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X-ray diffraction

𝑘

𝑘0

 𝑞

 𝑟

𝑘.  𝑟

𝑘0.  𝑟

𝜓𝑆𝐶 =
𝜓𝑖𝑛𝐴

𝑅
𝑒𝑖𝑘𝑅 𝑒−𝑖 (𝑘 −𝑘0).  𝑟

: Scattering vector:
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Scattered wave due to N independent scatterers

Where, 𝑟𝑖 is the position of 𝑖𝑡ℎ scatterer. 

Continuous electron density function 

𝜓𝑆𝐶 =
𝜓𝑖𝑛𝐴

𝑅
𝑒𝑖𝑘𝑅 ∫ ∑𝛿 𝑟 − 𝑟𝑖 𝑒

−𝑖𝑞.  𝑟𝑑  𝑟



4

Two dimensional lattices and different unit cell 

Bravais Lattices



Diffraction by periodic object

Electron density 𝜌 𝑟 = 𝜌𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ⨂ 𝜌𝑏𝑎𝑠𝑖𝑠

Scattered intensity 𝐼 𝑞 = 𝑆 𝑞 𝑃 𝑞 ,    

where 𝑆 𝑞 = 𝐹𝑙𝑎𝑡𝑡𝑖𝑐𝑒
2 and 𝑃 𝑞 = 𝐹𝑏𝑎𝑠𝑖𝑠

2

𝐹𝑙𝑎𝑡𝑡𝑖𝑐𝑒 and 𝐹𝑏𝑎𝑠𝑖𝑠 are the Fourier transforms of 𝜌𝑙𝑎𝑡𝑡𝑖𝑐𝑒 and 𝜌𝑏𝑎𝑠𝑖𝑠, 
respectively

𝑆 𝑞 Structure factor: Positions in the reciprocal space, where                  
intensities of sampled:

𝑃 𝑞 Form factor: Intensity at each of these positions



𝜌𝑙𝑎𝑡𝑡𝑖𝑐𝑒

𝜌𝑏𝑎𝑠𝑖𝑠
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Reciprocal and Real lattice
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14 Bravais lattices
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14 Bravais Lattices and 7crystal systems 
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bcc :  V =  
1

2
𝑎3

fcc :  V = 
1

4
𝑎3



Characteristics  of crystal structure
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Millar indices
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Diffraction condition

A reciprocal vector can be written as  𝐺 = 𝑎∗ ℎ + 𝑏∗𝑘 + 𝑐∗ 𝑙

A set of reciprocal vector 𝑮 determines the possible x-ray reflections 

𝑘

𝑘′

𝑞 = ∆𝑘 = 𝑘′ − 𝑘

Scattering amplitude 

𝐹 =  𝜌 𝑟 exp −𝑖 𝑘′ − 𝑘 . 𝑟 𝑑𝑉

=  𝜌 𝑟 exp −𝑖𝑞𝑟 𝑑𝑉

𝜌 𝑟 = 

𝐺

𝜌𝐺 𝑒
𝑖𝐺.𝑟

As electron density is a periodic function of ρ(r).

= 

𝐺

 𝜌𝐺 𝑒
𝑖𝐺.𝑟 exp −𝑖𝑞𝑟 𝑑𝑉

= 

𝐺

 𝜌𝐺 exp −𝑖(𝑞 − 𝐺)𝑟 𝑑𝑉

 𝑞 =  𝐺
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𝟐𝒌.𝑮 + 𝑮𝟐 = 𝟎

𝟐 𝒌 𝑮 𝐬𝐢𝐧𝜽 = 𝑮𝟐

𝟐. 𝟐
𝝅

𝝀
𝐬𝐢𝐧𝜽 =

𝟐𝝅

𝒅𝒉𝒌𝒍

𝟐𝒅𝒉𝒌𝒍 𝐬𝐢𝐧𝜽 = 𝝀



Brillouin Zone

𝑘.
1

2
𝐺 =

1

2
𝐺
2
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fcc Lattice
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Form factor and structure factor

Scattering amplitude per unit cell

𝐹 =  𝑑𝑉 𝜌 𝑟 exp −𝑖 𝐺. 𝑟 If 𝑟𝑗 is the vector at the centre of the atom,

then  𝜌𝑗 𝑟 − 𝑟𝑗 is the contribution of electron

Density associated with the jth atom in the cell

Therefore, 𝜌 𝑟 = ∑𝑗 𝜌𝑗 𝑟 − 𝑟𝑗
Let 𝑟 − 𝑟𝑗 = 𝑅

=  𝑑𝑉 𝜌𝑗 𝑟 − 𝑟𝑗 exp −𝑖 𝐺. 𝑟

=  𝑑𝑉 𝜌𝑗 𝑅 exp −𝑖 𝐺. 𝑅 exp(−𝑖𝐺. 𝑟𝑗)

