
  

Problems and Algorithms: 
Classes of problems

Nandini Mukherjee

Department of Computer 
Science and Engineering



  

Problems and Algorithms
 We know about complexity of algorithms.
 We could compare different algorithms (e.g. Ө(n2) versus 

Ө(n log n) for sorting)
 But are we sure that we had the best possible algorithm?
 We must look for the inherent complexity in problems.

• how “hard” is a problem?
• what are the minimum resources required to solve a 

problem?
 We shall consider three classes of problems

• P:  problems solvable in polynomial time.
• NP: problems verifiable in polynomial time. 
• NPC: problems in NP and as hard as any problem in NP.

However, we shall study these classes in the context of decision 
problems 



  

What are decision problems?
 The statement of a decision has two parts:

• The instance description part defines the information expected in the 
input

• The question part states the actual yes-or-no question, which contains 
variables defined in the instance description

e.g. given an undirected graph G and a positive integer k, is there 
a colouring of G using at most k colours?

But more often we are interested in optimisation problems.
So how can we apply the concept of NP-completeness?
Fortunately, there is a convenient relationship between 

optimisation problems and decision problems
Like the above problem is actually an optimisation problem stated 

as:
Given an undirected graph G = (V,E), produce an optimal 

colouring.  



  

Optimisation and decision 
problems
 Example – Knapsack

• Optimisation problem – Find the largest total profit of any subset of the 
objects that fit in the knapsack

• Decision problem – Given k, is there a subset of objects that fits in the 
knapsack and has total profit at least k? 

 Example – Shortest Path
• Optimisation problem – Given graph G, u,v, find a path from u to v with 

fewest edges
• Decision problem – Given graph G, u,v, and k, whether  there exists a 

path from u to v consisting of at most k edges?
 Example – Traveling Salesperson

• Optimisation problem – Given a complete, weighted graph, find a 
minimum weight Hamiltonian cycle

• Decision problem – Given a complete, weighted graph and integer k, 
is there a Hamiltonian cycle with total weight at most k? 



  

Optimisation and decision 
problems
 Decision is easier (i.e., no harder)  than optimization
 If there is an algorithm for an optimization problem, the 

algorithm can be used to solve the corresponding 
decision problem

 Relationship between the optimisation problems and 
decision problems actually helps us – 
• If an optimisation problem is easy, its related decision 

problem is easy as well.

• If we can provide evidence that a decision problem is hard, 
we also provide evidence that its related optimisation 
problem is hard.



  

The Class P
P is the class of decision problems that can be 

deterministically solved in polynomial time
 An algorithm is polynomially bounded if its 

worst-case complexity is bounded by a 
polynomial function of the input size.

 A problem is polynomially bounded if there 
exists a polynomially bounded algorithm for 
it.

 P is the class of decision problems that are 
polynomially bounded

 i.e. if input size is n, then worst-case running 
time is O(n c) for some constant c.



  

The Class P
Why do we use polynomial bound?

• If a problem is not in P, it will be extremely expensive and 
probably impossible to solve in practice

• Any algorithm built from several polynomially bounded 
algorithms in various natural ways (addition, multiplication 
and composition) is also polynomially bounded – nice 
closure properties

• It is independent of the particular formal model of the 
computation used

 There are problems for which
• no polynomial algorithm is known
• a superpolynomial algorithm is known
• we have not (yet?) proved a superpolynomial lower bound.
• we do not know whether or not those problems are in P.

Θ(n100) vs. Θ(2n) – very few problems are actually has algorithms 
with complexity Θ(n100) 



  

The Class NP
 NP is the class of decision problems for which there is a 

polynomially bounded nondeterministic algorithm.
 Nondeterministic algorithms:

• A nondeterministic algorithm has two phases and an output 
step:
• The nondeterministic “guessing” phase, and

• The deterministic “verifying” phase

• The guessing phase generates an arbitrary string of characters 
s ( a certificate)  - is it a solution?

• The verifying phase returns a value true, if s is a solution, else 
it returns a false value

• If the verifying phase returns true, the algorithm outputs yes. 
Otherwise, there is no output.



  

Nondeterministic graph colouring

 The string s can be interpreted as a list 
of integers c1, c2, c3, …, cq

 Assign ci to vi

 In the second phase:
• Check that there are n colours listed (i.e. q=n)

• Check that each ci is in the range 1, …, k

• Scan the list of edges in the graph and for 
each edge vi vj  check that ci  ≠  cj



  

The Class NP
 A nondeterministic algorithm is said to be polynomially 

bounded if there is a fixed polynomial p such that for each 
input of size n for which the answer is ‘yes’, there is some 
execution of the algorithm that produces a yes output in at 
most p(n) steps.

