
A	Quick	Guide	to	Gnuplot	

Andrea	Mignone	
Physics	Department,	University	of	Torino	

AA	2019-2020	

What	is	Gnuplot	?	
•  Gnuplot	is	a	free,	command-driven,	interactive,	function	and	data	plotting	program,		

providing	a	relatively	simple	environment	to	make	simple	2D	plots	(e.g.	f(x)	or	f(x,y));	

•  It	is	available	for	all	platforms,	including	Linux,	Mac	and	Windows		
							(http://www.gnuplot.info)	

•  To	start	gnuplot	from	the	terminal,	simply	type		

	
•  To	produce	a	simple	plot,	e.g.		
			f(x)	=	sin(x)	and	f(x)	=	cos(x)^2			

•  By	default,	gnuplot	assumes	that	the	
							independent,	or	"dummy",	variable	for		
							the	plot	command	is	"x”		
						(or	“t”	in	parametric	mode).	

>	gnuplot	

gnuplot>	plot	sin(x)		
gnuplot>	replot	(cos(x))**2	#	Add	another	plot		

Mathematical	Functions	
•  In	general,	any	mathematical	

expression	accepted	by	C,	
FORTRAN,	Pascal,	or	BASIC	may	
be	plotted.	The	precedence	of	
operators	is	determined	by	the	
specifications	of	the	C	
programming	language.	

•  Gnuplot	supports	the	same	
operators	of	the	C	
programming	language,	except	
that	most	operators	accept	
integer,	real,	and	complex	
arguments.		

•  Exponentiation	is	done	through	
the	**	operator	(as	in	
FORTRAN)	

Using	set/unset	
•  The	set/unset	commands	can	be	used	to	controls	many	features,	including	axis	range	

and	type,	title,	fonts,	etc…	
•  Here	are	some	examples:	

•  Immediate	help	is	available	inside	gnuplot	via	the	"help"	command.	

Command	 Description	
set	xrange[0:2*pi]	 Limit	the	x-axis	range	from	0	to	2*pi,		

set	ylabel	“f(x)”	 Sets	the	label	on	the	y-axis	(same	as	“set	xlabel”)	

set	title	“My	Plot”	 Sets	the	plot	title	

set	log	y	 Set	logarithmic	scale	on	the	y-axis		(same	as	“set	log	x”)	

unset	log	y	 Disable	log	scale	on	the	y-axis	

set	key	bottom	left	 Position	the	legend	in	the	bottom	left	part	of	the	plot	

set	xlabel	font	",18"	 Change	font	size	for	the	x-axis	label		(same	as	“set	ylabel”)	

set	tic	font	",18"	 Change	the	major	(labelled)	tics	font	size	on	all	axes.		

set	samples	2500	 Set	the	number	of	points	used	to	draw	a	function.	

Plotting	Datafiles	
•  Gnuplot	can	also	plot	ASCII	datafile	in	multicolumn	format;	

•  To	plot	a	multi-column	datafile	using	the	1st	column	for	the	abscissa	and	the	2nd	
column	as	the	ordinate,	use		

•  Add	a	second	plot	using	1st	(=x)	and	3rd		(=y)	columns:	

•  If	the	“using”	keyword	is	not	specified,	1st	and	2nd	columns	are	assumed:	

	

gnuplot>	plot	“file.dat”	using	1:2																				

gnuplot>	replot	“file.dat”	using	1:3																				

file.dat																																																					
	
	
	
	
			

#	Comments	can	be	placed	here	
x0		y0		z0			...	
x1		y1		z1			...	
.				
xN		yN		zN			…																		

gnuplot>	plot	“file.dat”																			

Example	of	Plotting	Styles	
•  When	plotting	datafiles,	Gnuplot	uses	symbols:	

•  To	join	symbols	with	lines,	use		

gnuplot>	plot	“file.dat”																				

gnuplot>	plot	“file.dat”	with	lines																				

Datafiles	containing	multiple	datasets	
•  A	single	datafile	may	also	include	more	than	one	data	set,	

which	must	be	separated	by	a	pair	of	empty	lines,	e.g.	

