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X-ray diffraction

Ysc = ‘/’ZLA el emi (ko7

~

l;bz'n — Wﬂemﬂf

Amsing

. Scattering vector: | ¢ | = =5



Scattered wave due to N independent scatterers

N

lrbf” JIkR —iq.7; . - :
Wse = R € E e Where, 1; is the position of it"* scatterer.
i=1

. .
l/)lg e*R [Y§5(r —r)e 177

Ysc =
Continuous electron density function o(7) = Yr, 6(F — 77)

Yind i

l,b.s*c = R

f p(P)e 17 d7

lzbm —id 7 1o
1(§) = | s I’= R fp(?‘)e 747 |7



Bravais Lattices

Two dimensional lattices and different unit cell



Diffraction by periodic object

Electron density ,0(7”) = Prattice D Pbasis
Scattered intensity I(q) = S(q)P(q),
where S(q) = |Flattice|2 and P(q) = |Fbasi5|2

Fiattice and Fy i are the Fourier transforms of p; itice and ppgsis,
respectively

5(q) == Structure factor: Positions in the reciprocal space, where
intensities of sampled:

P(q) =— Form factor: Intensity at each of these positions
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Reciprocal and Real lattice
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14 Bravais lattices

Base
Lattice System | Primitive (P) | Centered
(9

Body Face

centered (l) | centered (F) Total

Cubic
a=b=c
a= B:\fzgf}ﬂ

Tetragonal
a=b#c
a= B:v:gﬂ"

Orthorhombic
aFb#c
a= E,:n‘;zgf}”




Hexagonal
a=h#c
a=120°3=y=90

Rhombohedral
a=b=c 1
a= B=y# 90°
Monoclinic 2
Triclinic 1
Total 14




14 Bravals Lattices and 7crystal systems

Crystal .
2 Lattice system Volume
family 1 3
. —— ,, : bcc: V= -a
Triclinic abc\/l — cos” & — cos” B — cos” v + 2 cos acos 3 cosy 2
13
fcc: V= L a
Monoclinic abe sin 3
Orthorhombic abe
Tetragonal a’c
Rhombohedral | g° \/1 — 3cos® a+ 2cos’ a
Hexagonal '
Hexagonal ﬁ ale
2
Cubic a®
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Characteristics of crystal structure

Atoms per Coordination
Structure ap Versus r Cell Number Packing Factor Examples
Simple cubic (SC) ag=2r 1 6 0.52 Polonium (Po),
#-Mn
Body-centered aq=4r/3 2 8 0.68 Fe, Ti, W, Mo, Nb,
cubic Ta, K Na, V, Zr,
Cr
Face-centered ao=4riV2 4 12 0.74 Fe, Cu, Au, Pt Ag,
cubic Pb, Ni
Hexagonal close- ag=2r 2 12 0.74 Ti, Mg, Zn, Be,
packed co ~ 1.633a, Co, Zr, Cd
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Millar indices

Plane intercepts axes at 3a,2b,2¢

Reciprocal numbers are: l l i

3°2°2
Indices of the plane (Miller): (2,3,3)

Indices of the direction: [2,3,3]
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Diffraction condition

A reciprocal vector can be written as G=a"h+ bk + c*l

A set of reciprocal vector G determines the possible x-ray reflections
Scattering amplitude
F = jp(r) exp|—i (k' —k).r]dV
= | p(r) exp[—iqr] dV

= f pg e'¢" exp[—iqr] dV
G

= | peexvl-ita = Gyl av
G

k
p(r) = z pg "
G

As electron density is a periodic function of p(r).

Qy

QL
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In elastic scattering of a photon its energy fw is conserved, so that the
frequency ' = ck’ of the emergent beam is equal to the frequency of the inci-
dent beam. Thus the magnitudes k and k' are equal, and k* = k', a result that
holds also for elastic scattering of electron and neutron beams. From (21) we
found Ak = G or k + G = k', so that the diffraction condition is written as
(k + G)* = k?, or

2k.G + G* =0
2|k||G| sin @ = G*

5 Zn N 27T
2—sin@ = —
A dp

Zdhkl sinf = A
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Brillouin Zone

Reciprocal Lattice to bee Lattice
The primitive translation vectors of the bee lattice (Fig. 12) are

a=sa(—k+§+%); a=jak-y+2); a=jak+y-2),

where ¢ is the side of the conventional cube and x,y, z are orthogonal unit
vectors paralle] to the cube edges. The volume of the primitive cell is

V=la a2, Xas|=34.

