in the electric field is 
discussed in the next section. 
 
Problem 4.1 
Find the maximum electrostatic energy that can be stored in a parallel plate capacitor of 
which the plates are in the form of discs of radius 10cm and the plate separation distance is 
1cm. The dielectric is air. 
Solution 
Breakdown strength of air is 30kV/cm. So the electric field intensity within the capacitor 
cannot exceed 30kV/cm or in other words the maximum value of electric field intensity (Em) 
is 30kV/cm or 3×106V/m. 

So, maximum energy density of the capacitor = 2612 )103(10854.8
2
1

×××× − = 39.843 J/m3  

Volume of the capacitor = 01.01.0 2 ××π = 3.141×10-4 m3 
So, Maximum electrostatic energy stored in the capacitor = 39.843×3.141×10-4 = 12.51 mJ 
 
Energy Stored in Electric Field 
 
Consider that an electric field is established by an assembly of charges. To obtain the energy 
stored in this electric field, the work done to assemble these charges need to be determined. 
Assume that all the charges are point charges, which are at infinity initially, and an external 
agent brings these charges one by one and places them at the respective positions, as shown 
in Fig.4.7. It is obvious that no work is to be done to bring the first charge q1 from infinity to 
its location at P1, as there is no existing electric field created by another charge. Then the 
second charge q2 is brought from infinity to P2 within the electric field created by q1. So the 
work done in bringing the charge q2 will be given by  
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1
22122 4 r

qqqW
επ

φ ==         …. 4.5 

where, φ21 is the potential at the location P2 due to the charge q1 located at P1. 
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Fig.4.7 Assembling a set of charges 

 
Then the third charge q3 is brought from infinity to P3 within the electric field created by q1 
and q2. So the work done in bringing the charge q2 will be given by 
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So the total work done in bringing q1, q2 and q3 is 









++=++

32

32

31

31

21

21

0
32 4

10
r
qq

r
qq

r
qqWW

επ
      …. 4.7 

Denoting the charge that is being brought in by the suffix i and the charges which created the 
field within which this ith charge is being brought in by the suffix j, the work done in 
assembling N no of charges q1,q2,……, qN can be written as 
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Fig.4.8 gives a pictorial representation of the numbers over which the summation of eqn.(4.8) 
is being carried out. This summation is clearly over the triangular region marked I in Fig.4.8. 
Since the quantity being summed is symmetric in i and j, the same energy W would be 
obtained by a summation over the triangular region marked II in Fig.4.8. The summation over 
the triangular regions I and II must then give 2W. Thus W may also be obtained as follows 
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Fig.4.8 Representation of summation to obtain energy stored 

 
Instead of considering discrete point charges, if the charge distribution is taken as continuous 
throughout the volume V of Fig.4.7, then the potential at any point can be found by summing 
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the contributions from individual differential volume elements of charge. Thus by writing 
dVr)(ρ in place of qi and Vdr ′′)(ρ in place of qj, the summation may be replaced by 

integrations over volume, which must be large enough to contain all the charges present. 
Thus the work done to form a continuous charge distribution is given by 
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The potential at the location r due to all the charges located at the respective positions r′ is 
given by 
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Substitution of eqn.(4.11) in eqn.(4.10) yields 

∫=
V

dVrrW )()(
2
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Since eqn.(4.12) deals with quantities related to only one location r, hence the parameter r is 
omitted hereafter. Noting that ρ=∇ D


. , eqn.(4.12) could be rewritten as 
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For any vector D
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 and any scalar φ, the following vector identity could be written 
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Applying Divergence theorem to the first term on the RHS of eqn.(4.15), 
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As φ∇−=


E and ED
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0ε= , eqn. 4.16 is rewritten as 
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In the first term on the RHS of eqn.(4.17), φ varies as 
r
1 , while D


varies as 2

1
r

and surface 

term varies as r2. So as a whole the first term varies as
r
1 . If the bounding surface of volume V 

as shown in Fig.4.7 is expanded from S to S1, then the region between S and S1 does not 
contribute to the energy integral as there is no charge located in this region. However, 
although this region between S and S1 is charge free, the electric field intensity is not zero in 
this region. Hence, as the bounding surface is expanded, the second term of eqn.(4.17) will 
increase. Then in order to keep the energy integral unchanged, the first term should decrease. 
Thus if the bounding surface is taken to be infinitely large, then the first term on the RHS of 
eqn.(4.17) becomes zero, keeping the total energy same. Therefore, the total work done in 
forming the continuous charge distribution, i.e. the total energy stored in the electric field, is 
given by 
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dVEW 2
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Hence, energy stored per unit volume, i.e. energy density, is given by 
2

02
1 EWE ε=           …. 4.19 

Considering the relative permittivity of the dielectric medium to be εr, energy density of an 
electric field is given by  

2
02

1 EW rE εε=          …. 4.20 

Eqn.(4.20) is very useful in computing the energy stored in a complex dielectric arrangement 
where electric field intensity is non-uniform. In such cases the electric field distribution is 
first determined using suitable method and then the entire volume under consideration is 
divided into smaller volume elements so that each volume element contains only one 
dielectric medium and the electric field intensity remains constant within the volume element. 
As a result the energy stored in each element can be computed using eqn.(4.20). The energy 
stored in all the volume elements could then be summed up to get the total energy stored in 
any real life dielectric arrangement having complex geometries and several dielectric media. 
 
Problem 4.2 
Three point charges of magnitude -2nC, -3nC and 1nC are located in free space at (0,0,0)m, 
(0,2,0)m and (2,0,0)m, respectively. Find the energy stored in the system of charges. 
Solution 
Denoting the charges as q1= -2nC, q2= -3nC and q3=1nC, no work is done to bring in q1. 
Electric potential at the location of q2 due to q1 is  

21
12

9

21 10854.84
102

r××××
×−

= −

−

π
φ , where mr 2020 2

21 =++=  

Hence, =21φ - 8.987 V 
So, work done to bring in q2 = 987.8103 9 −××− − = 26.96 nJ. 
Again, electric potential at the location of q3 due to q1 is  

31
12

9

31 10854.84
102

r××××
×−

= −

−

π
φ , where mr 2200 2

31 =++=  

Hence, =31φ - 8.987 V. 
and electric potential at the location of q3 due to q2 is  

32
12

9

32 10854.84
103

r××××
×−

= −

−

π
φ , where mr 22220 22

32 =++=  

Hence, =32φ - 6.354 V. 
So, work done to bring in q3 = )354.6987.8(101 9 −−×× − = - 15.34 nJ. 
Hence, the total energy stored in the charge system = (26.96 – 15.34) = 11.62 nJ. 
 
Two Concentric Spheres with Homogeneous Dielectric 
 
A simple single dielectric arrangement that have spherical symmetry is two concentric 
spheres with a homogeneous dielectric medium in between the two spheres as shown in 
Fig.4.9. The inner sphere is charged to an electric potential +V, while the outer sphere is 
earthed. 
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Fig.4.9 Two concentric spheres with homogeneous dielectric 

 
Since this configuration has spherical symmetry, the best choice for a Gaussian surface is a 
concentric sphere of radius x, as shown in Fig.4.9.  
Let +Q be total charge on the inner sphere. According to Gauss's law, the total flux leaving 
the Gaussian surface of radius x is equal is the total charge enclosed, i.e. the charge on the 
inner conductor surface +Q. As the flux lines are symmetrically distributed and are directed 
radially outwards, the electric flux density at a radial distance of x is given by 

24 x
QDx π

+
=  

Hence, electric field intensity at a radial distance of x is 24 x
QEx επ

+
=  

Then the potential difference between the two spheres of radii r and R could be obtained as 
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
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
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R r
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x

QdxEV 11
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2 εεπεπ
     …. 4.21 

Since electric potential is readily measurable quantity, the charge on the inner sphere could 
be obtained from the knowledge of electric potential as follows 







 −

=

Rr

VQ r

11
4 0εεπ          …. 4.22 

The capacitance of the system could be obtained as  







 −

==

Rr
V
QC r

11
4 0εεπ          …. 4.23 

From a practical point of view, electric field intensity is a significant quantity that needs to be 
determined. Hence, electric field intensity at any radius x as expressed in terms of the 
potential difference between the two spheres is given by 







 −

=

Rr
x

VEx 112
         …. 4.24 

Eqn.(4.24) shows that electric field intensity varies with radial distance in a non-linear way. 
Highest value of electric field intensity occurs at a radial distance r, which is given by 
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
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max          …. 4.25 

For the above mentioned concentric spherical system, a value of r for a fixed outer radius R 
could be obtained that gives the lowest possible value of electric field intensity on the inner 
conductor. From eqn.(4.25), it may be seen that for Emax to be minimum, the denominator has 
to be maximum for a given value of V, i.e. 

0112 =













 −

Rr
r

dr
d  

or, 
2
Rr =           …. 4.26 

However, it may be noted here that concentric spherical system with a charged inner sphere 
completely enclosed by an earthed outer sphere is more of theoretical interest, as it is very 
difficult to realize such a system in practice. 
 
Two Co-axial Cylinders with Homogeneous Dielectric 
 
A simple single dielectric arrangement that have cylindrical symmetry is two co-axial 
cylinders with a homogeneous dielectric medium in between the two cylinders as shown in 
Fig.4.10. The inner cylinder is charged to an electric potential +V, while the outer cylinder is 
earthed. In real-life a single-core cable having one dielectric medium is typical example of 
such a system. In this case electric field varies with location over the cross-sectional area of 
the cable. But electric field does not vary along the length of the cable. Hence, the 
configuration as shown in Fig.4.10 is represented as two dimensional system in Cartesian 
coordinates, where the cross-sectional area is taken on x-y plane.  The field is then 
independent of z-axis, where z-direction is along the length of the cylinder.  
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Fig.4.10 Two co-axial cylinders with homogeneous dielectric 

 
Since this configuration has cylindrical symmetry, the best choice for a Gaussian surface is a 
co-axial cylinder of radius x, as shown in Fig.4.10.  
Let +q be total charge per unit length on the inner cylinder. According to Gauss's law, the 
total flux leaving the Gaussian surface of radius x is equal is the total charge enclosed, i.e. the 
charge on the inner conductor surface +q. As the flux lines are symmetrically distributed and 
are directed radially outwards, the electric flux density at a radial distance of x is given by 
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1.2 x
qDx π

+
=  

Hence, electric field intensity at a radial distance of x is 
x

qEx επ2
+

=  

Then the potential difference between the two cylinders of radii r and R could be obtained as 

∫ ∫ =
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      …. 4.27 

The charge per unit length on the inner cylinder could be obtained from the knowledge of 
potential difference between the two cylinders as follows 

r
R

Vq r

ln

2 0εεπ
=           …. 4.28 

The capacitance per unit length of the system could be obtained as  

r
RV

qC r

ln

2 0εεπ
==          …. 4.29 

Electric field intensity at any radius x as expressed in terms of the potential difference 
between the two cylinders is given by 

r
Rx

VEx

ln
=           …. 4.30 

From eqn.(4.30) it becomes clear that highest value of electric field intensity occurs at a 
radial distance r, which is given by 

r
Rr

VE
ln

max =           …. 4.31 

For the above mentioned co-axial cylindrical system, a value of r for a fixed outer radius R 
could be obtained that gives the lowest possible value of electric field intensity on the inner 
conductor. From eqn.(4.31), it may be seen that for Emax to be minimum, the denominator has 
to be maximum for a given value of V, i.e. 

[ ] 0lnln =− rrRr
dr
d  

or, e
r
R

= ,  or, 
e
Rr =         …. 4.32 

Then from eqn.(4.31), the highest electric field intensity on the inner cylinder becomes 

r
VE

lowest
=max           …. 4.33 

A practical use of eqn.(4.32) in real life is in the finalization of the dimensions of the inner 
and outer conductors of Gas Insulated Transmission Line (GIL). The typical configuration of 
a GIL, which is a co-axial cylindrical arrangement where the primary insulation is SF6 gas or 
a mixture of SF6 and N2, is shown in Fig.4.11. 
 



67 
 

Grounded Enclosure

Live Conductor

Support
Insulators

Gas
Insulation

r

R

Pressure
≈ 6 bar

 
Fig.4.11 Typical GIL configuration 

 
If for a given value of V, i.e. the potential of the live conductor, values of R and r are chosen 
as per eqn.(4.32) and the value of r is so chosen the 

lowest
Emax is equal to the dielectric 

strength of the gaseous insulation at the designed pressure, then the gaseous insulation is 
utilized in the most economical way. However, in practical design adequate safety margin is 
taken so that unwanted breakdown does not take place. 
 
Problem 4.3 
Find the most economical dimensions of a single-core metal sheathed cable for a working 
voltage of 76 kVrms, if the maximum electric field intensity that can be allowed within the 
cable insulation is 5kVrms/mm. 
Solution 

For the most economical design, 
e
Rr =  

But, electric field intensity on the conductor surface should not exceed the maximum 
allowable limit, i.e. 5kVrms/mm. 

So, electric field intensity on the conductor surface 5=
r
V , where V = 76kVrms. 