In other words, NP is the class of problems that are 
“verifiable” in polynomial time, i.e. we can verify in O(n c) 
time whether a proposed solution is correct. 

We can certainly say that P ⊆ NP



  

Classes P and NP

P ⊆ NP

Does NP ⊆ P?

whether P = NP or P ≠ NP?

P ≠  NP: one of the deepest, most 
perplexing open research problems in 
theoretical computer science since 1971.



  

Deciding if a problem is in P
 To show that a problem A is in P

• We can prove a O(n c) bound for A directly (This is hard)
• We can find a O(n c) algorithm for A
• We can show that A is reducible to some problem already 

known to be in P.

What do we mean by ‘reducible’? – discussed later.

 To show a problem A is not in P,
• We can prove a Ω(f (n)) bound for some superpolynomial f (n) 

(e.g. f (n) = 2 n ).
• We can show some problem already known not to be in P is 

reducible to A.



  

NP-complete problems
 This is the class of problems for which it is unknown whether a 

polynomial-time algorithm does exist
• No polynomial time algorithm has yet been discovered for an NPC 

problem
• No one has proven that no polynomial time algorithm exist for any of 

them
If any NPC problem can be solved in polynomial time then every 

NPC problem has polynomial time algorithm
Why study NPC problems?

• If a problem is NPC, it is highly unlikely to find a P-time algorithm to 
solve it

• Computer scientists believe that NPC is intractable (i.e., hard, and P ≠  
NP)

• Instead of wasting time on finding an efficient algorithm, try to design 
approximation algorithms to solve the problem

• Find heuristics that give correct answer in many cases



  

Classes P, NP and NPC

 View of Computer Scientists:

NPC

P

NP

P ⊂  NP, NPC ⊂  NP, P ∩ NPC = ∅



  

Polynomial reductions

 Consider problems A and B
 Consider a mapping from any instance α of A 

to an instance β of B
 This transformation is polynomial reduction 

• If it is “fast”, i.e. takes place in polynomial time

• If it is “answer-preserving”
• The answer of A for α is “yes” if and only if the answer of 

B for β is “yes”

Polynomial Reduction Algorithm for Bα β

Decision algorithm for A

YES YES

NO
NO



  

Polynomial reductions

 What is its implication? 
• If decision algorithm for B is polynomial, so 

does A
• B ∈ P implies A ∈ P

• A is no harder than B (or B is no easier than 
A)

• If A is hard (e.g. NPC), so does B
• A ∉ P implies B ∉ P



  

NP-Complete problems
 The term NP-complete describes the decision problems 

that are the hardest ones in NP
 A problem p is NP-complete if 

1. p ∈ NP and
2. p'≤ p p for every p' ∈ NP

(if p satisfies 2, then p is said NP-hard)
 i.e.

• A problem Q in NP-hard if every problem P in NP is 
reducible to Q
• NP-hard puts a lower-bound on the complexity of the problem
• An NP-hard problem may itself not be an NP problem

• A problem Q  is NP-complete it is in NP and is NP-hard



  

NP-Complete problems

 How to prove a problem B to be NPC?
• At first, prove B is in NP, which is generally easy

• Find a already proved NPC problem A

• Establish a polynomial reduction from A to B 

Question: What is and how to prove the first NPC 
problem?
• Circuit-satisfiability problem.

 Cook-Levin Theorem
• The satisfiability problem in NP-complete



  

First NP-complete problem
Circuit Satisfiability

 Boolean combinational circuit
• Boolean combinational elements, wired together

• Each element, inputs and outputs (binary)

• Limit the number of outputs to 1

• Called logic gates: NOT gate, AND gate, OR gate

• truth table: giving the outputs for each setting of inputs

• true assignment: a set of boolean inputs.

• satisfying assignment: a true assignment causing the 
output to be 1.