The primitive translations of the reciprocal lattice are defined by (13). We
have, using (28),

b, = (2w/a)(y + Z) ; b, = 2n/a)(x + 2) ; b; = 2m/a)(x +y) .
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fec Lattice

"

Beciprocal Lattice to fec Lattice

9
| The primitive translation vectors of the fcc lattice of Fig. 14 are
I
Q a=la(“+2)- azla(i+i)' a=la(§+)‘1)
1 2 y > 2 2 > 3 2 g 4

The volume of the primitive cell is

V= |a1'a§,_><a3(=ia3 .

The primitive translation vectors of the lattice reciprocal to the fee
lattice are

b, =Qula)(-x+y+2); by=02ma)x-y+2):
b,= (2w/a)x +y—7) .
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Form factor and structure factor

Scattering amplitude per unit cell

If 77 is the vector at the centre of the atom,
then p; (r — rj) is the contribution of electron
= z f dV p; (r — 1) exp(—i G.7) Density associated with the jth atom in the cell
| _ Therefore, p(1) = X p; (r — rj)
= zde pj (R)exp(—i G.R)exp(—iG.71y) letr — r; =R

F = jdV p(r)exp(—iG.r)

= Z fjexp(—iG.1;)

Where, f; = [ p(R) exp(=iG.R)AV  f; IS known as atomic form factor
F is the structure factor of the basis
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Structure factor

n=xja+yb+ zic, G=ha*"+kb"+Ic*, G.1j=2m(hx; +ky; +lz)

Fhk,D) = ) fiexp(~i2m (hx; + ky; + 1z;)
Structure factor of bcc lattice
Positions of the atomsarex; = 0,y; =0,z =0and x, =1/2,y, = 1/2, z, =1/2
F(h k) = f[1+ exp(—im (h+ k + D]

F =0when h + k + | is odd integer
= 2f when h + k + | is even integer
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Structure factor

Metallic sodium has a bee structure. The diffraction pattern does not con-
tain lines such as (100), (300), (111), or (221), but lines such as (200), (110), and

(222) will be present;

Structure factor of the fcc lattice
Positions of the atoms are (0,0,0), (0, ¥, %), (1/2, 0, %), (1/2, 1/2., 0)

F(h k1) =f[1+ exp(—inm (h+ k) + exp(—im (k + 1) + exp(l + h)]

If all indices are even integers, S = 4f; similarly if all indices are odd integers.
But if only one of the integers is even, two of the exponents will be odd mult-
ples of —izr and S will vanish. If only one of the integers is odd, the same argu-
ment applies and S will also vanish. Thus in the fcc lattice no reflections can

occur for which the indices are partly even and partly odd.



Diffraction profile for fcc lattice
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Atomic form factor

fi Measures the scattering power of jth atom in the unit cell. Therefore, value of f
depends on the number of electrons, rather electron density of the jth atom.

Scattered radiation from a single atom, i.e, form factor

fji= dep]- (r) exp(—iG.1)

sin Gr
GTr

For spherically symmetric electron density, we write f; = 2m [ drr? p; (1)

If electron density is concentrated atr = 0, Gr = 0 and f; = Z, total number of electron

In the forward scattering G = 0, and again f=Z

21



Crystal binding

» Van der Waal crystal or crystals of inert gases (0.1 eV/atom): ¢ P
» lonic crystal ( 8 eV/atom)
» Covalent crystal ( ~ 4-5 eV/atom)

» Metal ( ~ 5 eV/atom)




Electrical conductivity: Drude model

Basic assumptions:

1. Between collisions the interaction of a given electron, both with the others and with
the ions is neglected.
The neglect of electron-electron interactions between collisions is known as the
independent electron approximation and neglect of electron-ion interaction is
known as free electron approximation.