Hence, the radius of inner conductor (r) = mm2.15
5
76

=  

Therefore, the radius of the outer conductor (R) = 15.2 × 2.718 = 41.3mm 
 
Field Factor 
 
For practical configurations, electric field factor (f) is defined as 

avE
Ef max=           …. 4.34 

where, Emax is the maximum value of electric field intensity in the system. 
Eav is defined as  

mind
VEav =           …. 4.35 

where, dmin is the minimum distance between the two conductors having a potential 
difference of V. 
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For a parallel plate capacitor as discussed in section 4.3, Emax is
d
V , neglecting fringing of 

flux at the edges, and the Eav is also
d
V . Hence,  

for parallel plate capacitor, 0.1max ==
avE

Ef       …. 4.36 

For two concentric spheres with one dielectric medium as discussed in section 4.5,  
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and 
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Hence, for two concentric spheres with single dielectric 
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== max   …. 4.37 

For two co-axial cylinders with one dielectric medium as discussed in section 4.6,  

r
Rr

VE
ln

max =  

and 
rR

VEav −
=  

Hence, for two concentric spheres with single dielectric 

r
R

r
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E
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av ln

1
max

−
==   …. 4.38 

In fact for any uniform field system, field factor is unity. The degree of non-uniformity of an 
electric field is represented by the value of field factor. The higher the field factor the higher 
is the non-uniformity of the field distribution. In some references, field utilization factor (u) is 

also used, which is simply defined as the reciprocal of field factor (f), such that 
max

1
E
E

f
u av==  

 



 69 

Dielectric Polarization  
 
Introduction 
 
Inside any material the electric field varies rapidly with distance in a scale corresponding to 
the spacing between the atoms or molecules. The local electric field at the site of an atom is 
significantly different from the macroscopic electric field. It is because of the fact that the 
local electric field acting on an atom is strongly affected by nearest atoms, while the 
macroscopic field is averaged over a large number of atoms or molecules. Therefore, 
determination of electric field is extremely complicated, if not impossible, at every 
“mathematical point” in a given space. As a result the average value of electric field over a 
finite volume is commonly determined, particularly in the case of power engineering. This 
finite volume should be such that it is practically small enough to be considered as a point, 
but large enough to accommodate enough numbers of atoms or molecules to give smoothly 
varying average value of electric field. 
While conductors have large number of free charges that can move in response to an external 
electric field, the materials known as dielectrics do not have free charges inside them. So it 
may be argued that the dielectrics cannot have any effect of the electrostatic field. But this 
argument is incorrect as the mechanism by which dielectric materials affect the electrostatic 
field is quite different than the mechanism in the case of conductors. Moreover, in reality 
there is no electrical equipment or device without conductors as well as dielectrics.  Hence, it 
is important from a practical point of view to analyze the behavior of dielectrics in 
electrostatic field.  
Atoms of all dielectric materials consist of charged constituents like electrons and nucleus, 
which could be displaced, albeit through a small distance, by an external electric field. In the 
process an electric dipole will be induced by the external electric field in a symmetrical atom 
or molecule, which originally had zero dipole moment. On the other hand, there are large 
numbers of dielectric materials containing molecules having permanent dipole moment. In 
those cases, the permanent dipoles will be aligned by the external electric field in its 
direction. The degree of alignment of permanent dipoles is higher for stronger external field. 
The net dipole moment of a dielectric piece is typically zero, when not influenced by external 
electric field, because the atoms have zero dipole moment and the permanent dipoles are 
randomly oriented. But due to induction or alignment of dipoles under the action of external 
electric field, a dielectric piece may be considered as arrays of oriented electric dipoles. As a 
result a dielectric piece acquires a net dipole moment and the dielectric is said to be 
polarized. The process by which a dielectric material gets polarized is known as polarization. 
 
Field due to an Electric Dipole and Polarization Vector 
 
A polarized dielectric can be assumed to be a collection of oriented electric dipoles situated 
in vacuum. If the charges of the electric dipoles and the distances between them are known, 
then it is possible to determine the electric potential and electric field intensity at any external 
location due to the polarized dielectric. But this is practically very difficult due to immensely 
large number of such dipoles in a polarized dielectric. Because of this reason, a kind of 
average dipole density is defined in the form of a vector quantity known as polarization 
vector for the ease of analysis. 
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Electric Dipole and Dipole Moment 
 
When two point charges of equal magnitude but of opposite polarities are separated by a 
small distance, then the arrangement is known as an electric dipole as shown in Fig.5.1. For 
field analysis it is required that a single dipole be characterized by a vector quantity. As 
depicted in Fig.5.1, let the magnitudes of the charges be +Q and –Q, respectively and the 
distance between them is d. The distance vector d


 between the two point charges is 

considered to be directed from the negative charge to the positive charge. Then the dipole 
moment of the electric dipole is defined as a vector 

dQp


=           …. 5.1 
The unit of dipole moment is C.m 

+Q

-Q

d p=Qd

 
Fig.5.1 The dipole moment of an electric dipole 

 
Field due to an Electric Dipole 
 
The field due to a single electric dipole can be evaluated as the superposition of the field due 
to two point charges +Q and –Q, as shown in Fig.5.2. Then the electric potential at the point 
P due to the electric dipole is given by 
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      …. 5.2 

The distance d between the dipole charges is always much smaller than the distances of the 
point P from the two charges. Hence, the line segments r1 and r2 will be parallel for all 
practical purposes. Hence, 

θcos
21
drr −=   and  θcos

22
drr +=     …. 5.3 

 
where, r = distance from the center of the electric dipole to the point P 
and θ = the angle between the distance vectors d


 and r . 

Thus, assuming r>>d, electric potential at a distance r from the electric dipole may be written 
as 
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Fig.5.2 Field due to an electric dipole 

 
From eqn.(5.4) it may be seen that the field due to an electric dipole is two dimensional in 
nature when represented in spherical coordinate system, as the field depends on r and θ 
coordinates and not on φ coordinate. 
Then electric field intensity at the point P can be expressed as 
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Thus the r and θ components of electric field intensity are 
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Eqns.(5.4) and (5.5) show that electric potential and electric field intensity due to an electric 
dipole depend on dipole moment of the electric dipole and not on the magnitude of the 
charges and their separation distance separately. 
 
Polarization Vector 
 
Consider a small volume v∆  of a polarized dielectric. If there are N number of molecules per 
unit volume in v∆ and p  is the average dipole moment per molecule, then as a measure of 
intensity of the polarization, the polarization vector, P


, at a point inside v∆ is defined as 

follows 
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p
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∆           …. 5.7 

Eqn.(5.7) is valid for a rarified medium, e.g. a gas. The relationship needs to be written in a 
different way for a dense medium such as a liquid or a solid. 
In a generalized manner, the net dipole moment in the small volume v∆ is given by 
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where, vNN ∆×=1  

Then, 
v

dQ
P

N

i
ii

∆
=
∑
=

1

1




         …. 5.9 

The unit of dipole moment is C.m and hence the unit of polarization vector is C/m2, which is 
the same as that of surface charge density. 
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In other words, if the polarization vector P


is known at a point, then a small volume v∆ , 
which encloses that point and contains large number of dipoles, can be replaced by a single 
dipole of moment 

vPp ∆=
           …. 5.10 

With the help of eqn.(5.10), electric potential and electric field intensity due to a polarized 
dielectric can be evaluated by an integral. 
 
Polarizability 
 
The molecules of dielectric materials, which are the basic building blocks of the material, 
either have zero dipole moment or have some permanent dipole moments depending on their 
structure. When an external electric field is applied, then the opposite polarity charges are 
pulled apart and/or the permanent dipoles get aligned under the action of the external field. In 
this way the dielectric material becomes polarized and this property of dielectric materials is 
known as polarizability. 
 
Non-Polar and Polar Molecules 
 
The molecules of a dielectric material are classified into two categories, viz. non-polar and 
polar. Symmetrical molecules such as CO2, as shown in Fig. 5.3(c), fall in this category. In 
non-polar molecules the “centers of gravity” of positive and negative charge distribution 
usually coincide at one point and hence the molecules have zero dipole moment. On the other 
hand, a polar molecule such as H2O and CO, as shown in Fig.5.3(a) and (b), respectively, 
have permanent dipoles even in the absence of any external electric field. However, in the 
absence of any external field, a macroscopic piece of polar dielectric is not polarized, i.e. it 
does not contain any dipole moment, because the molecules are randomly oriented due to 
thermal agitation. When the polar dielectric is subjected to an external electric field, then the 
individual permanent dipoles within the polar dielectric experiences torques, which tend to 
align these dipoles in the direction of the external field, and the dielectric gets polarized. 
 

H H

O O
C

p
p

CO O

p = 0

(a) (b) (c)
 

Fig.5.3 Non-polar and polar molecules: (a) Polar-H2O, (b) Polar-CO and (c) Non-polar-CO2 
 
Electronic Polarizability of an Atom 
 
A simplified model of an atom is a uniformly charged electron cloud, which is spherical in 
shape having radius R, surrounding the total positive charge located at the point nucleus. The 
centers of gravity of the total negative charge (–q) of the electron cloud and the total positive 
charge (+q) coincides at the same point, as shown in Fig.5.4, in the absence of any external 
electric field. 
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Fig.5.4 Electronic polarizability of an atom 

 
When an external electric field is applied, the electron cloud is displaced by a small distance 
d until the mutual attractive force between the negatively charged electron cloud and the 
positive charged point nucleus balances the force due to the external electric field. 
The attractive force between the electron cloud and the point nucleus is given by 
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The force due to the external electric field is given by  
EqFext =           …. 5.12 

At equilibrium, extFF =int , or, Eq
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Hence, the magnitude of dipole moment induced by the external electric field 
EERdqp eαπε === 3

04         …. 5.14 
where, 3

04 Re πεα = = Electronic polarizability of the atom. 
 
Types of Polarizability 
 
The physical processes that give rise to polarizability can be subdivided into four categories: 
i) Electronic polarizability, ii) Ionic polarizability, iii) Orientational or dipolar polarizability 
and iv) Interfacial polarizability. 
 
Electronic Polarizability 
 
Electronic polarizability arises due to displacement of negatively charged electron cloud wrt 
the positively charged nucleus under the influence of external electric field, as discussed in 
section 5.3.2. Electronic polarizability is present in all types of dielectric materials. It is an 
elastic process without any power loss and is an extremely fast process which takes place 
within 10-16 to 10-13s. 
 
Ionic Polarizability 
 
In the case of dielectric molecules that contain ionic bonds, the lengths of the bonds get 
stretched under the influence of the external electric field. Consider the case of NaCl as 
shown in Fig.5.5. The external electric field displaces the positive Na+ ion towards the right, 
while the negative Cl- ion is displaced towards the left. Thus the forces due to external field 
stretch the length of the ionic bond between Na+ and Cl- ions. As a result of the change in the 
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length of the bond, a net dipole moment appears in the unit cell of NaCl, which does not have 
any dipole moment in the absence of the external electric field. Since the dipole moment in 
such cases arises due to displacement of oppositely charged ions, this process is known as 
ionic polarizability. Ionic polarizability exists in all dielectric materials which contain ionic 
bonds. Similar to electronic polarizability, ionic polarizability is also an elastic property 
involving no power loss. But unlike electronic polarizability, ionic polarizability is slower as 
ions are heavier than electrons. However, it is still a very fast process and occurs within 10-13 
to 10-9s.  

E

Na+Cl-

 
Fig.5.5 Ionic Polarization in NaCl 

 
Orientational or Dipolar Polarizability 
 
Although the individual molecules of a polar dielectric material have permanent dipoles, the 
net dipole moment becomes zero in a macroscopic piece of such dielectric material in the 
absence of external electric field because of random orientation of molecular dipole moments 
caused by thermal perturbations. Such random orientation of molecular dipoles results in near 
complete cancellation of dipole moment in any given direction in a macroscopic piece of 
polar dielectric material. But, when an external electric field is applied, then the molecular 
dipoles tend to align in the direction of the applied field as shown in Fig.5.6. It is because of 

the fact that the energy of a dipole p placed in a local electric field locE


is locEpW
 .−= . This 

energy is minimum when the dipole is oriented parallel to the applied electric field. As a 
result of such alignment of molecular dipoles, the net dipole moment in a macroscopic piece 
of polar dielectric material gets a non-zero value. This mechanism through which a non-zero 
dipole moment arises in a polar dielectric is known as orientational or dipolar polarizability. 
Dipolar polarizability is much slower than electronic or ionic polarizability as it involves 
rotation of molecular dipoles that causes molecular friction. It is an inelastic process 
associated with power loss due to molecular friction and occurs within 10-9 to 10-4s.  

E = 0 E

 
Fig. 5.6 Dipolar Polarization in polar dielectric materials 

 
Electronic polarizability is present in all dielectrics, but the presence of ionic and dipolar 
polarizabilities depend on the molecular structure of dielectric materials. The relative 
magnitudes of the three polarizabilities, as discussed in section 5.3.3.1, 5.3.3.2 and 5.3.3.3, 
are such that in no-polar, ionic dielectric materials electronic polarizability is of the same 
order as ionic polarizability. On the other hand, in polar dielectric materials, the dipolar 
polarizability is much larger than both electronic and ionic polarizabilities. 
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Interfacial Polarizability 
 
It occurs mainly in insulation system composed of different dielectric materials, e.g. oil 
impregnated paper/pressboard. Under the influence of an external electric field, small 
numbers of positive and negative charges, which are free to move within the bulk of the 
dielectric, get trapped at the interfaces of different materials, as shown in Fig.5.7, and thus 
produces separation of charges at the dielectric interfaces causing polarization. This 
mechanism known as interfacial polarizability is very slow and in general takes hours to 
complete.  

OilPaper

E

Dielectric 
Interface  

Fig.5.7 Interfacial polarization at dielectric interface 
 
Field due to a Polarized Dielectric 
 
Consider a block of polarized dielectric material, as shown in Fig.5.8, containing a 
polarization vector P


that varies with position. According to eqn.(5.10), the small 

volume Vd ′ located at ),,( zyxr ′′′′ can be replaced by a single dipole moment VdPp ′=
 . Then 

the electric potential at any point P outside the volume of the dielectric and located at 
),,( zyxr is given by 
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         …. 5.15 

where, ( ) ( ) ( )222 zzyyxxR ′−+′−+′−= = The distance between the small volume Vd ′and 
the external field point P. 
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where, ∇′


is the gradient with respect to the primed quantities, i.e. wrt the position of the 
small volume Vd ′within the dielectric volume. 
So, the potential at the external field point P due to the entire volume V of the polarized 
dielectric 
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R
P 1.

4
1

0



επ
φ         …. 5.18 

Consider a scalar quantity a, a vector quantity A


 and the vector identity as follows 
aAAaAa ∇′+∇′=∇′


...         …. 5.19 

Putting 
R

a 1
= and PA


= in eqn.(5.19) 
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


.1.1. ∇′−∇′=





∇′         …. 5.20 

So, from eqns.(5.18) and (5.20) 

∫ ′







∇′−∇′=

V
P VdP

RR
P 



.1.

4
1

0επ
φ        …. 5.21 

Applying Divergence Theorem to the first term of eqn.(5.21), 

∫∫ ′∇′−
+′

′
=

VS

n
P Vd

R
PSd

R
uP

00 4
.

4
ˆ.