•  In	this	case	you	can	tell	gnuplot	which	dataset	should	be	
read	using	the	‘index’	keyword.	For	instance,	

							will	plot	the	3	points	(x1,	y1),	(x2,	y2),	(x3,y3).	
•  Likewise		

							will	plot	the	6	points	(c1,	d1),	(c2,	d2)	...	(c6,d6).			

gnuplot>	plot	“file.dat”	using	1:2	index	0																				

gnuplot>	plot	“file.dat”	using	1:2	index	2																				

x1	y1		
x2	y2	
x3	y3	
<empty	line>	
<empty	line>	
a1	b1		
a2	b2	
a3	b3	
a4	b4	
<empty	line>	
<empty	line>	
c1	d1		
c2	d2	
c3	d3	
c4	d4	
c5	d5		
c6	d6	
...	

0th	dataset	

1st	dataset	

2nd	dataset	

file.dat	

Creating	Scripts	for	Gnuplot	
•  A	Gnuplot	script	is	a	simple	text	file	(with	the	extension	“.gp”)	containing	a	set	of	

instructions	to	produce	the	desired	plot.	
•  Consider	the	following	file,	“myscript.gp”	

•  Comments	are	preceded	with	a	“#”	symbol.	

•  From	gnuplot,	you	can	now		invoke	this	script	using	the	“load”	command:	

reset																			#	force	all	graph-related	options	to	default	values	
fname	=	“myfile.dat”				#	file	name		
	
set	autoscale	xfixmin			#	axis	range	automatically	scaled	to	include	the	range		
set	autoscale	xfixmax			#	of	data	to	be	plotted		
	
set	tics	font			",18"	
set	xlabel	"x"		font	",18"	
set	ylabel	"y"		font	",18"	
	
set	lmargin	at	screen	0.1				#	set	size	of	left	margin	
set	rmargin	at	screen	0.82			#	set	size	of	right	margin	
set	bmargin	at	screen	0.12			#	set	size	of	bottom	margin	
set	tmargin	at	screen	0.95			#	set	size	of	top	margin	
plot	fname	using	1:3	

gnuplot>	load	“myscript.gp”	

	Producing	Datafiles	from	C++	
•  There’re	basically	two	ways	to	produce	a	multicolumn	ASCII	datafile	from	the	output	

of	a	C++	program:	
1.  [Simple,	not	very	general]	By	redirecting	the	output	of	a	program	to	file:				

						The	">"	sign	is	used	for	redirecting	the	output	of	a	program	to	something	other	than							
						stdout	(standard	output,	which	is	the	terminal	by	default).				Similarly,	the	>>	appends	to	a		
						file	or	creates	the	file	if	it	doesn't	exist.	
	
2.	[Clever,	more	general]	By	creating	the	file	using	the	ofstream	(or	similar)	class	in	C++	

./myprogram	>	myprogram.dat	

#include	<fstream>	
...	
ofstream	fdata;								//	declare	Output	stream	class	to	operate	on	files	
fdata.open(“decay.dat”);	//	open	output	file	
...	
for	(...){		
		fdata	<<	x	<<	"		"	<<	fx	<<	"		"		<<	..	<<	endl;	//	write	to	file	
}	
fdata.close();																																					//	close	file		

Writing	2D	Arrays	
•  Two-dimensional	arrays	(such	as	f[i][j])	can	be	written	in	multi-column	ASCII	

format	with	the	index	j	changing	faster	and	a	blank	records	separating	blocks	with	
different	index	i:		

x0 y0 f(0,0)
x1 y0 f(1,0)
. . .
xN y0 f(N,0)
 ß <empty line>
x0 y1 f(0,1)
. . .
xN y1 f(N,1)
 ß <empty line>
.
.
.
 ß <empty line>
x0 yN f(0,N)
. . .
xN yN f(N,N)

Visualizing	2D	Arrays	

•  Gnuplot	can	be	used	to	display	2D	arrays	using	the	“splot”	command	instead	of	
“plot”.	

•  Different	visualizations	are	possible:	

Surface	plot	

Contour	plot	

Colored	maps	

gnuplot> set surface
gnuplot> set hidden3d
gnuplot> splot “data.dat” u 1:2:3 w lines

gnuplot> set pm3d map
gnuplot> splot “data.dat” u 1:2:3

gnuplot> set contour
gnuplot> unset surface
gnuplot> set view map
gnuplot> set cntrparam level 20
gnuplot> splot "elliptic.dat" u 1:2:3 w lines

More	on	pm3d	map	
•  Pm3D	map	is	a	useful	plotting	style	for	function	of	2D	variables.	Some	tips:	

–  Exact	axis	range	can	be	forced	using	

–  Gray-to-rgb	mapping	can	be	set	through	

–  A	color	gradient	can	be	defined	and	used		
						to	give	the	rgb	values.	