2. Collisions in the Drude model as in kinetic theory, are instantaneous events that abruptly
alter the velocity of an electron.

23
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DC electrical conductivity of a metal

The resistivity p is defined to be the proportionality constant between the electric field E at
A point in the metal and the current density j that it induces:

E= pj

If n electrons per unit volume all move with velocity v, then the current density they
give rise to will be parallel to v, the electron carries a charge —e the charge crossing

A in the time dt Will be —nevAdt and hence the current density

Jj = —nev
In the presence of a field E, electrons will acquire the additional velocity = —%Et. For a random
collisions, there will no effect on the initial velocity of the electrons,
Therefore
eEt . ne’tr . E ne’t
vV=——:; =( )E asj = —=0 E , Therefore, g =
m m p m
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AC electrical conductivity of a metal

Metal is subjected to a time dependent eIeptric field in the form
E(t) = Re (E(w)e™'¢t

. . d
Equation of motion of the electron e )

dt T

Assume the steady state solution as p(t) = —Re (p(w)e 't

iwp@) = P g 5 = 2P
T m )
_ e E(w)
j(®) = Re(j(@)e™t) 5 j(w) = — "i’z(w)=(’?)_
; —
j(@) = o(@EW) o(w) = ——
LT




Thermal conductivity of a metal

The Drude model assumes that the bulk of the thermal current in a metal is carried by the conduction electrons.
If there are no source or sink to maintain the temperature grandient, the thermal energy will flow opposite to the
Temperature gradient. Therefore, the thermal current j can be written as

Jj=—-KVT Where, K is the constant, identified as thermal conductivity.

: . L dT
If heat flows in the positive x direction, j = —K e

Consider a one dimensional model and electrons can move only x direction

temperature side of x, and half from the low. If &T) is the thermal energy per electron
in a metal in equilibrium at temperature 7, then an electron whose last collision was
at x' will, on the average, have a thermal energy &7 [x]). The electrons arriving at
x from the high-temperature side will, on the average, have had their last collision at

27



Thermal conductivity......

x — vz, and will therefore carry a thermal energy per electron of size &(T[x — v7]).
Their contribution to the thermal current density at x will therefore be the number of
such electrons per unit volume, n/2, times their velocity, v, times this energy, or
(n/28(T[x — vt]). The electrons arriving at x from the low-temperature side, on
the other hand, will contribute (n/2) — ¢)[&(T[x + r1])], since they have come from
the positive x-direction and are moving toward negative x. Adding these together gives

1
j= =nv[e(T[x —vt]) — (T[T + vt])] X
2 (%) =(v)?)=(v,?) =S v?
., de dT
-t dx pnd = Nae _1dF Cy. The electronic specific heat
dT  vdr vdr

1
= 3 v2tc, (=VT) In 3 dimension
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Wiedemann and Franz law

1 2
K 3cmv? K _ E(’LB) .
E o 2\ e

2
=== 2(%) =124 x 10713 (L7

oT 2\e esu—K

=1.11 X 108 watt-ohm/K?2

L is called Lorentz number. The theoretical value is in rather good agreement with experimental data
in the high temperature region.

Wiedemann and Franz law is being predicted reasonably well. This is the Success of
Drude model

29



Success of Drude model!

The success of Drude model was wholly fortuitous and was so impressive as to spur further
investigations with the model.

Major drawbacks:

* No electronic contribution to the specific heat remotely comparable to %nKB
was ever observed.

« At room temperature, no electronic contribution to the specific heat indeed
was found.

» Classical gas law cannot be applied to the electron gas in a metal, as
electrons for Fermions. Therefore, value of mean square electronic speed must
have been erroneous.