επεπ
φ



       …. 5.22 

where, nu′ˆ is the outward unit normal vector to the surface Sd ′of the small volume Vd ′of the 
dielectric.  
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Fig.5.8 Field at an external point due to a polarized dielectric 

 
The two terms on the RHS of eqn.(5.22) can be re-written as follows 
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ρσ
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φ       …. 5.23 

where, nsb uPr ′=′ ˆ.)(


σ  

           Prvb


.)( ∇′−=′ρ         …. 5.24 

and      r′ denotes the location within the polarized dielectric volume. 
Then electric field intensity at the field point P is given by 

 







′

′
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′
=∇−= ∫ ∫

S V

RvbRsb
PP Vd

R
urSd

R
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1 ρσ
επ

φ


    …. 5.25 

 
Bound Charge Densities of Polarized Dielectric 
 
Eqns.(5.23) and (5.25) show that the field at an external point due to a polarized dielectric is 
superposition of the field due a volume charge density and a surface charge density. In other 
words, a polarized dielectric can be replaced by an equivalent volume charge density ( )vbρ  
and an equivalent surface charge density ( )sbσ . Both volume and surface charge densities can 
be considered to be in vacuum, as rest of the dielectric does not produce any field at an 
external point. These charge densities are called bound volume charge density and bound 
surface charge density, respectively, as these charges appearing due to polarization are not 
free to move within the dielectric material. These charges are caused by displacement or 
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rotation occurring in molecular scale during polarization. Such equivalent charge distribution 
is very useful because the problem of finding the field due to a polarized dielectric is 
converted to the problem of finding the field due to distribution of charges in vacuum, which 
is easier to solve. If the polarization vector is known at all the points within the polarized 
dielectric, then both bound volume and surface charge densities could be found from the 
polarization vector. Hence, the problem comes down to the determination of polarization 
vector within the volume of the polarized dielectric, which now-a-days is done with the help 
of numerical techniques. 
 
Bound Volume Charge Density 
 
From eqn.(5.24), bound volume charge density is Prvb


.)( ∇′−=′ρ , i.e. if the divergence of 

polarization vector P


is non-zero, then the bound volume charge density will exist within the 
volume of the polarized dielectric. For uniform polarization, divergence of P


is zero and 

hence there could be no bound volume charge density. But for non-uniform polarization, 
there can be net increase or decrease of charge within a given volume. For inhomogeneous 
dielectrics, there will be some net volume charge, because all the molecular dipoles are not 
identical and hence, their effect does not cancel out on average. In such cases, the divergence 
of P


will be non-zero and hence bound volume charge density will be finite and non-zero. 
This fact can be understood from Fig.5.9(a), where at the center of the volume the negative 
ends of the dipoles are concentrated and hence there will be an excess of negative charges at 
that location giving rise to non-zero polarization vector P


. 
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(b)  
Fig.5.9 Equivalent charge distribution of polarized dielectric: (a) volume charge density due 

to non-uniform polarization, (b) surface charge density due to uniform polarization 
 
Bound Surface Charge Density 
 
From eqn.(5.24), bound surface charge density is nsb uPr ′=′ ˆ.)(


σ Such surface charge densities 

are present for both uniform and non-uniform polarization. As shown in Fig.5.9(b), in the 
case of uniform polarization, for a macroscopic volume of the dielectric there will be equal 
amount of positive and negative charges and the net charge within the volume will be zero. 
But if a small volume is considered that includes the upper boundary perpendicular to the 
direction of polarization as shown in Fig.5.9(b), there will be net positive charge within the 
volume, no matter how thin the volume is made. In the limiting case, the thickness tends to 
zero, but there will still be excess positive charges on the surface. Therefore, bound charge 
density appears on the surface of the polarized dielectric due to uncompensated charges on 
the surface. 
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The Macroscopic Field 
 
The expressions for electric potential and electric field intensity due to polarized dielectric 
only are given by eqns.(5.23) and (5.25), respectively. But the effects of the external charge 
distribution which causes the polarization must be added to these to get the resultant field. 
The effects are simply additive because the bound surface and volume charge densities due to 
polarization are considered to be in vacuum. Therefore, the complete expressions for electric 
potential and electric field intensity at a point outside the polarized dielectric due to the 
external charge distribution and the equivalent bound charge distributions of the polarized 
dielectric are given by 
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Field due to a Narrow Column of Uniformly Polarized Dielectric 
 
Consider a narrow column of polarized dielectric of cross-sectional area dS with a 
polarization vector of magnitude P directed along the axis of the column as shown in 
Fig.5.10. 
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Fig.5.10 Field due to a narrow column of uniformly polarized dielectric 

 
Electric potential at the external point A due to the small volume dSdz of the polarized 
column can be expressed according to eqn.(5.15) as follows 

2
0

2
0 44
cos

r
drdSP

r
dzdSPd A επεπ

θφ ==        …. 5.28 

Hence, the electric potential at A due to the entire column is  
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∫=
2

1

2
04

r

r
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drdSP
επ
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or, 
2010210 44

11
4 r

dSP
r

dSP
rr

dSP
A επεπεπ

φ −
+=








−=      …. 5.29 

For the area dS at z1, nuP ˆ.


is positive and that at z2 is negative. Thus eqn.(5.29) shows that the 
field due to the narrow column of polarized dielectric is the same as that due to positive 
charges (+PdS) on the surface dS at z1 and the negative charges (-PdS) on the surface dS at z2. 
In other words, the bound charges due to polarization appear at the two surfaces as it is a case 
of uniform polarization. 
 
Field within a Sphere having Uniformly Polarized Dielectric 
 
According to the discussions in section 5.4, the eqns.(5.23) and (5.25) are valid if the field 
observation point is located outside the polarized dielectric. However, these two equations 
can also be applied when the field observation point is inside the polarized dielectric, 
provided that average electric field is determined. 
Consider a sphere of radius R containing a dielectric medium of uniform polarization P


. Such 

a uniformly polarized dielectric sphere could be equivalently constructed by superimposing 
two uniformly charged spheres of opposite polarity with centers displaced by a small distance 
d, as shown in Fig.5.11. 

+vely charged sphere

-vely charged sphere

r1

r2

d

 
Fig.5.11 Field within a uniformly polarized dielectric sphere 

 
Electric field intensity at a radial distance r within a charged sphere of radius R is given by 
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r
qE r επεπ
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==        …. 5.30 

where, r points outward from the center of the sphere and q is the total charge within the 
sphere. 
In the case of two overlapping but slightly displaced spheres, as shown in Fig.5.11, for r<R 
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Considering uniform polarization, net dipole moment within the dielectric sphere is dqp


= . 

Therefore, average polarization vector, 33 4
3

4
3

R
dq

R
pP

ππ


==  
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So, from eqn.(5.31), 
03ε

PE



−=        …. 5.32 

Electric field intensity within the sphere is the average value determined by representing the 
sphere as a continuum medium with uniform polarization P


. 

Outside the uniformly polarized sphere, electric field intensity is equivalent to that due to two 
point charges of opposite polarity located at the centers of the two slightly displaced spheres. 
 
Sphere having Constant Radial Distribution of Polarization 
 
Consider a sphere of radius R with constant radial distribution of polarization as shown in 
Fig.5.9(a). Thus the magnitude of polarization (P) is constant but the direction changes with 
position within the sphere. Hence, the polarization vector within the sphere is given 
by rPP 

= . 
The polarization gives rise to bound charge density over the surface of the sphere which is 
given by 

PuP nsb == ˆ.


σ           …. 5.33 
Hence, total surface polarization charge is given by 

PRqsb
24π=           …. 5.34 

The volume charges due to polarization are distributed over the entire volume of the sphere 
and diverge at the center of the sphere. The bound volume charge density can be found as 

r
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r
r

r
PrPPvb

21..
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2 −=
∂
∂

−=∇−=∇−=
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ρ       …. 5.35 

Total volume charge due to polarization is 

PRdrr
r
PdVq

R

V
vbvb

22

0

442 ππρ −=





−== ∫∫      …. 5.36 

Hence, the total polarization charge, which is the sum of the bound volume charges ( )vbq and 
bound surface charges ( )sbq , is zero. 
 
Problem 5.1 
A thin dielectric rod of cross-sectional area S extends along the z-axis from z=0 to z=H. The 
polarization of the dielectric rod is along the z-axis and is given by kazaP ˆ)( 21 +=


. Calculate 

the bound surface charge density at each end, bound volume charge density and the total 
bound charge within the rod. 
Solution 
For the surface at z=H, kun

ˆˆ = and for the surface at z=0, kun
ˆˆ −=  

Hence, the bound surface charge density at z=H, ( ) 2121
ˆ. aHaazakP

HzHzHzsb +=+==
===


σ  

and the bound surface charge density at z=0, ( ) 202100
ˆ. aazakP

zzzsb −=+−=−=
===


σ  

So, total bound surface charge ( ) HSaSaSaHaqsb 1221 =−+=  

The bound volume charge density 1. aPvb −=∇−=


ρ  
So, total bound volume charge HSaqvb 1−=  
Therefore, total bound charge due to polarization 0=+= vbsb qq   
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Problem 5.2 
A dielectric cube of side 2m and center at origin has a radial polarization given by 

rP 
4= nC/m2 and kzjyixr ˆ2ˆ2ˆ2 ++=

 m. Find bound surface charge density, bound volume 
charge density and the total bound charge due to polarization. 
Solution 
Given, kzjyixP ˆ8ˆ8ˆ8 ++=


nC/m2 

For each of the six faces of the cube, there is a surface charge density sbσ . For the face at 
x=1m,  

2
11

/88ˆ. mnCxiP
xxsb ===
==


σ  

The magnitude of sbσ is same for all the six faces. Therefore, considering all the six faces of 
the cube, total bound surface charge 

nCqsb 192286 2 =××=  
The bound volume charge densitdy is  

( ) 3/24888. mnCPvb −=++−=∇−=


ρ  
Hence, total bound volume charge nCqvb 192224 3 −=×−=  
Thus, total bound charge within the cube due to polarization = 192-192 = 0. 
 
Electric Displacement Vector 
 
According to Gauss’s law, t

VS

qdVEdSE =∇= ∫∫


.. 00 εε     …. 5.37 

where, qt is the total charge enclosed by the volume V, which for dielectric materials include 
free as well as bound volume charges. 
Thus, ( )dVq

V
vbft ∫ += ρρ . Hence, from eqn.(5.37) 

( )dVdVE
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vbf
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∫∫ +=∇ ρρε


.0  

or, 
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.
ε
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ρρ tvbfE =

+
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
        …. 5.38 

But, according to eqn.(5.24), Pvb


.∇−=ρ  

Therefore, ( )PE f


.1.

0

∇−=∇ ρ
ε

 

or, ( ) fPE ρε =+∇


0.          …. 5.39 

Eqn.(5.39) is very important in the sense that the divergence of the vector ( )PE


+0ε through 
any volume is equal to the free charge density in that volume. This form of Gauss’ law is 
more convenient because the only charges that can be influenced externally are the free 
charges. 
This vector ( )PE


+0ε is called Electric Displacement Vector ( D


), so that 

PED


+= 0ε           …. 5.40 
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and from eqn.(5.39)  fD ρ=∇


.        …. 5.41 

The integral form eqn.(5.41) is ∫∫ =
V

f
S

dVdSD ρ.


    …. 5.42 

It should be noted here that both D


.∇ and ∫
S

dSD.


are related to free charges only and are 

unaffected by bound charges due to polarization. 
From eqn.(5.38), it may be seen that both free and bound charges are sources of E


, while 

eqn.(5.41) shows that only free charges are sources of D


. In other words lines of D


begin and 
end on free charges only, but the lines of E


begin and end on either free or bound charges. 

From eqn.(5.40), it may be written that 
00 εε

PDE



−=     …. 5.43 

It means that the E-field within a dielectric is resultant of two fields, viz. D-field and P-field. 
D-field is associated with free charges, while P-field is associated with bound charges due to 
polarization. Moreover, P-field acts in opposition to D-field. Thus, in the presence of P-field, 
i.e. in the presence of bound charges due to polarization, the E-field within a dielectric 
becomes less than the D-field. 
 
Electric Susceptibility 
 
For linear dielectric materials, polarization vector P


varies directly with applied electric 

field E


. Hence, P


and E


are related as follows 
EP e


χε0=           …. 5.44 

where, eχ is known as electric susceptibility of the dielectric. It is a dimensionless quantity 
and is a measure of how susceptible a dielectric material is to applied electric field. In other 
words, it indicates the relative ease of polarization of the dielectric.  
 
Dielectric Permittivity 
 
From eqns. (5.40) and (5.44), for linear dielectric materials 

( ) EED re


εεχε 00 1 =+=         …. 5.45 

or, ED


ε=           …. 5.46 
where, rεεε 0=          …. 5.47 

and 
0

1
ε
εχε =+= er          …. 5.48 

Here, ε is called the permittivity and εr is called the dielectric constant or relative permittivity 
of linear dielectric. εr is also a dimensionless quantity. For any material in which polarization 
vector is non-zero, electric susceptibility is greater than unity and hence relative permittivity 
is always greater than unity. For the majority of dielectric materials, εr varies with the 
frequency of the applied electric field. The value of εr that is relevant to electrostatics is the 
value in steady electric field or at low frequencies (<1000Hz).  
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Relationship between free charge density and bound volume charge density 
 

As discussed above, for linear dielectric media, DEDP
r


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






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11 , as Pvb


.∇−=ρ  

Hence, total charge density 
r

f
vbft ε

ρ
ρρρ =+=  

Thus for 1>rε , ft ρρ < , because fρ and vbρ  are of opposite polarities. 
 
Problem 5.3 
In a dielectric material Ey=10V/m and polarization vector 2/)ˆ200ˆ300ˆ400( mpCkjiP −+=


. 

Calculate a) Electric susceptibility ( eχ ), b) E


 and c) D


. 
Solution 

yey EP χε0= , or, 1010854.810300 1212 ×××=× −−
eχ , or, 39.3=eχ  

mVPE
e

x
x /33.13

39.310854.8
10400

12

12

0

=
××

×
== −

−

χε
 

and mVPE
e

z
z /67.6

39.310854.8
10200
12

12

0

−=
××

×−
== −

−

χε
 

So, mVkjiE /)ˆ67.6ˆ10ˆ33.13( −+=


 
Now, PED


+= 0ε  

So, [ ] 212 /10)ˆ200ˆ300ˆ400()ˆ67.6ˆ10ˆ33.13(854.8 mCkjikjiD −×−++−+×=


 
or, 2/)ˆ05.259ˆ54.388ˆ02.518( mpCkjiD −+=


 

 
Classification of Dielectrics 
 
Eqns.(5.44) to (5.48) are not applicable to dielectric materials in general. These equations are 
valid for a sub-class of dielectric materials known as linear, isotropic and homogeneous 
(LIH) materials. LIH dielectrics exhibit the following properties: 
i) Linearity: A dielectric is said to be linear if D


varies linearly with E


. For such materials, 

permittivity is constant and independent of applied electric field. For non-linear dielectrics, 
D


and E


have non-linear relationship. 
ii) Isotropy: A dielectric is said to be isotropic if D


and E


are in the same direction. Isotropic 

dielectrics have same permittivity in all directions. For anisotropic materials, D


, E


and P


are 
not parallel and hence permittivity varies with direction. Crystalline dielectrics are mostly 
anisotropic. 
iii) Homogeneity: Dielectric materials for which properties are same at all points within the 
volume of the material are called homogenous. For inhomogeneous dielectrics, properties 
like permittivity vary with space coordinates. A typical example of inhomogeneous dielectric 
is atmosphere air, as the permittivity of air varies with altitude. 
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Molecular Polarizability of Linear Dielectric 
 
Eqn.(5.44) relates polarization vector P


and macroscopic electric field E


through electric 

susceptibility (χe) in the case of linear dielectrics. The electric field that causes polarization of 
a molecule of a dielectric is known as molecular field molE


. Molecular field molE


is different 

from the macroscopic field E


 because the polarization of neighbouring molecules gives rise 
to an internal field intE


.  