	

gnuplot>	set	autoscale	xfixmin	
gnuplot>	set	autoscale	xfixmax	
gnuplot>	set	autoscale	yfixmin	
gnuplot>	set	autoscale	yfixmax	
gnuplot>	splot	“file.dat”	

gnuplot>	set	palette	defined	

gnuplot>	set	palette	defined	(0	"blue",	1	"white",	2	"yellow")	

Slicing	Datasets:	the	“every”	keyword	
•  The	keyword	“every”	specifies	which	datalines	(subsets)	within	a	single	data	set	are	

to	be	plotted.	It	has	the	following	syntax:	

							where	

•  Examples:	

•  Note:	the	increments	default	is	set	to	unity,	the	start	values	to	the	first	point	or	block,	
and	the	end	values	to	the	last	point	or	block.	

plot	'file'	every	I:J:K:L:M:N	

plot	'file'	every	2							#	Plot	every	2	lines	
plot	'file'	every	::3					#	Plot	starting	from	the	3rd	line	
plot	'file'	every	::3::15	#	Plot	lines	3-15	
	
	

I	 J	 K	 L	 M	 N	
Line	
increment	

Data	block	
increment	

First		line	 First	data	
block	

Last	line	 Last	data	
block	

Slicing	Datasets:	taking	x-	and	y-	slices	
•  In	a	2D	datasets	(see	“Writing	2D	Arrays”),	we	can	use	plot	with	the	every	keyword	to	

produce	1D	cuts	along	a	given	direction.		

•  To	take	an	x-slice	(a	plot	at	constant	y	along	the	x-direction),	you	may	use	

	

•  To	take	an	y-slice	(a	plot	at	constant	x	along	the	y-direction),	you	may	use	

j	=	2		#	Fix	the	vertical	index	j	=	2	(=	3rd	block)	
plot	fname	using	1:3	every	:::(j)::(j)	with	linespoint	
	
#	This	is	equivalent	to	(expliciting	writing	the	increment	and	starting	indices):	
plot	fname	using	1:3	every	1:1:0:(j)::(j)	with	linespoint	pt	4	

i	=	1			#	Fix	the	horizontal	index	i	=	1	(=	2nd	block)	
plot	fname	using	2:3	every	::(i)::(i)		
	
#	Note:	the	previous	command	does	not	allow	data	points	to	be	connected	by	lines	
#	If	you	wish	to	connect	data	points	with	lines,	you	may	“cheat”		
#	using	the	splot	command:	
	
set	view	map	
splot	fname	using	2:2:3	every	::(i)::(i)	w	lp	

Creating	Animations	
•  Animations	can	be	built	using	the	do	for[]{..}	in	gnuplot	(v	≥	4.6).	

•  Consider	the	following	example	(simple_animation1.gp):	

•  If	your	gnuplot	support	.png,	.gif	or	.jpeg	terminal,	images	can	be	saved	to	disk:	

omega	=	2.0*pi;	
ntot		=	250												#	Number	of	frames	in	one	period	
dt				=	1.0/ntot							#	The	increment	between	frames	
do	for	[n=0:2*ntot]{	
		t			=	n*dt											#	Time		
		plot	sin(x	-	omega*t)	
		pause	0.1												#	pause	in	seconds	
}	

set	term	png				#	From	now	on,	plots	will	be	done	on	png	terminal	
																#	and	not	on	screen	
omega	=	2.0*pi;	
ntot		=	250												#	Number	of	frames	in	one	period	
dt				=	1.0/ntot							#	The	increment	between	frames	
do	for	[n=0:2*ntot]{	
	fname	=	sprintf	("sin_%04d.png",n)			#	File	name	
		set	output	fname																				#	Redirect	output	to	file	
		t			=	n*dt											#	Time		
		plot	sin(x	-	omega*t)	
}	

Trajectory:	2D	Animation	
•  The	following	script	demonstrate	how	a	trajectory	can	be	animated:	