= 𝑓𝑗 exp(−𝑖𝐺. 𝑟𝑗)

Where,  𝑓𝑗 = ∫𝜌 𝑅 exp −𝑖𝐺. 𝑅 𝑑𝑉 𝒇𝒋 is known as atomic form factor 

F is the structure factor of the basis 
17



Structure factor

𝑟𝑗 = 𝑥𝑗𝑎 + 𝑦𝑗𝑏 + 𝑧𝑗𝑐 , 𝐺 = ℎ𝑎∗ + 𝑘𝑏∗ + 𝑙𝑐∗,     𝐺. 𝑟𝑗 = 2𝜋 (ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗)

𝐹 ℎ, 𝑘, 𝑙 =  𝑓𝑗 exp(−𝑖2𝜋 (ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗)

Structure factor of bcc lattice

Positions of the atoms are 𝑥1 = 0, 𝑦1 = 0, 𝑧1 = 0 and 𝑥2 =1/2, 𝑦2 = 1/2, 𝑧2 =1/2

𝐹 ℎ, 𝑘, 𝑙 = 𝑓 [1 + exp(−𝑖𝜋 (ℎ + 𝑘 + 𝑙)]

F = 0 when h + k + l is odd integer
= 2f when h + k + l is even integer
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Structure factor
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Structure factor of the fcc lattice

Positions of the atoms are (0,0,0), (0, ½, ½), (1/2, 0, ½), (1/2, 1/2., 0)

𝐹 ℎ, 𝑘, 𝑙 = 𝑓 [1 + exp(−𝑖𝜋 (ℎ + 𝑘) + exp(−iπ 𝑘 + 𝑙 + exp 𝑙 + ℎ ]



Diffraction profile for fcc lattice 
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Atomic form factor
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𝑓𝑗 Measures the scattering power of jth atom in the unit cell. Therefore, value of f 
depends on the number of electrons, rather electron density of the jth atom.

Scattered radiation from a single atom, i.e, form factor 

𝒇𝒋 =  𝒅𝑽 𝝆𝒋 𝒓 𝐞𝐱𝐩(−𝒊𝑮. 𝒓)

For spherically symmetric electron density, we write 𝑓𝑗 = 2𝜋 ∫𝑑𝑟𝑟
2 𝜌𝑗 𝑟

sin 𝐺𝑟

𝐺𝑟

If electron density is concentrated at r = 0, Gr = 0 and 𝑓𝑗 = 𝑍, total number of electron

In the forward scattering G = 0, and again f = Z



Crystal binding
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Van der Waal crystal or crystals of inert gases (0.1 eV/atom)

 Ionic crystal  ( 8 eV/atom)

Covalent crystal ( ~ 4-5 eV/atom)

Metal ( ~ 5 eV/atom)



Electrical conductivity: Drude model
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Basic assumptions:

1. Between collisions the interaction of a given electron, both with the others and with 
the ions is neglected.
The neglect of electron-electron interactions between collisions is known as the
independent electron approximation and neglect of electron-ion interaction is
known as free electron approximation.

2. Collisions in the Drude model as in kinetic theory, are instantaneous events that abruptly
alter the velocity of an electron.



The Drude model
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DC electrical conductivity of a metal 
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𝐸 = 𝜌𝑗

The resistivity 𝜌 is defined to be the proportionality constant between the electric field E at 

A point in the metal and the current density j that it induces: 

If n electrons per unit volume all move with velocity 𝑣, then the current density they 

give rise to will be parallel to 𝑣 , the electron carries a charge −𝑒 the charge crossing

A in the time 𝑑𝑡Will be −𝑛𝑒𝑣𝐴𝑑𝑡 and hence the current density

𝑗 = −𝑛𝑒𝑣

In the presence of a field E, electrons will acquire the additional velocity  =  −
𝑒𝐸𝑡

𝑚
. For a random 

collisions, there will no effect on the initial velocity of the electrons,

Therefore

𝑣 = −
𝑒𝐸𝜏

𝑚
; 𝑗 =

𝑛𝑒2𝜏

𝑚
𝐸 as 𝑗 =

𝐸

𝜌
= σ E  , Therefore,  𝜎 =

𝑛𝑒2 𝜏

𝑚



AC electrical conductivity of a metal 
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Metal is subjected to a time dependent electric field in the form 