Hence, intEEEmol


+=          …. 5.49 
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Fig.5.12 Molecular and macroscopic fields 

 
As shown in Fig.5.12, consider an imaginary sphere which contains the neighbouring 
molecules. This sphere is much larger in dimension compared to the molecules, but is 
infinitesimally small in macroscopic scale. The dielectric outside the sphere is replaced by the 
system of bound charges due to polarization (σsb). Then the internal field can be resolved into 
two components:  

farnear EEE


+=int          …. 5.50 
where, nearE


is the field due to neighbouring molecules which are located close to the given 

molecule and farE


is the field due to all other molecules, which arises from the bound charge 

density (σsb) on the sphere surface. farE


can be expressed in spherical coordinates as follows 
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   …. 5.51 

Considering the Cartesian coordinates, the x-component vanishes as it involves the 

integral ∫
π

φφ
2

0

cos d , which evaluates to zero, and the y-component vanishes as it involves the 

integral ∫
π

φφ
2

0

sin d , which is also zero. Therefore,  
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      …. 5.52 
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If the neighbouring molecules are randomly distributed in location, which is the case in most 

linear dielectrics, then 0=nearE


. So, 
0

int 3ε
PE



=  

Then, 
03ε

PEEmol



+=          …. 5.53 

Let, N be the number of molecules per unit volume and molp be the dipole moment of each 

molecule, then the polarization vector P


is given by 

molpNP 
=           …. 5.54 

Molecular dipole moment and molecular field can be related with the help of molecular 
polarizability ( molα ) as follows 

molmolmol Ep
 αε0=          …. 5.55 

Hence, from eqns.(5.53), (5.54) and (5.55), 
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εααε        …. 5.56 

Putting EP e


χε0= in eqn.(5.56), 
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−
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3
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Using er χε +=1  in eqn.(5.57) 
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3
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+
−

=
r

r
mol N ε

εα       …. 5.58 

Eqn.(5.58) is known as Clausius-Mossotti relation.  
In the discussion of this section a simple molecular model is used to understand the linear 
behaviour of dielectric that is characteristics of large number of dielectric materials. A 
detailed treatment, however, will necessitate quantum mechanical consideration. 
For a non-polar dielectric, dipole moment induced by the external field is Ep e

 α= , where, 
=eα Electronic polarizability of the atom. Then, polarization vector 

pNP 
= , where N is the number of dipoles per unit volume. 

But, EP e


χε0=  

Hence, ENE ee


αχε =0 , or, 

0ε
αχ e

e
N

= , or, 
0

11
ε
αχε e

er
N

+=+=    …. 5.59 

 
Piezoelectric Materials 
 
The term piezoelectricity refers to the fact that when a dielectric is mechanically stressed, 
then an electric field is produced within the dielectric. As a result of this electric field, 
measurable quantity of electric potential difference appears across the dielectric sample, 
which can be measured to find the mechanical strain on the dielectric. This principle is 
commonly used in piezoelectric strain transducers. The inverse effect also exists, that is 
mechanical strain is produced in a dielectric due to the application of electric field. 
Piezoelectric effect is mostly reversible. 
Piezoelectric materials could be natural or synthetic. The most commonly used natural 
piezoelectric material is quartz (SiO2). But synthetic piezoelectric materials, e.g. ceramics 
and polymers, are more efficient. The piezoelectric materials used in practice are, Berlinite 
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(AlPO4), Gallium Orthophosphate (GaPO4), Barium Titanate (BaTiO3), Lead Zirconate 
Titanate (PZT: PbZr1-xTixO3), Aluminum Nitride (AlN), Polyvinylidine Fluoride (PVDF) to 
name a few. In recent years, piezoceramics and piezopolymers are widely used in smart 
structures. Very recently, breakthrough in single crystal growth technique has enabled the 
development of high strain and high electric breakdown piezoceramics. 
The nature of piezoelectric effect is strongly related to the large number of electric dipoles 
present in the piezoelectric materials. These dipoles can either be due to ions on crystal lattice 
sites with asymmetric charge distribution or due to certain molecular groups having 
asymmetric configurations. When a mechanical stress is applied on a piezoelectric material, 
the crystalline structure is disturbed and it changes the direction of the polarization vector due 
to the electric dipoles. If the dipole is due to the ions, then the change in polarization is 
caused by a re-configuration of ions within the crystalline structure. On the other hand, if the 
dipole is due to molecular groups, then re-orientation of molecular groups causes the change 
in the polarization. The electric field developed because of the change in net polarization 
gives rise to piezoelectric effect. 
 
 
Ferroelectric Materials 
 
A ferroelectric material is a dielectric with at least two discrete stable or metastable states of 
different non-zero electric polarization under zero applied electric field, referred as 
“spontaneous polarization”. For a material to be considered ferroelectric, it must be possible 
to switch between these states by the application and removal of an applied electric field. In 
the case of conventional ferroelectrics, the spontaneous polarization is produced by the 
atomic arrangement of ions in the crystal structure, depending on their positions, and in 
electronic ferroelectrics the spontaneous polarization is produced by charge ordering of 
multiple valences. A non-zero spontaneous polarization can be present only in a crystal with 
a polar space group. Numerical values of spontaneous polarization are customarily given in 
units of µC/m2. All ferroelectric materials are necessarily piezoelectric. 
In the ferroelectric state the plot of polarization versus applied electric field shows a 
hysteresis loop, as shown in Fig.5.13, similar to ferromagnetic materials. A significant feature 
of ferroelectrics is that the spontaneous polarization can be reversed by an appropriately 
strong electric field applied in the opposite direction. Dielectric permittivity, which is 
dependent on the slope of P-E curve, is therefore dependent on the applied field, in the 
ferroelectric state.  
In most ferroelectrics, there is a phase transition from the ferroelectric state, to a non-polar 
paraelectric phase, with increasing temperature. The phase transition temperature is known as 
Curie Point (TC) at which the ferroelectric material changes from the low temperature 
polarized state to high temperature unpolarized state. The spontaneous polarization in most 
ferroelectric crystals is greatest at temperatures well below TC and decreases to zero at TC. 
Some ferroelectric materials have no Curie Point as these materials melt before the phase 
transition temperature is reached. The range of phase transition temperature for different 
ferroelectric materials is very wide varying from very low (50∼100K) to very high (over 
1000K) temperature.  
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Fig.5.13 Hysteresis loop in ferroelectric state 

 
While ferroelectricity was discovered in hydrogen-bonded material Rochelle salt 
(NaKC4H4O6,4H2O), dramatic change in the understanding of this phenomenon came through 
the discovery of ferroelectricity in the much simpler, non-hydrogen containing, perovskite 
oxide BaTiO3. BaTiO3 is the typical example of the very large and extensively studied and 
used perovskite oxide family, which not only includes perovskite compounds, but also 
includes ordered and disordered solid solutions. 
Ferrolecetrics are used in variety of applications like non-volatile memories, capacitors 
having tunable capacitance, varactors for RF/Microwave Circuits, Electro-Optic Modulators, 
high permittivity applications, pyroelectric detectors and so on. 
 
 
Electrets 
 
Electrets are unique, man-made materials that can hold an electrical charge after being 
polarized in an electric field. It is a piece of dielectric material which has been specially 
prepared to possess an overall fixed dipolarity. It is the electrical analogy of a permanent 
magnet. Instead of opposite magnetic poles, the electret has two electrical poles of trapped 
opposite polarity charges. Therefore, a fixed “static” potential exists between the two 
opposite poles of the dipolar electret. 
Electrets can be prepared from different dielectric materials depending on their structures and 
properties. The very first electrets were made of carnauba wax (Brazilian palm gum) and its 
mixtures with rosin, beeswax, ethylcellulose and other components. When a polar dielectric 
is placed in an electric field, the applied field causes the dipoles to be oriented in such a way 
that the dipole moments are directed parallel to the applied field. The degree of alignment 
achieved depends upon the freedom with which a dipole can turn around its axis. In the case 
of a material like carnauba wax, this freedom is greater when the wax is in molten state, but is 
almost zero when the wax is in the solid state. Hence, it is possible to melt the wax, keep it in 
an electric field so that the dipoles align themselves. Afterwards, while still under the 
influence of the electric field, the wax is allowed to cool and solidify. Then the molecular 
dipoles get set in the aligned position, and the wax piece becomes an electret. Electrets 
prepared in this way are known as Thermo-electrets. It has been reported in published 
literature that effective surface charge density of the order of 4∼6nC/m2 has been preserved 
practically unchanged in carnauba wax based electrets for more than 35 years.  
However, there are several other methods of preparation of electrets: (a) Photo-electrets are 
produced using light as heat source, (b) Radio-electrets are prepared by exposing the 



 88 

dielectric to a beam of charged particles, (c) Corona-electret is produced by placing the 
dielectric in a corona discharge field and is now-a-days preferred for industrial production of 
electrets, and (d) Mechano-electrets are formed by mechanical compression of dielectric 
between heated plates. Many modern electrets have only space or surface charge (like Teflon 
or Polypropylene electrets) and no dipole polarization. 
Electret materials include ceramics, non-polar/polar semi-crystalline and amorphous 
synthetic polymers, biopolymers and ferro-electric ceramic/polymer composites. The most 
common applications of electret are microphones, electro-acoustic devices, infrared detection 
and photocopying machines. Electrets are also being useful as novel devices in bio-medical 
and high-energy charge storage applications.   
 
 
 
Frequency Dependence of Polarizabilities 
 
If the behavior of dielectric polarizability is studied under alternating field, important 
distinctions between various polarizabilities emerge. Typical dependence of polarizabilities 
on frequency is depicted in Fig.5.14 over a wide range starting from static field to frequencies 
above ultraviolet region.  
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Fig.5.14 Frequency dependence of polarizabilities 

 
It may be seen that between f=0 to f=fs, where fs is typical around 1kHz, the polarizability 
gradually increases as frequency is decreased. Such increasing polarizability at lower 
frequencies arises because of interfacial polarization mechanism. From f=fs to f=fd, 
polarizability remains more or less constant, where fd is typically in microwave region. In this 
frequency span dipolar polarization mechanism is predominant. For f>fd the polarizability 
decreases by a significant amount and the amount of decrease corresponds to the dipolar 
polarizability. The reason for disappearance of dipolar polarizability for f>fd is that the field 
at these frequencies oscillate at a rapid rate which the dipoles are unable to follow and hence 
the dipolar polarizability vanishes. Further the polarizability remains nearly constant in the 
frequency range f=fs to f=fi, where fi is in infrared region. The drop in polarizability for f>fi is 
due to the absence of ionic polarizability at such higher frequencies, because ions being 
heavy are unable to follow the very rapidly varying ac field for f>fi. As a result for f>fi only 
electronic polarizability is active, because electrons being lighter are still able to follow the 
oscillating field at these frequencies. At extremely high frequencies for f>fe, where fe is in 
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ultraviolet region, even the electronic polarizability vanishes, as the electrons are also unable 
to follow such extremely rapid oscillating field.  
Typically the frequencies fe, fi, fd and fs characterize electronic, ionic, dipolar and interfacial 
polarizabilities, respectively. These frequencies depend on the dielectric materials and vary 
from dielectric to dielectric and also on the condition of the dielectric. Various polarizabilities 
can be determined by measuring dielectric properties at various frequencies of appropriate 
value. In fact this principle is the foundation of frequency domain spectroscopy, which is a 
major techniques used for condition monitoring of high voltage insulation system. 
 
 



 89 

Electrostatic Boundary Conditions  
 
Introduction 
 
In real life any conductor is always surrounded by at least one dielectric. It should be kept in 
mind that air is also a dielectric which is present almost everywhere. So even if there is no 
solid or liquid or any other gaseous dielectric around a conductor, it will in all probability be 
surrounded by air. Therefore, there will be boundaries between a conductor and a dielectric in 
practice. Moreover, except for very few cases like single core cables having only one 
dielectric or transmission line conductors surrounded by air at mid-span, dielectric materials 
are arranged either in series or in parallel between two conductors having a particular 
potential difference. For example, if one takes the case of an outdoor porcelain insulator, it 
may appear that there is only one dielectric, i.e. porcelain, involved. But the porcelain 
insulator will be surrounded by air and hence it becomes a two dielectric configuration. As a 
result there will be boundaries between two different dielectric media in practical 
configurations. Changes in some electric field quantities in direction and/or magnitude occur 
at such boundaries. The equations which describe such field behaviors by relating electric 
field quantities on two sides of a boundary surface are known as boundary conditions. The 
transition of electric field from one medium to another medium through a boundary surface is 
governed by the boundary conditions. 
 
Boundary Conditions between a Perfect Conductor and a Dielectric 
 
A perfect conductor is defined as a material within which the charges are able to move freely. 
In electrostatics it is considered that the charges have attained the equilibrium positions and 
are fixed in space. Theoretically consider that the charges are initially distributed uniformly 
throughout the volume of a perfect conductor. Such distributed charges should be of same 
polarity within a conductor of one particular value of electric potential, because if there are 
charges of opposite polarity within the volume of the conductor, then such charges will 
immediately recombine with each other as they are free to move. Hence, the charges of same 
polarity those are present in the volume of the conductor will exert repulsive forces on each 
other. Since the charges are able to move without any hindrance, hence the charges will 
disperse in such a direction so that the distance between the charges will increase. In the 
process all the charges will arrive at the surface of the conductor. But the conductor being 
surrounded by a dielectric, the charges are unable to move further and the charges will be 
fixed in space on the surface of the conductor. Consequently, any Gaussian surface within a 
perfect conductor will enclose zero charge and hence, electric field within a perfect conductor 
will be zero. 
 