	
•  An	improved	version	adds	the	Sun	(in	green)	and	a		
							red	wake	(taken	from Animations/kepler*.*):	

set	xrange	[-1:1]			#	Always	a	good	idea	to	
set	yrange	[-1:1]			#	fix	the	axis	range	
	
set	pointsize	2																										#	symbol	size	
set	style	line	2	lc	rgb	'#0060ad'	pt	7			#	circle	
do	for	[ii=1:3762]	{			#	Start	plotting	
			plot	'keplerVV.dat'	using	2:3	every	::ii::ii	linestyle	2	
			pause	0.02	
}	

...	
ntail	=	50		#	number	of	points	to	draw	in	the	tail	
ninc		=	3			#	increment	between	frames		
	
#	Add	the	sun	in	the	center	as	a	green	filled	circle	
set	object	circle	at	first	0,0	size	scr	0.01	\	
				fillcolor	rgb	'green’	fillstyle	solid	
	
do	for	[ii=1:3762:ninc]	{	
			im		=	((ii	-	ntail)	<	0	?	1:ii-ntail)	
			title	=	sprintf	("Step	=	%d",ii)	
			set	title	title	
			plot	'keplerVV.dat'	using	2:3		every	::ii::ii	linestyle	2,	\	
								'keplerVV.dat'	using	2:3		every	::im::ii	with	lines		lt	1		
}	

Trajectory:	3D	Animations	
•  If	the	particle’s	trajectory	is	not	confined	to	a	plane,	then	you	can	modify	the	script	by	

using	set	parametric	and	splot	(taken	from	Animations/spiral_anim.*)	

set	parametric	
set	xyplane	at	0			
set	grid	
	
set	pointsize	2																										#	symbol	size	
set	style	line	2	lc	rgb	'#0060ad'	pt	7			#	circle	
		
#	--	Plot	setting	--			
set	xrange[-0.1:0.1]	
set	yrange[-0.1:0.1]	
set	zrange[0:2]	
	
nstop	=	990	
ntail	=	70	
ninc		=	3		#	increment	between	frames		
	
set	view	60,30	
set	hidden3d	
fname	=	"spiral_anim.dat”			#	datafile	name	
do	for	[ii=1:nstop:ninc]	{	
			print	ii	
			im	=	((ii	-	ntail)	<	0	?	1:ii-ntail)	
			splot	fname	using	2:3:($4)	every	::ii::ii	linestyle	2,\	
									fname	using	2:3:($4)	every	::im::ii	with	lines	lt	1	
	
			#	Add	shadow	on	the	xy	plane	
			replot	fname	using	2:3:(0*$4)	every	::im::ii	with	lines	lt	3	
}	

Many	Particles	Animation	
•  If	you	have	many	particles	travelling	at	different	energies,	you	may	have	several	

datafiles,	one	for	each	time	t.	
•  In	this	case	a	different	input	data-file	is	read	at	each	loop	cycle:	

•  See	Animations/nparts_anim.*.		

set	cbrange	[0:35]				#	Fix	the	colorbar	range	
	
set	pointsize	1	
set	style	line	2	lc	rgb	'#0060ad'	pt	7			#	circle	
	
set	xlabel	"x"	font	",18"	
set	ylabel	"y"	font	",18"	
set	tics	font	",18"	
	
vmag(vx,vy,vz)	=	sqrt(vx*vx	+	vy*vy	+	vz*vz)	#	Define	useful	column-function	
	
do	for	[n=0:100]	{	
		title	=	sprintf	("Particle	velocity	magnitude,	n	=	%d",n)	#	Title	string	
		set	title	title_string	font	",18”	
		fname	=	sprintf	('particles.%04d.tab',n)	#	Datafile	string	
	
		plot	fname	using	2:3:(vx=$5,	vy=$6,	vz=$7,	vmag(vx,vy,vz))	\	
							every	1	with	points	ls	2	palette	
}	

References	on	the	Web	
•  Many	tutorials	on	Gnuplot	are	available	online.	

•  http://www.gnuplotting.org	-	This	website	gives	many	useful	examples	on	
how	to	create	nice	looking	plots.	The	section	Gnuplot	basics	à	Plotting	data	explains	
many	different	ways	to	plot	datafiles.	

•  http://lowrank.net/gnuplot/index-e.html		-	Here	you	can	find	a	nice	tutorial,	
explaining	Legend,	tics,	label,	2D	and	3D	plotting	and	much	more.	