Actual electronic contribution to the specific heat is about 100 times smaller that the classical prediction, but

The mean square electronic speed is about 100 times larger.
30



X-Y Plane

Drift velocity is
In steady state

Hall effect
I I
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Motion of electrons in magnetic field: Hall effect

Equation of motion of electrons =F=—-e(E+v XB)

d 1
m<—+—>v=—e(E+V X B)
dt 71

In a steady state, time derivatives are zero

etk
Uy = — — WTVy,
<d + 1) (E, — Bvy) mE
m|—+—-]v, = —e — Bv et
dt 1) 7 Y * vy, = — my+a)crvx

d 1 etk W, = eB , is known as cyclotron frequency
m<—+—)vz——e(EZ) Vz =T m
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Hall effect

Hall field developed in y direction due to accumulation of electrons cancels out the Lorentz force
due to the magnetic field. Therefore v, = 0

E B
E, = — w.tmv, /et = w,Tm e:nx let = w.TE, = %Ex
eBTEx
L . Ey m 1
The Hall coefficient is definesas Ry= — = — — — =— —
]XB ne<tEyxB ne

33



Failures of free electron model

Striking deficiencies of the model were due to use of classical statistics in describing the conduction electrons.

O Inadequacies in the free electron transport coefficients

Vi.

Vil.

The hall coefficient

The Magnetoresistance

I. The Thermoelectric field

The Wiedemann Franz law
Temperature dependence of the DC conductivity
Directional dependence of DC conductivity

AC conductivity

O Inadequacies in the static Thermodynamics
predictions

I.  Linear term in the specific heat
li.  Cubic term in the specific heat

lii. The compressibility of metal
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| attice Vibration

Why do lattice vibrate?
At any finite temperature, atoms within the crystal are not static, rather vibrate about their mean position due to thermal
energy. Itis the thermal agitation which impels atoms to vibrate.

Why do we study lattice vibration?

A major contribution to the specific heat of materials is the lattice vibration. Quantisation of lattice vibration is known

as phonons. Behaviour of the specific heat with temperature is best described by a popular Debye T3 law which is the
consequence of lattice vibration. Therefore, in order to obtain insights into the thermal properties of solids, it is desirable
and necessary to study the lattice vibration of solids.

Why did Einstein’s theory of lattice vibration fail to explain empirical behaviour of specific heat?

Although, the Einstein’s description of specific heat was able to explain the qualitative behaviour with temperature, it fails
to explain the exact empirical nature of the curve at very low temperature. This is because of the over-simplified model

Introduced by him. He considered the atoms within the crystal vibrate independently with simple harmonic manner.
35



Lattice vibration with monatomic basis

Lattice vibration of the crystal results in an elastic wave propagating within the crystal. We want to find out the
frequency of the wave in terms of wave vector.
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Assuming the force on the plane s caused by the displacement of the place s+p is
proportional to the difference us,,, — ug, The force can be written as

F,=C(ugyy —ug) +C (ug_q; —uUg) ....... (1)

Considering nearest neighbour interaction, the equation of motion of the vibration of plane s
IS

d?ug
M 72 Clugeq Hug_q —2Ug) weeee. (2)
Look for the solutions with all displacements having the time dependence exp(—iwt)
2
Then ddtlés = —w?ug and (2) becomes

—Mo®u, = Clu +u,_, — 2u,) . (3)



u,., = u exp(isKa) exp(* iKa) | (4)
Using Eq. (4) , Eg. (3) can be expressed as

—’Mu exp(isKa) = Culexpli(s + 1)Ka] + expli(s — 1)Ka] — 2 exp(isKa)} .  (5)

w’M = —Clexp(iKa) + exp(—iKa) — 2] . (6)

w* = (2C/M)(1 — cos Ka) . (7)

The boundary of the first Brillouin zone lies at K = £7/a. We show from
(7) that the slope of @ versus K is zero at the zone boundary:

dw*dK = (2Ca/M) sin Ka = 0 (8)

at K= *m/a, for here sin Ka = sin (x#) = 0. The special significance of
phonon wavevectors that lie on the zone boundary is developed in (12) below.
By a trigonometric identity, (7) may be written as

w® = (4C/M) sin? 2 Ka ; w = (4C/M)"%|sin 5 Ka| . 9) =
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