Boundary Condition for Normal Component of Electric Flux Density 
 
Consider a coin-like closed volume of cylindrical shape as shown in Fig.6.1. Such a volume 
is often termed as a “Gaussian pillbox”. The pillbox has finite surface area ∆A and an 
infinitesimally small height δ, such that half of the pillbox is within the conductor and the 
other half is within the dielectric medium as shown. The top and bottom surfaces of the 
pillbox are parallel to the conductor-dielectric interface.  
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Fig.6.1 Pertaining to boundary condition for electric flux density at conductor-dielectric 

boundary 
 
Application of Gauss’s law to this pillbox yields  

∫ =
pillboxofSurface

sdD 
. Charge enclosed by the pillbox     …. 6.1 

For the RHS of eqn.(6.1) the following need to be considered: a) the volume of the pillbox is 
infinitesimally small and b) half of the volume of the pillbox within the perfect conductor 
does not contain any volume charge density, as the charges reside on the surface of the 
conductor and the other half of the volume of the pillbox within the dielectric also does not 
contain any volume charge density, if ideal dielectric is assumed. But the surface charge 
density on the conductor has a finite value and the area of the pillbox is also finite.  
Hence, the RHS of eqn.(6.1) = A∆σ        …. 6.2 
where, σ = surface charge density on the conductor. 
The integral on the LHS of eqn.(6.1) could be expanded as follows 

∫∫∫∫ ++=
surfacesWallsurfaceBottomsurfaceToppillboxofSurface

sdDsdDsdDsdD 
....     …. 6.3 

As the height of the pillbox is infinitesimally small, hence the integral over the wall surfaces 
is negligible. The integral over the bottom surface is also zero as the field within the perfect 
conductor is zero. Hence, eqn.(6.3) could be rewritten as 

∫∫ ∆==
surfaceTop

n
pillboxofSurface

ADsdDsdD 
..        …. 6.4 

where, Dn is the normal component of electric flux density.  
Hence, from eqns.(6.2) and (6.4),   

AADn ∆=∆ σ , or, σ=nD         …. 6.5 

Bringing in the unit normal vector, eqn.(6.5) could be written as σ=Dun


.ˆ  …. 6.6 

 
Boundary Condition for Tangential Component of Electric Field Intensity 
 
Consider an infinitesimally small closed rectangular loop “abcda” as shown in Fig.6.2, of 
which the length segments ab and cd are parallel to the conductor-dielectric boundary and the 
length segments bc and da are normal to the boundary. The length of the loop parallel the 
boundary is ∆l and is finite, but the length of the loop normal to the boundary is δ, which is 
negligibly small.  
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Fig.6.2 Pertaining to boundary condition for electric field intensity at conductor-dielectric 

boundary 
 
As E-field is conservative in nature, hence the integral of ldE


. over the loop contour abcda 

will be zero, i.e. 

0..... =+++= ∫∫∫∫∫
a

d

d

c

c

b

b

aabcda

ldEldEldEldEldE


     …. 6.7 

As stated the lengths bc and da are negligibly small. Hence, 0.. ≈=∫∫
a

d

c

b

ldEldE


 

Again the field within the perfect conductor is zero. Hence, 0. =∫
d

c

ldE


 

Therefore, from eqn.(6.7), 0. =∫
b

a

ldE


 

The length ab is ∆l, which is small but finite. Then considering E


 to be constant over the 
small length ∆l, it may be written that 

0=∆lEt , or, 0=tE          …. 6.8 
where, Et is the component of electric field intensity along the length ab, which is the 
tangential component of electric field intensity. 
Bringing in the unit normal vector, eqn.(6.8) could be written as 0ˆ =× Eun


 …. 6.9 

 
Field just off the Conductor Surface 
 
From eqn.(6.8), on the conductor surface 0=tE . In other words, the electric field acts in the 
direction normal to the conductor surface. Then, from eqn.(6.5), the normal component of 
electric field intensity could be written as 

0εε
σ

ε
σ

r
nE ==           …. 6.10 

As discussed in section 6.2.1, the electric field intensity as given by eqn.(6.10) is for the top 
surface of the pillbox. The height of the pillbox is infinitesimally small, but is not zero. 
Hence, the top surface of the pillbox, as shown in Fig.6.1, is not exactly on the conductor 
surface. As a result the value of electric field intensity as obtained from eqn.(6.10) is stated to 
be electric field intensity within the dielectric medium just off the conductor surface. 
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Problem 6.1 
A charged conductor is surrounded by air. Calculate 

i) the maximum charge density that the conductor can hold at STP and 
ii) the mechanical pressure acting on the conductor surface at that charge density. 

Solution: 
The conductor can hold the maximum charge density for which the electric field intensity just 
off the surface is equal to the breakdown strength of air at STP. This is due to the fact that 
any further increase in the value of charge density on the conductor surface will cause 
breakdown of air and the charges will be drained from the conductor. 
Breakdown strength of air at STP = 30 kV/cm = 30×103×102 V/m  =  3×106 V/m 
Let, the maximum charge density that the conductor can hold be σm. 
Now, εr for air = 1 
So,     σm / ε0  =  3×106 
or,      σm = 3×106 × 8.854 × 10-12  =  26.5 µC/m2 
Mechanical pressure acting on the conductor for σm  =  (3×106×26.5×10-6/2)  =  39.75 N/m2 
 
Boundary Conditions between Two Different Dielectric Media 
 
In the case of practical configurations comprising multiple homogeneous dielectric media, 
there could be many dielectric-dielectric boundaries. On such dielectric-dielectric boundaries 
there could be charges depending on the dissimilarities of the dielectric media that are present 
on the two sides of the boundaries. These surface charges will serve as source of electric field 
acting in opposite directions on the two sides of the boundary. Consequently, electric field 
quantities get changed in direction as well as magnitude on the two sides of the boundary.  
 
6.3.1 Boundary Condition for Normal Component of Electric Flux Density 
 
For the boundary between two dielectric media having permittivities ε1 and ε2, consider a 
cylindrical coin-like Gaussian pillbox as shown in Fig.6.3. The height of the pill box is 
infinitesimally small. As in eqn.(6.1) application of Gauss’s law to this pillbox yields  

∫ =
pillboxofSurface

sdD 
. Charge enclosed by the pillbox 

Subdividing the integral on the LHS into contributions from the top, bottom and wall surfaces 
of the pillbox and subdividing the wall surface into two halves, one in dielectric 1 and the 
other in dielectric 2, 

∫∫∫∫∫
−−−−

+++=
2

2
1

1
1

1
2

2 .....
DielectricsurfaceWallDielectricsurfaceWallDielectricsurfaceBottomDielectricsurfaceToppillboxofSurface

sdDsdDsdDsdDsdD 
 

As the height of the pillbox is vanishingly small, hence the contribution of the integral over 
the wall surfaces will be negligible. Thus 

∫∫∫
−−

+=
1

1
2

2 ...
DielectricsurfaceBottomDielectricsurfaceToppillboxofSurface

sdDsdDsdD 
     …. 6.11 
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Fig.6.3 Pertaining to boundary condition for electric flux density at dielectric-dielectric 
boundary 

 
As the top and bottom surfaces are small, 1D


and 2D


could be assumed to be constant over the 

bottom and top surfaces, respectively. Hence, 

∫
−

∆=∆=
2

2222 )ˆ.(..
DielectricsurfaceTop

n AuDADsdD


      …. 6.12 

and ∫
−

∆=∆=
1

1111 )ˆ.(..
DielectricsurfaceTop

n AuDADsdD


      …. 6.13 

Now considering the unit normal to be directed into the dielectric-2, 12 ˆˆˆ nnn uuu −==  
So, from eqn.(6.11), ( ) AuDuDsdD nn

pillboxofSurface

∆−=∫ ˆ.ˆ.. 12


    …. 6.14 

Let, the surface charge density on the boundary be ρs and the volume charge densities in the 
two halves of the pillbox be ρv1 and ρv2. Then the net charge enclosed by the pillbox is given 
by 

Charge enclosed by the pillbox = 
22 21
δρδρρ AAA vvs ∆+∆+∆    …. 6.15 

As the height of the pillbox, δ, is vanishingly small, the contribution of the terms involving 
volume charge densities will be negligible. Hence, eqn.(6.15) becomes 
Charge enclosed by the pillbox = As ∆ρ       …. 6.16 

So, from eqns.(6.14) and (6.16), ( ) snn uDuD ρ=− ˆ.ˆ. 12


 

or, snn DD ρ=− 12          …. 6.17 

as, nn DuD 22 ˆ. =


and nn DuD 11 ˆ. =


, which are normal components of electric flux density in 
dielectric 2 and 1, respectively. 
Eqn.(6.17) is valid in general. For example, consider that the medium 1 is a perfect 
conductor. Then D1 is zero. Then D2n is equal to the surface charge density, which is 
accordance with eqn.(6.5). 
 
Boundary Condition for Tangential Component of Electric Field Intensity 
 
Considering the infinitesimally small closed rectangular contour abcdefa as shown in Fig.6.4 
and applying the principle of conservative E-field along this closed contour 
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Fig.6.4 Pertaining to boundary condition for electric field intensity at dielectric-dielectric 

boundary 
 
But the length of the segments bc, cd, ef and fa are negligibly small and hence the integrals 
over these length elements contribute insignificantly. Thus from eqn.(6.18) 

0.. 12 =+ ∫∫
e

d

b

a

ldEldE


 

Then considering 2E


and 1E


to be constant over the small lengths ab and de and noting that 

deab ldlld


−=∆= , it may be written that 

0.. 1212 =∆−∆=+ ∫∫ lElEldEldE tt

e

d

b

a


 

or, tt EE 12 =           …. 6.19 
where, E2t and E1t are tangential components of E2 and E1, respectively, along the boundary. 
Eqn.(6.19) is also valid in general. For example, if the medium 1 is considered to be a perfect 
conductor, then E1 is zero. Then E2t is also zero, which is accordance with eqn.(6.8). 
 
Problem 6.2 
For a two dielectric arrangement comprising transformer oil (εr1=2) as dielectric-1 and mica 
(εr2=6) as dielectric-2, it is given that kjiE ˆ9ˆ4ˆ61 ++=


kV/cm. Find 2E


: (A) considering the 

boundary to be charge free and (B) considering a surface charge density of +70pC/cm2 on the 
boundary. Given that x-y plane is the boundary between the two media. 
Solution: 
Since x-y plane is the boundary between transformer oil and mica, hence x- and y-
components of E


are the tangential components along the boundary and are equal on both 

sides of the boundary. The z-component of D


is the normal component of electric flux density 
on the boundary. 
Application of boundary condition for tangential component of electric field intensity yields 

621 == xx EE kV/cm and 421 == yy EE kV/cm.  

z-component of E


need to be determined from the boundary condition of Dn separately for 
Case-A and Case-B. 
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Case-A: Boundary is charge free. 
As ρs=0, D2n = D1n, or, zrzr EE 101202 εεεε =  

As E1z=9kV/cm, 39
6
2

2 =×=zE kV/cm 

Therefore, kjiE ˆ3ˆ4ˆ62 ++=


kV/cm. 
Case-B: Surface charge density (ρs) on the boundary is +70pC/cm2. 
From the boundary condition of D2n, 

szrzr EE ρεεεε =− 101202  

or, 12

41223

022

11

02

101
2 10854.86

101070
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101092
−

−

××
××
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×××

=+=
+

=
εε

ρ
ε

ε
εε

ρεε

r

s

r

zr

r

szr
z

EEE  

           = 313176 V/m = 3.131 kV/cm 
Therefore, kjiE ˆ131.3ˆ4ˆ62 ++=


kV/cm.  

 
Boundary Condition for Charge free Dielectric-Dielectric Interface 
 
Consider an interface between two different dielectric media having permittivities ε1 and ε2, 
respectively, having no surface charge density on the boundary as shown in Fig.6.5. 
Typically if the dielectric media are ideal in nature so that there is no volume as well as 
surface conduction and also if there is no discharge taking place within the dielectric media 
or on the interface between the dielectric media, then the surface charge density on the 
interface is zero. 
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Fig.6.5 Pertaining to boundary condition for charge free dielectric-dielectric boundary 
 
From eqn.(6.17), 012 =− nn DD , as 0=sρ  
or, nn DD 12 = , or, nrnr EE 101202 εεεε = , or, 111222 coscos θεθε EE rr =   …. 6.20 
Again, from eqn.(6.19), tt EE 12 = , or, 1122 sinsin θθ EE =     …. 6.21 

From eqns.(6.20) and (6.21), 
1

2

1

2

tan
tan

r

r

ε
ε

θ
θ

=       …. 6.22 
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Problem 6.3 
The flux lines of an electric field pass from air into glass, making an angle 30° with the 
normal to the plane surface separating air and glass at the air-side of the surface. The relative 
permittivity of glass is 5.0. The field intensity in air is 200 V/m. Calculate the electric flux 
density in glass and also the angle, which the flux lines make with the normal on the glass 
side. 
Solution: 
Given,    εr1=1.0, εr2=5.0 and θ1=300 

So,         
1
5

30tan
tan

tan
tan

1

2
0

2

1

2 ===
r

r

ε
εθ

θ
θ ,  or,        tanθ2 = 2.887 

or,            θ2 =  70.90 
Again, E1 = 200 V/m and 2211 sinsin θθ EE = so that 00

2 30sin2009.70sin ×=E  
or, E2 = 105.8 V/m 
Hence, 68.48.10510854.85 12

2022 =×××== −ED r εε nC/m2 
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Multi-Dielectric Configurations 
 
Introduction 
 
Although single dielectric arrangements are employed in real life, but the number of such 
applications is small. In most of the cases, multiple dielectric media are used in various 
combinations between the electrodes or conductors.  In such multi-dielectric arrangements, 
contrary to common belief, the location of maximum electric field intensity may not be just 
off the live conductor in all the cases. Thus it becomes imperative that not only the magnitude 
but also the location of maximum electric field intensity should be determined accurately. 
This is to ensure that the maximum electric field intensity remains well below the dielectric 
strength of the material within which such maximum electric field intensity occurs. In the 
case of porous solid dielectric, the small pores are normally filled with air or another gaseous 
or liquid dielectric. Due to mismatch of the permittivity of the solid dielectric and the 
dielectric within the pores, electric field intensification may take place in the pores, which 
can also give rise to unwanted discharges within the equipment if appropriate measures are 
not taken to eliminate such field intensification. Thus electric field analysis in multi-dielectric 
arrangements is not only important from the design point of view but also is significant from 
the point of view of life extension of equipment that have such multi-dielectric arrangement. 
 