𝐸 𝑡 = 𝑅𝑒 (𝐸 𝜔 𝑒−𝑖𝜔𝑡

Equation of motion of the electron                    
𝑑𝑝

𝑑𝑡
= −
𝑝

𝜏
− 𝑒𝐸

Assume the steady state solution as  𝑝 𝑡 = −𝑅𝑒 (𝑝 𝜔 𝑒−𝑖𝜔𝑡

−𝑖𝜔𝑝 𝜔 = −
𝑝 𝜔

𝜏
− 𝑒𝐸 𝜔 ; 𝑗 = −

𝑛𝑒𝑝

𝑚

𝑗 𝑡 = 𝑅𝑒 𝑗 𝜔 𝑒−𝑖𝜔𝑡 ; 𝑗 𝜔 = −
−𝑛𝑒𝑝 𝜔

𝑚
=

𝑛𝑒2

𝑚
𝐸(𝜔)

1
𝜏
− 𝑖𝜔

𝑗 𝜔 = 𝜎 𝜔 𝐸 𝜔 ; 𝜎 𝜔 =
𝜎0
1 − 𝑖𝜔𝜏

, 𝜎0 =
𝑛𝑒2𝜏

𝑚



Thermal conductivity of a metal
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The Drude model assumes that the bulk of the thermal current in a metal is carried by the conduction electrons.

If there are no source or sink to maintain the temperature grandient, the thermal energy will flow opposite to the
Temperature gradient. Therefore, the thermal current j can be written as

𝑗 = −𝐾 𝛻𝑇 Where, K is the constant, identified as thermal conductivity. 

If heat flows in the positive x direction, 𝑗 = −𝐾
𝑑𝑇

𝑑𝑥

Consider a one dimensional model and electrons can move only x direction



Thermal conductivity……
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𝑗 =
1

2
𝑛𝑣 휀 𝑇 𝑥 − 𝑣𝜏 − 휀(𝑇 𝑇 + 𝑣𝜏 )

= 𝑛𝑣2𝜏
𝑑휀

𝑑𝑇
−
𝑑𝑇

𝑑𝑥

𝑣𝑥
2 = 𝑣𝑦

2 = 𝑣𝑧
2 =
1

3
𝑣2

𝑛
𝑑𝜀

𝑑𝑇
=
𝑁

𝑉

𝑑𝜀

𝑑𝑇
=
1

𝑉

𝑑𝐸

𝑑𝑇
= 𝑐𝑣. The electronic specific heat 

=
1

3
𝑣2𝜏𝑐𝑣 −𝛻𝑇 In 3 dimension

𝐾 =
1

3
𝑣2𝜏𝑐𝑣



Wiedemann and Franz law

𝐾

𝜎
=

1
3 𝑐𝑣𝑚𝑣

2

𝑛𝑒2

𝐾

𝜎
=
3

2

𝑘𝐵
𝑒

2

𝑇

L= 
𝐾

𝜎𝑇
=
3

2

𝑘𝐵

𝑒

2
= 1.24 × 10−13 (

𝑒𝑟𝑔

𝑒𝑠𝑢−𝐾
)2

= 1.11 × 10-8    watt-ohm/K2

Wiedemann and Franz law is being predicted reasonably well. This is the Success of 
Drude model 

L is called Lorentz number. The theoretical value is in rather good agreement with experimental data
in the  high temperature region.

29



Success of Drude model!
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The success of Drude model was wholly fortuitous and was so impressive as to spur further 

investigations with the model.

Major drawbacks:

• No electronic contribution to the specific heat remotely comparable to  
3

2
𝑛𝐾𝐵

was ever observed.

• At room temperature, no electronic contribution to the specific heat indeed 

was found.

• Classical gas law cannot be applied to the electron gas in a metal, as 

electrons for Fermions. Therefore, value of mean square electronic speed must 
have been erroneous. 

Actual electronic contribution to the specific heat is about 100 times smaller that the classical prediction, but
The mean square electronic speed is about 100 times larger.  