Parallel Plate Capacitor 
 
Multiple dielectrics within a parallel plate capacitor can be either in series or in parallel 
between the plates. Such series and parallel dielectric arrangements need to be analysed 
separately. 
 
Dielectrics in Parallel between the Plates 
 
A parallel plate capacitor with two dielectrics in parallel in between the plates is shown in 
Fig.7.1, such that the dielectric-dielectric boundary is perpendicular to the plates. If the 
separation distance between the plates is considered much smaller compared to the length and 
breadth of the plates, then the flux lines may be considered to be parallel to each other 
between the plates and also perpendicular to the plates within the dielectrics, neglecting the 
fringing of flux at the edges of the plates. Then along the paths of integration in both the 
dielectric media as shown in Fig.7.1, the flux lines will be tangential. Hence, 

in dielectric-1, VlE =1


, or, 

l
VE =1


 

and in dielectric-2, VlE =2


, or, 12 E

l
VE


==  

where, V is the potential difference between the plates of the capacitor. 
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Fig.7.1 Two dielectrics in parallel within a parallel plate capacitor 

 
Applying Gauss’s law considering the Gaussian surface in dielectric-1 as shown in Fig.7.1,  

111 QAD =×


, or, 
1

1
1 A

QD =


, or, 
11

1
1 A

QE
ε

=


, or, 
11

1

A
Q

l
V

ε
=     …. 7.1 

So, the capacitance between the plates comprising dielectric-1, 
l
A

V
QC 111

1

ε
==  …. 7.2 

Again, applying Gauss’s law considering the Gaussian surface in dielectric-2 as shown in 
Fig.7.1, 

222 QAD =×


, or, 
2

2
2 A

QD =


, or, 
22

2
2 A

QE
ε

=


, or, 
22

2

A
Q

l
V

ε
=    …. 7.3 

So, the capacitance between the plates comprising dielectric-2, 
l
A

V
QC 222

2

ε
==    …. 7.4 

Hence, the total capacitance of the parallel plate capacitor  

( )221121
2121 1 AA

l
CC

V
Q

V
Q

V
QQ

V
QC εε +=+=+=

+
==      …. 7.5 

 
Dielectrics in Series between the Plates 
 
A parallel plate capacitor with two dielectrics in series in between the plates is shown in 
Fig.7.2, such that the dielectric-dielectric boundary is parallel to the plates. As in section 
7.2.1, if the separation distance between the plates is considered much smaller compared to 
the length and breadth of the plates, then the flux lines may be considered to be parallel to 
each other between the plates and also perpendicular to the plates as well as the dielectric-
dielectric boundary within the capacitor, neglecting the fringing of flux at the edges of the 
plates.  
Applying Gauss’s law considering the Gaussian surface as shown in Fig.7.2,  

QAD =×


, or, 
A
QD =


 

According to the boundary condition on the dielectric-dielectric boundary of 
Fig.7.2, nn DD 21 = . Since, the flux lines are perpendicular to the plates and hence to the 

dielectric-dielectric boundary, nDD =


. In other words, electric flux density is the same in 

both the dielectric media. 

So, in dielectric-1, 
A

QE
1

1 ε
=


and in dielectric-2, 

A
QE
2

2 ε
=


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Fig.7.2 Two dielectrics in series within a parallel plate capacitor 

 
Again, along the path of integration through the two dielectric media as shown in Fig.7.2, the 
flux lines will be tangential. Hence, 

in dielectric-1, 111 VlE =


, or, 
A

Q
l
VE

11

1
1 ε

==


      …. 7.6 

where, V1 = potential difference across the dielectric-1 

and in dielectric-2, 222 VlE =


, or, 
A

Q
l
VE

22

2
2 ε

==


     …. 7.7 

where, V2 = potential difference across the dielectric-2 
If the potential difference between the plates of the capacitor is V, then 

=+= 21 VVV  2211 lElE


+ = 
22

2

11

1

A
lQ

A
lQ

εε
+       …. 7.8 

Let, the capacitance of the parallel plate capacitor be C, the capacitance of the part 
comprising dielecric-1 be C1 and the capacitance of the part comprising dielecric-2 be C2.  

Then from eqn.(7.6), 
1

1

1
1 l

A
V
QC ε

==  

and from eqn.(7.7), 
2

2

2
2 l

A
V
QC ε

==  

Hence, from eqn.(7.8), 
2122

2

11

1 111
CCA

l
A

l
Q
V

C
+=+==

εε
    …. 7.9 

Further, from eqns.(7.6) and (7.7), 
1

2

2

1

r

r

E

E
ε
ε

=



      …. 7.10 

It may be seen from eqn.(7.10), that if the dielectric within a capacitor is gas ( 11 ≈rε ) then 
partial filling of the capacitor by a solid or liquid dielectric is actually detrimental to the 
capacitor. Because in that case the electric field intensity in the gaseous dielectric will 
increase by a factor of εr2 ( 12 rr εε > ) and may even exceed the dielectric strength of the 
gaseous dielectric resulting in discharge within the capacitor. 
 
Void in Insulation 
 
Voids could be present in insulation in many different shapes and due to several reasons. 
Voids could be in the form of a gas bubble in liquid insulation such as transformer oil, a gas 
bubble in moulded epoxy resin or a small gap in solid insulation, e.g. gap formed due to 
delamination of pressboard insulation as a result of aging. Such voids are typically filled with 
air at a pressure slightly less than atmospheric pressure. A void in an insulation is 
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schematically shown in Fig.7.3. Considering the void dimensions to be small in comparison 
to the insulation surrounding it, it may be reasonably argued that the presence or absence of 
the void will not alter electric flux density at the location of the void. Then according to the 
discussions of section 7.2.2 and eqn.(7.10),  

insulationr
insulation

void

E

E
−=ε



 ( 1>−insulationrε )       …. 7.11 

Void

Insulating Medium

Electric Field  
Fig.7.3 Void in insulating medium 

 
Thus from eqn.(7.11) it is evident that electric field intensity within the void will be higher 
than that in the insulating medium. On the other hand the dielectric strength of air filling the 
void will be lower than that of the insulating medium. Consequently, there is every possibility 
that electric field intensity in the void may be in excess of the dielectric strength of air at the 
pressure and temperature within the void. This could result in discharge within the void. But 
there will be no discharge within the insulating medium around the void as electric field 
intensity there is lower and the dielectric strength of the insulation is higher. Such localized 
discharge within the void is called partial discharge (PD) and is highly detrimental to high 
voltage equipment as PD reduces the life of the equipment significantly. 
 
Impregnation of Porous Solid Insulation 
 
Solid insulation that are porous in nature, e.g. paper or pressboard, are very commonly used 
in high voltage equipment. In such cases the solid insulation is mainly cellulose, while the 
gas in the pores is air. The relative permittivity of cellulose insulation is of the order of 3∼4 
and the dielectric strength of cellulose is about 16kV/mm. On the other hand relative 
permittivity of air is ∼1 and the dielectric strength of air is 3kV/mm. In order that the solid 
insulation does not fail due to discharges within the pores, electric field intensity within the 
solid insulation has to be kept around 9∼12kV/mm, so that electric field intensity in the pores 
remains below 3kV/mm. But in that case the capacity of the paper insulation is not utilized to 
the full extent. Therefore, in practice such porous solid insulation is always impregnated with 
a suitable liquid dielectric. Due to impregnation the pores in the solid insulation will be filled 
by the liquid insulation which will have higher dielectric strength compared to air. But here it 
is important to note that the relative permittivity of the liquid dielectric used for impregnation 
must be close to the relative permittivity of the solid insulation being impregnated. 
Otherwise, there will be again a mismatch of the electric field intensity values within the 
liquid and solid dielectrics and the full benefit of impregnation could not be obtained. 
 
Co-axial Cylindrical Configurations 
 
Co-axial multi-dielectric arrangements, which are commonly used in power engineering, are 
cables and bushings. A single-core cable having three different dielectrics in between the core 
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and the earthed metallic screen is shown in Fig.7.4.  Bushings are special components used in 
high voltage system when a high voltage conductor has to pass through an earthed barrier, 
e.g. earthed tank of a transformer or a wall etc. Fig.7.5 shows a solid type oil impregnated 
paper bushing used in transformers typically for voltage ratings below 90kV. If a cross-
section is taken at AA ′ as shown in Fig.7.5, then the cross-sectional view will be same as that 
shown in Fig.7.4. Hence, the radial field distribution at the critical zone AA ′ , where the 
distance between the high voltage conductor and the earthed metallic flange is minimum, 
could be determined with reasonable degree of accuracy using the same analysis as in the 
case of cables. 
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Fig.7.4. A single-core cable having three different dielectric media 
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Fig.7.5 Solid type oil impregnated paper bushing used in transformers 

 
Electric field in the co-axial arrangement of Fig.7.4 is analysed assuming that electric field 
does not vary along the length of the cylinder normal to the plane of the paper. For cables this 
assumption is perfectly valid, while for bushings it is not valid as such, but the nature of 
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radial field distribution thus obtained gives a fair idea about the field concentration in the 
critical zone AA ′ that may cause eventual failure of a bushing. 
Let the charge per unit length on the inner conductor be q. Then for the Gaussian surface as 
shown in Fig.7.4, electric flux density at a radial distance of x can be obtained from the 
surface area of a cylinder of radius x and axial length unity, i.e. 

12 ×
=

x
qDx π

 

Hence, electric field intensity at any radius x is given by 

x
qE

x
x επ2
=           …. 7.12 

where, εx is the permittivity of the dielectric at the radial distance x.  
Then the potential difference V between the high voltage conductor and the earthed enclosure 
could be obtained from the line integral of electric field intensity. Considering the path of 
integral from D to A, 

∫∫ −=−=
A

D x

A

D
x dx

x
qdxEV
επ2

        …. 7.13 

But the integral of eqn.(7.13) needs to be evaluated section-wise where the permittivity 
remains constant. Thus 
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In eqn.(7.14) it may be seen that the expression within the parenthesis on the RHS is a 
constant for a given multi-dielectric arrangement. Hence, the charge per unit length on the 
inner conductor can be expressed in terms of the potential difference and the computed 
constant of eqn.(7.14) as follows 

K
Vq π2

= , where 







++=
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r
rK

εεε
     …. 7.15 

The capacitance per unit length of the multi-dielectric arrangement is 

KV
qC π2

==           …. 7.16 

Electric field intensity at any radius x is then given by 

xK
V

x
qE

xx
x εεπ

==
2

         …. 7.17 

From eqn.(7.17) it is clear that electric field intensity varies inversely with radial distance 
within each section of the arrangement comprising one particular dielectric. Thus the 
variation of electric field intensity can be plotted with radial distance as shown in Fig.7.6. 
From Fig.7.6, it may be seen that there is a discontinuity in electric field intensity at the 
boundary between two different dielectric media. The value of electric field intensity may 
increase or decrease at the boundary depending upon the relative values of the permittivity of 
the two dielectric media at the boundary. Thus for a multi-dielectric arrangement as shown in 
Fig.7.4, it cannot be stated that the maximum value of electric field intensity will occur just 
off the surface of the inner conductor in all the cases. On the contrary, it has to be ascertained 
case by case considering the physical dimensions and the dielectric arrangement. 
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Fig.7.6 Radial variation of electric field intensity in co-axial multi-dielectric arrangement 

 
Problem 7.1 
A single-core, lead sheathed cable joint has a conductor of 10mm diameter and two layers of 
different insulating materials, each 10mm thick. The relative permittivities are 3 and 2.5 for 
inner and outer dielectric, respectively. Calculate the potential gradient just off the conductor 
surface, when the potential difference between the conductor and lead sheath is 33 kVrms. 
Solution 
Given: εr1=3 and εr2=2.5, r1=(10/2)=5mm, r2=5+10=15mm and r3=15+10=25mm 

So according to eqn.(7.15), 
00

57.0
15
25ln

5.2
1

5
15ln

3
11

εε
=






 +=K  

Hence, potential gradient just off the conductor surface 

mmkVE rmsr /85.3
5357.0

33

0
0

1 =
×××

=
ε

ε

 

 
Problem 7.2 
A transformer bushing for 36kVrms consists of the following: 

Component Outside diameter εr 
Copper rod 4 cm  
Treated paper 5 cm 3 
Transformer oil 10 cm 2.1 
Porcelain 15 cm 5 

Find the magnitudes and locations of maximum and minimum electric field intensities within 
the bushing. 
Solution 
This problem is solved in accordance with Fig.7.4 and eqns.(7.15) & (7.17). 
Given: εr1=3 and εr2=2.1 and εr3=5, r1=2cm, r2=2.5cm, r3=5cm and r4=7.5cm 

So according to eqn.(7.15), 
00

4855.0
5
5.7ln

5
1

5.2
5ln

1.2
1

2
5.2ln

3
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εε
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




 ++=K  

So according to Fig.7.4, within paper insulation just off the conductor surface 
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At the paper-oil boundary, on the paper side cmkVE rmspaperB /88.9
5.234855.0
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0
0

=
×××

=
ε
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At the paper-oil boundary, on the oil side cmkVE rmsoilB /12.14
5.21.24855.0
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0
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×××

=
ε

ε

 

At the oil-porcelain boundary, on the oil side cmkVE rmsoilC /06.7
51.24855.0
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0
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×××

=
ε

ε

 

At the oil-porcelain boundary, on porcelain side cmkVE rmsPorcelainC /97.2
554855.0

36

0
0

=
×××

=
ε

ε

 

Within porcelain just off the earth surface cmkVE rmsD /98.1
5.754855.0

36

0
0

=
×××

=
ε

ε

 

So the maximum electric field intensity is 14.12 kVrms/cm at the oil side of the oil-paper 
boundary and the minimum electric field intensity is 1.98 kVrms/cm within porcelain just off 
the earth surface. 
 
Problem 7.3 
A conductor 2.8 cm in diameter is passed centrally through a porcelain bushing (εr=5) having 
internal and external diameters of 3cm and 9cm, respectively. The potential difference 
between the conductor and the earthed metallic flange around the porcelain is 12kVrms. 
Determine whether or not partial discharges will be present in the air-space around the 
conductor. Also find the electric stress just off the conductor surface, if the air-space is filled 
with transformer oil (εr=2.1). 
Solution 
The arrangement as per the statement of the problem is shown in Fig.7.7. With reference to 
Fig.7.7, the given quantities are as follows: 
εr2=5, r1=1.4cm, r2=1.5cm and r3=4.5cm 
Case-I: When the small space between the copper rod and porcelain cover is filled with air. 
Then εr1=1. So, according to eqn.(7.15) in this case  

00
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Within this air space the maximum electric field intensity will occur just of the conductor 
surface and will be  

cmkVE rmsaircond /69.29
4.12887.0

12

0
0

=
××

=
ε

ε

 

Breakdown strength of air is 30kVp/cm or 21.21kVrms/cm at STP. So partial discharges will be 
present in the air space. 
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Fig.7.7 Pertaining to Problem 7.3 

 
Case-II: When the small space between the copper rod and porcelain cover is filled with 
transformer oil instead of air. Then εr1=2.1. So, according to eqn.(7.15) in this case  

00

2525.0
5.1
5.4ln

5
1

4.1
5.1ln

1.2
112

εε
=






 +=K  

Then the maximum electric field intensity just off the conductor surface is  
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It may be seen that filling up the small space by transformer oil brings down the electric field 
intensity considerably. Moreover, transformer oil has higher breakdown strength than air. So, 
partial discharges will not occur in the small gap. 
This problem brings out an important aspect of transformer bushing design. Since copper and 
porcelain are both solid, it is very difficult to get a perfect contact between them. So 
intentionally a small gap is kept between these two for easy operation. But if this small space 
is kept filled with air then partial discharge is inevitable, which is undesirable. Hence, the 
solid type bushings are always so designed that this small space is filled with transformer oil 
in stead of air. 
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Uniqueness Theorem 
 
It states that once any method of solving Poisson’s or Laplace’s equations subject to given 
boundary conditions has been found, the problem has been solved once and for all. No other 
method can ever give a different solution. 
 
Proof: 
Consider a volume V bounded by a surface S. Also consider that there is a charge density ρv 
throughout the volume V, and the value of the scalar electric potential on the surface S is φs. 
Assume that there are two solutions of Poisson’s equation, viz. φ1 and φ2. Then 

ε
ρφ v−=∇ 1

2


    and    
ε
ρφ v−=∇ 2

2


 

So,  ( ) 021
2 =−∇ φφ


         …. 13.4 
Now, each solution must also satisfy the boundary conditions. It is to be noted here that one 
particular point can not have two different electric potentials, as the work done to move a unit 
positive charge from infinity to that point is unique. Let, the value of φ1 on the boundary is 
φ1s and the value of φ2 on the boundary is φ2s and they must be identical to φs. 
Therefore,   φ1s = φ2s = φs 
 or,  φ1s – φ2s = 0  
For any scalar φ and any vector D


, the following vector identity can be written. 

( ) ( ) DDD


.. φφφ ∇+∇≡∇         …. 13.5 
 
Consider the scalar as (φ1 – φ2) and the vector as ( )21 φφ −∇


. Then from identity (13.5), 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )212121212121 ... φφφφφφφφφφφφ −∇−∇+−∇∇−≡−∇−∇


  .… 13.6 
Now, integrating throughout the volume V enclosed by the boundary surface S, 
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 …. 13.7 

Applying divergence theorem to the L.H.S of identity (13.7), 
( ) ( )[ ] ( ) ( ) 0. 21212121 =−∇−=−∇−∇ ∫∫ dsdv

S
SS
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φφφφφφφφ


    …. 13.8 

as φ1s = φ2s on the specified surface S. 
 
On the RHS of identity (13.7), ( ) 021

2 =−∇ φφ


from eqn.(13.4). Hence, identity (13.7) reduces 
to 

( )[ ] 02
21 =−∇∫ dv

V

φφ


         …. 13.9 

Since, ( )[ ]2
21 φφ −∇


cannot be negative, hence the integrand must be zero everywhere so that 

the integral may be zero. 
Hence, 

( )[ ] 02
21 =−∇ φφ


 or, ( ) 021 =−∇ φφ


      …. 13.10 

Again, if the gradient of (φ1 – φ2) is zero everywhere, then 
  φ1 – φ2 = Constant       .… 13.11 
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This constant may be evaluated by considering a point on the boundary surface S. So that, 
  φ1 – φ2 = φ1s – φ2s = 0 
 or, φ1 = φ2 
which means that the two solutions are identical. 
 
However, in practice if the same problem is solved by using different numerical techniques 
the results are not exactly the same. This is due to the fact that the errors in a particular 
numerical method are often problem dependent and hence the results are not exactly same in 
all the methods. So, this is not a violation of the Uniqueness theorem. 
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Method of Images  
 
Introduction 
 
To explain the idea behind the method of images, consider two distinctly different 
electrostatic problems. The real problem is the one in which a charge density is given in a 
finite domain V bounded by its surface S with specific boundary conditions on the surface S. 
The other is a fictitious problem in which the charge density with the finite domain V is the 
same as that for the real problem, but the boundary surfaces are replaced by suitable fictitious 
charge distribution located outside the domain V. If the fictitious charge distribution is so 
chosen that the solution to the fictitious problem satisfies the boundary conditions specified 
in the real problem, then the solution to the fictitious problem is also the solution to the real 
problem. The fictitious charge distribution so determined is called the image of the true 
charge distribution for the real problem.  
In other words, the idea is to convert an electrostatic problem involving conducting objects, 
which are spatially extended, in such a way that conducting surfaces having given boundary 
conditions are replaced by a finite number of appropriately chosen and suitably placed 
discrete charges known as image charges. Image charges are always located outside the 
region where the field is to be determined. While doing this replacement of boundary 
surfaces by image charges, the original boundary conditions of the real problem are retained. 
Thus the more complicated original problem could then be solved as a relatively simpler 
problem having known charge configuration.  
 
Image of a Point Charge wrt an Infinitely Long Conducting Plane 
 
Consider a point charge of positive polarity and magnitude Q located at a height z1 from an 
infinitely long conducting plane present at z=0 as shown in Fig.9.1, such that the location of 
the point charge is given by (x1,y1,z1). As discussed in section 1.7.2, an infinitely long 
conducting plane, which is also an equipotential surface, will have zero electric potential. The 
practical example of such a plane is earth surface. In fact in any electric field distribution 
earth surface having zero potential plays a significant role and hence taking the image of a 
point charge wrt an infinitely long conducting plane takes into account the effect of grounded 
earth surface in electric field calculation.  
Considering the conducting plane to be the x-y plane, the problem is to find a solution for 
electric field in the region z>0. This solution can be obtained by solving Laplace’s equation 
with the following conditions:  
i) The solution φ(x,y,z) will be valid at every point for z>0 except the location of the point 

charge. 
ii) The potential at all the points on the conducting plane is zero, i.e φ(x,y,0)=0.  
iii) The potential approaches zero as the distance from the charge approaches infinity. 
It is not easy to find a solution to Laplace’s equation that satisfies all the above conditions. 
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Fig.9.1 Point charge near an infinitely long conducting plane 

 
The problem can also be viewed from another angle. The positive polarity point charge at 
z=z1 will induce negative polarity charges on the surface of the conducting plane. Say, the 
induced surface charge density is -σs. Then the electric field at any point in the region z>0 
will be due to the point charge and the induced surface charges. But the difficulty is that σs 
needs to be determined using the boundary condition φ(x,y,0)=0, before the solution to 
electric field in the region z>0 could be obtained. Furthermore, the evaluation of the surface 
integral to obtain the field due to the induced charges is also not an easy task. From all these 
considerations, taking the image of the point charge wrt to the infinitely long conducting 
plane to replace the plane by the image charge is an easy and practical methodology. 

The electric potential at a distance r from a point charge is given by
r

Q
04 επ

. Considering the 

spherical symmetry of the field due to a point charge, it may be seen that the electric field due 
to a point charge is dependent only on r-coordinate in spherical coordinate system and is 
independent of θ and φ coordinates. Hence, this electric potential satisfies Laplace’s equation 
in spherical coordinates as follows. 
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Consider that the infinitely long conducting plane is replaced by a fictitious charge of 
magnitude Q1 located at (x1,y1,-z2). Since the field due a point charge satisfies Laplace’s 
equation, then the field due to the real point charge and the image point charge will also 
satisfy Laplace’s equation at all points for z>0 except at the location of the real point charge.  
Therefore, the electric potential at any point P(x,y,z) will be given by 

20

1

10 44 R
Q

R
Q

P επεπ
φ +=         …. 9.1 

where, ( ) ( ) ( )[ ] 2/12
1

2
1

2
11 zzyyxxR −+−+−=  

and      ( ) ( ) ( )[ ] 2/12
2

2
1

2
12 zzyyxxR ++−+−=  

From eqn.(9.1) it is evident that the potential at a very large distance from the point charge Q 
will be zero. 
So two of the above-mentioned three conditions are satisfied by eqn.(9.1). In order to satisfy 
the third condition, φP at any point on the conducting plane has to be zero. From eqn.(9.1), it 
is obvious that the polarity of Q1 has to be negative to satisfy this condition. Furthermore, the 
following has to be satisfied at all the points on the conducting plane 
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The best solution for eqn.(9.2) is obtained when the magnitude of the image charge (Q1) is 
equal to the magnitude of the real charge (Q) and location of the image charge is such that the 
magnitudes of R1 and R2 are equal at all the points on the conducting plane. From the 
expressions of R1 and R2 it is clear that for z=0, R1 will be equal to R2 if z1=z2. So the third 
condition will also be satisfied if Q1=-Q and the location of the image charge is at (x1,y1,-z1). 
Thus the combination of the real charge Q located at (x1,y1,z1) and the image charge –Q 
located at (x1,y1,-z1) satisfies all the three conditions stated above. Hence, the electric field in 
the region z>0 due to the real point charge +Q and the infinitely long conducting plane will 
be the same as that due to the real point charge +Q and its image point charge –Q located as 
mentioned above.  
Therefore, the electric potential at any point P(x,y,z) for z>0 will be given by  
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In Cartesian coordinates, electric field intensity at any point P(x,y,z) for z>0 will be given by 
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For any point very near to the conducting plane, i.e. z→0, R1≈R2. Hence, ExP and EyP will be 
zero. Thus 
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Eqn.(9.5) gives the negative surface charge density induced on the conducting plane by the 
positive polarity real point charge. 
This problem can also be viewed from a different perspective. The field due to the real point 
charge and the image point charge is the same as that due to a spatially extended electric 
dipole. Considering spherical coordinates and assuming that the electric dipole to be oriented 
along the axis of symmetry as shown in Fig.9.2, electric potential and electric field intensity 
can be expressed in spherical coordinates.  
With reference to Fig.9.2,  
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( ) ( ) 2/1222/122
2 cos2)cos(2 θθπ rhhrrhhrr ++=−−+=     …. 9.6 
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Fig.9.2 Electric dipole formed by the real and image charges 
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Eqns.(9.7) and (9.8) are the expressions for the electric field due to an electric dipole of 
dipole moment kQhM ˆ2=


, as shown in Fig.9.2. 

However, it is to be noted here that the solution obtained with the help of image charge is 
valid for the region z>0 as for z<0 the region is below an infinitely long conducting plane 
whose potential is zero and hence for z<0 the electric field is zero. The image charge does not 
exist in reality as it is a fictitious charge. 
 
Image of a Point Charge wrt a Grounded Conducting Sphere 
 
Image of a charge is not necessarily to be taken wrt infinitely long plane only. It can also be 
taken wrt curved surfaces like sphere, cylinder etc. To elaborate this issue, consider a point 
charge +Q located at distance d from the center (O) of the sphere of radius a (a<d), as shown 
in Fig.9.4. Consider also that the electric potential of the sphere is zero. The field due to the 
point charge and the grounded sphere in the region outside the sphere could be determined by 
replacing the grounded sphere by an image charge. From the symmetry of the system it is 
evident that the image charge q will of negative polarity and will be located inside the sphere 
on the line joining the center of the sphere and the point charge, as shown in Fig.9.4. 
However, in this case the magnitude of q will not be equal to Q because such a pair of 
charges will not result into a zero potential spherical surface of radius a as required by the 
boundary condition.  
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Fig.9.4 Point charge near a grounded sphere  

 
Consider that the image charge is located at a distance s from the center of the sphere as 
shown in Fig.9.4. Now the problem is to determine the magnitude as well as the location of 
the image charge that satisfies the zero potential boundary condition for the spherical surface. 
With reference to Fig.9.4, the potential at the point P due to the point charge and its image is 
given by 
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Imposition of the boundary condition 0=Pφ  leads to  
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If α is kept constant, then 
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Since, the radius of the sphere and the location of the point charge are known, hence the 
constant α can be computed from the ratio of a and d, as given by eqn.(9.11). 