Hall effect
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𝑗𝑥

y

z

x

𝐵𝑧

𝐸𝑥

𝑭 = −𝑒(𝑬 + 𝒗 × 𝑩)

𝐸𝑦

X-Y Plane

𝑗𝑥

𝑗𝑥

+ + + + + + + + + + + + +

x

y

z
Drift velocity is 

in steady state

𝑒−



Motion of electrons in magnetic field: Hall effect
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Equation of motion of electrons  
𝑑𝑝

𝑑𝑡
+
𝑝

𝜏
= F = −e (E + v × 𝐵)

𝑚
𝑑

𝑑𝑡
+
1

𝜏
𝑣 = −e E + v × 𝐵

𝑚
𝑑

𝑑𝑡
+
1

𝜏
𝑣𝑥 = −e 𝐸𝑥 + 𝐵𝑣𝑦

𝑚
𝑑

𝑑𝑡
+
1

𝜏
𝑣𝑦 = −e 𝐸𝑦 − 𝐵𝑣𝑥

𝑚
𝑑

𝑑𝑡
+
1

𝜏
𝑣𝑧 = −e 𝐸𝑧

In a steady state, time derivatives are zero

𝑣𝑥 = −
𝑒𝜏𝐸𝑥
𝑚
−𝜔𝑐𝜏𝑣𝑦

𝑣𝑦 = −
𝑒𝜏𝐸𝑦

𝑚
+𝜔𝑐𝜏𝑣𝑥

𝑣𝑧 = −
𝑒𝜏𝐸𝑧
𝑚

𝜔𝑐 =
𝑒𝐵

𝑚
, is known as cyclotron frequency 



Hall effect
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Hall field developed in y direction due to accumulation of electrons cancels out the Lorentz force 

due to the magnetic field.  Therefore 𝑣𝑦 = 0

𝐸𝑦 = − 𝜔𝑐𝜏𝑚𝑣𝑥 /𝑒𝜏 = 𝜔𝑐𝜏𝑚
𝑒𝜏𝐸𝑥

𝑚
/eτ = 𝜔𝑐𝜏𝐸𝑥 =

𝑒𝐵𝜏

𝑚
𝐸𝑥

The Hall coefficient is defines as 𝑅𝐻=
𝐸𝑦

𝑗𝑥𝐵
= −

𝑒𝐵𝜏𝐸𝑥
𝑚

𝑛𝑒2𝜏𝐸𝑥𝐵

𝑚

=−
1

𝑛𝑒



Failures of free electron model 
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Striking deficiencies of the model were due to use of classical statistics in describing the conduction electrons. 

 Inadequacies in the free electron transport coefficients

i. The hall coefficient

ii. The Magnetoresistance

iii. The Thermoelectric field

iv. The Wiedemann Franz law

v. Temperature dependence of the DC conductivity

vi. Directional dependence of DC conductivity

vii. AC conductivity

 Inadequacies in the static Thermodynamics 
predictions  

i. Linear term in the specific heat

ii. Cubic term in the specific heat

iii. The compressibility of metal 



Lattice Vibration
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Why do lattice vibrate?

At any finite temperature, atoms within the crystal are not static, rather vibrate about their mean position due to thermal 

energy. It is the thermal agitation which impels atoms to vibrate. 

Why do we study lattice vibration?

A major contribution to the specific heat of materials is the lattice vibration. Quantisation of lattice vibration is known 

as phonons.  Behaviour of the specific heat with temperature is best described by a popular Debye 𝑇3 law which is the 

consequence of lattice vibration.  Therefore, in order to obtain insights into the thermal properties of solids, it is desirable 

and necessary to study the lattice vibration of solids.

Why did Einstein’s theory of lattice vibration fail to explain empirical behaviour of specific heat? 

Although, the Einstein’s description of specific heat was able to explain the qualitative behaviour with temperature, it fails

to explain the exact empirical nature of the curve at very low temperature. This is because of the over-simplified model

Introduced by him. He considered the atoms within the crystal  vibrate independently with simple harmonic  manner.  



Lattice vibration with monatomic basis
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Lattice vibration of the crystal results in an elastic wave propagating within the crystal. We want to find out the

frequency of the wave in terms of wave vector. 
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Assuming the force on the plane s caused by the displacement of the place s+p is 
proportional to the difference 𝑢𝑠+𝑝 − 𝑢𝑠, The force can be written as 

𝐹𝑠 = 𝐶 𝑢𝑠+1 − 𝑢𝑠 + 𝐶 𝑢𝑠−1 − 𝑢𝑠 …….      (1) 

Considering nearest neighbour interaction, the equation of motion of the vibration of plane s 
is 

𝑀
𝑑2𝑢𝑠
𝑑𝑡2
= 𝐶 𝑢𝑠+1 + 𝑢𝑠−1 − 2𝑢𝑠 …… . (2)

Look for the solutions with all displacements having the time dependence  exp(−𝑖𝜔𝑡)

Then 
𝑑2𝑢𝑠

𝑑𝑡2
= −𝜔2𝑢𝑠 and (2) becomes
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Using Eq. (4) , Eq. (3) can be expressed as 
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