Therefore, the magnitude of the image charge is given by Q
d
aq =    …. 9.12 

and the location of the image charge is given by 
d
as

2

=     …. 9.13 

Considering the line joining the point charge and its image passing through the center of the 
sphere to be along the z-axis and the center of the sphere to be the origin as shown in Fig.9.4, 
and also taking into account the spherical symmetry of the configuration, the field can be 
expressed in spherical coordinates as follows. 
With reference to the point P of Fig.9.4,  
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 , where θ is the angle between a and d at the point P 
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Similarly, for any point in the field region for which r is the distance of the point from the 
origin, i.e. the center of the sphere, and θ is the angle between r and d 
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So, electric potential at any point due to the point charge and its image is given by  
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Now, r-component of electric field intensity is the normal component on the sphere surface. 
So, assuming the induced surface charge density on the sphere surface to be σs, the normal 

component of electric field intensity is equal to
0ε

σ s just off the sphere surface. Equating this 

expression with the one given by eqn.(9.15), the induced surface charge density on the 
grounded sphere surface is given by 
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Method of Successive Images 
 
Sphere gap arrangements are very commonly used in high voltage system for voltage 
measurement. As shown in Fig.9.5, in this arrangement two spheres of identical radii are 
separated by a specific distance s, where one sphere is charged while the other is earthed. The 
field within the sphere gap due to the two spheres could be analyzed with the help of image 
charges as described in section 9.3. The live sphere of potential V is at first replaced by a 
charge of magnitude VaQA 04 επ= located at the center of the live sphere. Then to keep the 
potential of the grounded sphere at zero, -q1 is introduced within the grounded sphere which 
is the image of QA, as shown in Fig.9.5. The magnitude and location of q1 are given by 
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Fig.9.5 Method of successive imaging as applied to sphere gap arrangement 
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But the introduction of -q1 will make the potential of live sphere different from V. So to keep 
the potential of live sphere equal to V, +q2, which is the image of –q1, is introduced within 
the live sphere such that the potential of live sphere due to +q2 and –q1 will be zero. As a 
result, the potential of live sphere due to +QA, -q1 and +q2 will be again V. The magnitude and 
location of q2 are given by 
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But the introduction of +q2 will make the potential of grounded sphere different from zero. So 
–q3 is introduced within the grounded sphere as the image of +q2 to make the potential of the 
grounded sphere equal to zero. Further, introduction of –q3 warrants introduction of +q4 
within the live sphere and so on. In this way there will be an infinite series of charges within 
the two spheres: positive charges such as +QA, +q2, +q4 within the live sphere and negative 
charges such as –q1, –q3 within the grounded sphere. This method of taking successive image 
charges within the two spheres is known as method successive imaging. It may be seen from 
eqns.(9.17) and (9.18) that each successive image charge is smaller in magnitude and 
gradually shifts towards the surface of the sphere within which it is located. In all practicality 
it is adequate to take the first few images within the two spheres to achieve reasonably good 
accuracy in the computation of electric field. In the sphere gap arrangement, maximum value 
of electric field intensity occurs at the so called sparking tips of the spheres, viz. points A and 
B as shown in Fig.9.5. This maximum electric field intensity can be obtained as 
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As discussed in section 4.7, 
s
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Variation of field factor (f) with gap distance (s) in the case of sphere gap arrangement is 
presented in Table 9.1. It may be seen from Table 9.1 that the deviation from uniform field 
(f=1) for s/a=0.2 is 6.8% while that for s/a=1.0 is 36.6%. Accuracy of voltage measurement 
by sphere gap depends significantly on the degree of field non-uniformity between the two 
spheres. Hence, it is recommended in practice that the gap distance should not be made more 
than the radius of the spheres. 
 

Table 9.1 
Variation of field factor with gap distance for sphere gap 

s/a 0.2 0.4 0.6 0.8 1.0 
f 1.068 1.139 1.212 1.288 1.366 

 
Problem 9.1 
Two spheres of 25cm diameter have a gap distance of 2.5cm between them. Determine the 
breakdown voltage of the sphere gap in air at STP. 
Solution 
Given, s = 2.5cm and a = (25/2) = 12.5cm 
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So, 2.0
5.12
5.2

==
a
s   Correspondingly, field factor (f) = 1.068 

Emax corresponding to breakdown of air at STP is 30kVp/cm. 

So, 09.28
068.1
30max ===

f
EEav kVp/cm 

But, 
s
VEav =  Hence, 09.28

5.2
=

V , or, V = 70.22 kVp. 

 
Image of an Infinitely Long Line Charge wrt an Infinitely Long 
Conducting Plane 
 
Consider an infinitely long line charge of positive polarity and uniform line charge density 
+λl is located parallel to an infinitely long conducting plane present at y=0 and is at a height 
y1 from the plane as shown in Fig.9.7, such that the location of the point charge is given by 
(x1,y1). The configuration as shown in Fig.9.7 depicts the view on the cross-sectional plane 
perpendicular to the length of the charge and the plane. As discussed earlier, the practical 
example of such a plane is earth surface having zero potential. The problem is therefore a 
two-dimensional one in Cartesian coordinates, where the field varies only on the x-y plane, 
i.e. the cross-sectional plane. 
So, the problem is to find a solution for electric field in the region y>0. As discussed in 
section 9.2, this solution can be obtained by solving Laplace’s equation with the following 
conditions:  
i) The solution φ(x,y) will be valid at every point for y>0 except the location of the line 

charge. 
ii) The potential at all the points on the conducting plane is zero, i.e φ(x,0)=0.  
iii) The potential approaches zero as the distance from the charge approaches infinity. 
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Fig.9.7 Infinitely long line charge near an infinitely long conducting plane 

 
The electric potential at a distance r from an infinitely long line charge is given 

by
r
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2 0επ
, where R→∞. Considering the cylindrical symmetry of the field due to an 

infinitely long line charge, it may be seen that the electric field due to an infinitely long line 
charge is dependent only on r-coordinate in cylindrical coordinate system and is independent 
of θ and z coordinates. Hence, this electric potential satisfies Laplace’s equation in cylindrical 
coordinates as follows. 
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Similar to the discussion of section 9.2, the infinitely long conducting plane is replaced by a 
fictitious line charge of uniform line charge density -λl located at (x1,-y1), which is the image 
of the real line charge. Since the field due an infinitely long line charge satisfies Laplace’s 
equation, then the field due to the real line charge and the image line charge will also satisfy 
Laplace’s equation at all points for y>0 except at the location of the real line charge.  
Therefore, the electric potential at any point P(x,y) will be given by 

1

2

0

ln
2 R

Rl
P επ

λφ =          …. 9.25 

where, ( ) ( )[ ] 2/12
1

2
11 yyxxR −+−=  

and      ( ) ( )[ ] 2/12
1

2
12 yyxxR ++−=  

From eqn.(9.1) it is evident that the potential at a very large distance from the line charge will 
be zero and also that the potential at all the points on the conducting plane at y=0 will be zero, 
because at every point on the plane R1=R2. 
In Cartesian coordinates for two-dimensional system, electric field intensity at any point 
P(x,y) for y>0 will be given by 

j
y

i
x

E PP
P

ˆˆ
∂

∂
−

∂
∂

−=
φφ

         …. 9.26 

where, 






 −
−

−
=

∂
∂

−= 2
2

1
2

1

1

02 R
xx

R
xxQ

x
E P

xP επ
φ  

           






 +
−

−
=

∂
∂

−= 2
2

1
2

1

1

02 R
yy

R
yyQ

y
E P

yP επ
φ  

For any point very near to the conducting plane, i.e. y→0, R1≈R2. Hence, ExP will be zero. 
Thus 
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Eqn.(9.27) gives the negative surface charge density (σs) induced on the conducting plane by 
the positive polarity real line charge. 
From eqn.(9.25), an expression for the equipotential surface can be obtained as 
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Fig. 9.8 Equipotentials for an infinitely long charge and its image wrt an infinitely long 

conducting plane 

Eqn.(9.28) shows that the equipotentials are circles of radius 
1

2
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−α
α y  having center at 
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1, yx

−
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α
α on the cross-sectional plane. For the infinite conducting plane of zero potential 

α=1. For equipotentials above the infinite conducting plane α>1 and those below the infinite 
conducting plane α<1. In physical terms, the equipotentials are circular cylinders with axes 
parallel to the two line charges as shown in Fig.9.8. As α increases the radius of the cylinder 
increases and the axis of the cylinder shifts further away from the line charge. 
The equipotentials below the conducting planes does have any physical meaning as the 
electric field is zero below the infinitely long conducting plane. But the equipotentials as 
shown in Fig.9.8 gives an important idea that two parallel cylinders having electric potentials 
+V and –V could be replaced by two infinitely long line charges. However, the line charges 
will not be located at the axes of the cylinders. 
 
Two Infinitely Long Parallel Cylinders 
 
Electric field due to two parallel cylindrical transmission line conductors is the same as the 
field due to two infinitely long parallel cylinders. The cross-sectional view of the 
arrangement is shown in Fig.9.9. Electric field for this arrangement is two-dimensional in 
Cartesian coordinates, because the field does not vary along the z-axis, which is along the 
length of the cylinders. Electric field varies only on the cross-sectional plane which is taken 
as the x-y plane. As discussed in section 9.4, these two parallel cylinders having potential +V 
and –V could be replaced by two infinitely long line charges of uniform line charge density 
+λl and -λl located within the respective cylinders as shown in Fig.9.9. These two line 
charges together will create two cylindrical equipotential surfaces of radius a having the 
prescribed potentials +V and –V. The charges will be located at a distance s from the axis of 
the respective cylinders. So the problem is to find the location of these charges. 



 118 

O 21

P

a

d

s

−λl

x

y

+λl

R2

R1

s

a

X

φ = +V φ = -V

 
Fig.9.9 Two infinitely long parallel cylinders replaced by two infinitely long line charges 

 
With reference to Fig.9.9, the potential of the point P on the surface of the cylinder is 
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For the cylinder surface to be equipotential the ratio of R2 to R1 must be constant. 
Considering the point 1 on the cylinder surface as shown in Fig.9.9, 
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and for the point 2 on the cylinder surface as shown in Fig.9.9, 
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In the solution of s as given by eqn.(9.31), the additive expression has to be neglected, 
because in that case the image charge will be located outside the cylinder. Therefore, 
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For transmission lines, d>>a and hence s≈0, i.e. the line charges are placed on the axes of the 
two cylinders. 
Now, the potential at the point 2 on the cylinder surface, as shown in Fig.9.9, is +V. Hence, 
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Eqn.(9.33) gives the magnitude of the uniform line charge density. 
In the arrangement shown in Fig.9.9, maximum electric field intensity (Emax) occurs at the 
point 2, which is given by 
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RHS of eqn.(9.34) is in terms of the physical dimensions of the arrangement and the electric 
potential of the cylinders and hence can be computed in a straightforward manner. 

Again, for the physical arrangement of Fig.9.9, 
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Putting the value of s from eqn.(9.32) in eqn.(9.35) and upon simplification it may be written 
that 
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For transmission lines, eqn.(9.36) is often modified by putting d=X+2a, which yields 
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Eqn.(9.37) represents the field factor as a function of the ratio of the gap distance between the 
two transmission line conductors (X) and the radius of the conductors (a). 
For high voltage transmission lines, d>>a. As a result the field factor as given by eqn.(9.36) 
reduces to 
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Capacitance per unit length between the two parallel cylinders can be obtained from 
eqn.(9.32) and (9.33) as follows 
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Since, ( ) xxx 12 cosh1ln −=−+ , hence for x>1 eqn.(9.40) can be written as 
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Problem 9.2 
A long conductor of negligible radius is at a height 5m from earth surface and is parallel to it. 
It has a uniform line charge density of +1nC/m. Find the electric potential and field intensity 
at a point 3m below the line. 
Solution 
The arrangement of the problem is shown in Fig.9.10. Since the conductor is considered to 
have negligible radius, hence the line charge is located on the axis of the conductor.  

+1nc/m

-1nc/m

P
5m

5m

2m

R1=3m

R2=7m

 
Fig.9.10 Pertaining to Problem 9.2 

With reference to eqn.(9.25), λl=1nc/m, R1=3m and R2=7m. 
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Electric field intensity components at the point P are obtained from eqn.(9.26) as follows: 
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Problem 9.3 
Determine the breakdown voltage in air at STP of a 20cm diameter cylindrical electrode 
placed horizontally with its axis 20cm above earth surface. 
Solution 
The arrangement of the problem is shown in Fig.9.11.  
 

a=10m

φ = V

φ = -V
a=10m

d=
40

m

 
Fig.9.11 Pertaining to Problem 9.3 

 
With reference to eqn.(9.36) 
d = 40cm and a = 10cm. Hence, (d/2a) = 2 
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So, 315.1
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Emax corresponding to breakdown of air at STP is 30kVp/cm. 
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Salient Features of Method of Images 
 
a) Image charges are always located outside the region where the field is to be determined. 
b) Depending on the type of problem, magnitude of image charge may or may not be the 

same as that of the physical charge. 
c) Depending on the type of problem, image charges may or may not be of polarity opposite 

to that of the physical charge. 
d) In the image charge system electric field is finite on both sides of the imaging surface. But 

in the physical system electric field is non zero and finite only on one side of the imaging 
surface. Since energy in electric field is proportional to volume integral of E2, the 
electrostatic energy in the physical charge system is half of the electrostatic energy of the 
image charge system. 
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Numerical Field Calculation 
 
The analytical methods can only be applied to the cases, where the electrode or 
dielectric boundaries are of simple geometrical forms such as cylinders, spheres etc. 
In other words, in this method the boundaries are required to be defined exclusively 
by known mathematical functions. The results obtained are very accurate. But, as it is 
obvious, this method cannot be applied to complex problems. However, the results 
obtained by analytical methods for standard configurations are used still today to 
validate the results obtained by some other approximate methods such as numerical 
methods. 
 
Earlier the experimental as well as the graphical methods were used to get a fair idea 
about the nature of field distribution in some practical cases. However, these methods 
are greatly limited in their areas of usage and the errors involved are usually very high 
for any complex problem to be taken directly for design purposes. 
 
As most of practical field problems are so complex that graphical, experimental or 
analytical methods of solution are very difficult, if not impossible, numerical methods 
of field calculation have been developed. There are several numerical methods. For 
each practical field problem, depending upon the dielectric properties, complexity of 
contours and boundary conditions, one or the other numerical method is more suited. 
 
 
Finite Difference Method 
 
     Two-Dimensional System with Equal Nodal Distance 
 
In a 2-D system, V is independent of one of the axis directions, e.g. in the case of 
cable V is taken to be independent of z-direction, where z is along the length of the 
cable. Then the Laplace's Equation is written as – 
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In FDM, Vo is expressed in terms of the potentials of the connected nodes, i.e. V1, V2, 
V3 and V4 as shown in the figure above, such that Laplace's equation is satisfied at the 
point "0". Let, 'a' and 'b' be the midpoints between 0 & 1 and 3 & 0 respectively. Then 
according to mean value theorem: 
 

  

  
 
Again, '0' being the mid-point between 'a' and 'b', 
 

  

  
 
Now, satisfying Laplace's equation at "0", 
 

  
 
Problem: 
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Let, the boundary values of the potentials for any given system are as indicated in the 
figure above. 
It is required to obtain the values of the potentials at the nodes 1, 2, 3 and 4. 
 
Solution: 
 
For the given problem, at first the FDM equations for the potentials at the nodes 1, 2, 
3 and 4 are to be written. Then the obtained FDM equations are solved, usually by an 
iterative method, e.g. Gauss-Seidel Method using over-relaxation for accelerated 
convergence. 
 
The boundary values of node potentials are as indicated in the figure. The values of 
the potential at the nodes 1, 2, 3 and 4 can be obtained by the following FDM 
equations: 
 

 V1 =  (V2 + V3 + 80 + 0) / 4      
 
 V2 =  (V1 + V4 + 100 + 80) / 4        
 
 V3 =  (V1 + V4 + 50 + 0) / 4    
 
 V4 =  (V2 + V3 + 100 + 85) / 4 
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