• A circuit is satisfiable if it has a satisfying assignment



  

Solving circuit-satisfiability 
problem

 Solution
• For each possible assignment, check whether 

it generates 1.

 suppose the number of inputs is k
 total possible assignments are 2k

 the running time is Ω(2k)
 Thus, the running time is not polynomial



  

Circuit-satisfiability problem is in 
NP
 Now we shall formally prove that circuit-satisfiability is NP-

complete
 First let us prove that circuit-satisfiability belongs to NP
 i.e. there exists a non-deterministic algorithm A which is 

verifiable in polynomial time
• Given (an encoding of) a boolean combinational circuit C and a 

certificate, which is an assignment of boolean values to (all) wires in 
C

• The algorithm is constructed as follows:  
1. “Guess” the values of input nodes as well as the output value of each 

logic gate – a certificate
2. Visit each logic gate g in C and check that the “guessed” value for the 

output of g is the correct value for g’s boolean function based on the 
given values for the inputs for g  

3. If any check for a gate fails, or if the guessed value for output is 0, 
then the algorithm outputs “no”

4. If the check for every gate succeeds and the output is 1, the algorithm 
outputs “yes”



  

Circuit-satisfiability problem is in 
NP

 Step 2 is always performed in polynomial time
 Whenever a satisfiable circuit is input to the 

algorithm A, there is a certificate whose length 
is polynomial in the size of C and that causes 
A to output 1

 Whenever an unsatisfiable circuit is input, A 
will produce output 0 for every certificate

 The algorithm is executed in polynomial time 
 Therefore, circuit satisfiability is in NP



  

Circuit-satisfiability problem is NP-
hard
 To prove circuit satisfiability is NP-hard:
 Suppose X is any problem in NP

• We shall construct a polynomial time algorithm F that 
maps every problem instance x in X to a circuit C=f(x) 
such that the answer to x is YES if and only if C is 
satisfiable

• Since  X∈NP, there exists a polynomial time algorithm 
A which verifies X

• Let T(n) denote the worst-case running time of 
algorithm A on input strings of length n

• Let k be the constant such that T(n)=O(nk) and the 
length of the certificate is O(nk)



  

Circuit-satisfiability problem is NP-
hard
 Any deterministic algorithm can be implemented on a 

simple computational model consisting of a CPU and a 
bank M of addressable memory cells

 A can be represented as a sequence of configurations, c0, 
c1,…,ci,ci+1,…,cT(n), each ci can be broken into 
• (program for A, program counter PC, auxiliary machine state, input 

x,  certificate y, working storage) and 

• ci is mapped to ci+1 by the combinational circuit M 
implementing the computer hardware.

• The output of A: 0 or 1– is written to some designated 
location in working storage when A finishes executing

• If the algorithm runs for at most T(n) steps, the output 
appears as one bit in cT(n)

• Note: A(x,y)=1 or 0



  



  

Circuit-satisfiability problem is NP-
hard

 The reduction algorithm F constructs a single 
combinational circuit C as follows:
• Paste together all T(n) copies of the circuit M.

• The output of the ith circuit, which produces ci, is 
directly fed into the input of the (i+1)th circuit.

• All items in the initial configuration, except the bits 
corresponding to certificate y, are wired directly to their 
known values.

• The bits corresponding to y are the inputs to C.

• All the outputs to the circuit are ignored, except the 
one bit of cT(n) corresponding to the output of A.  



  

Circuit-satisfiability problem is NP-
hard

 Two properties remain to be proven:
• F correctly constructs the reduction, i.e., C is 

satisfiable if and only if there exists a certificate y, 
such that A(x,y)=1.

• Suppose there is a certificate y, such that A(x,y)=1. 
Then if we apply the bits of y to the inputs of C, the 
output of C is the bit of A(x,y), that is C(y)= A(x,y) =1, so 
C is satisfiable. 

• Suppose C is satisfiable, then there is a y such that 
C(y)=1. So, A(x,y)=1.

• F runs in polynomial time.



  

Circuit-satisfiability problem is NP-
hard

• F runs in polynomial time.
• Polynomial space:

• Size of x is n.
• Size of A is constant, independent of x.
• Size of y is O(nk).
• Amount of working storage is polynomial in n since A runs 

at most O(nk). 
• M has size polynomial in length of configuration, which is 

polynomial in O(nk), and hence is polynomial in n.
• C consists of at most O(nk) copies of M, and hence is 

polynomial in n.
• Thus, the C has polynomial space.

• The construction of C takes at most O(nk) steps and 
each step takes polynomial time, so F takes polynomial 
time to construct C from x.



  

NP-complete Problems
 How do we prove a problem to be NP-complete?

• Given a new problem L, we first prove that L is in NP
• Then we reduce a known NP-complete problem to L in 

polynomial time showing L to be NP-hard
• In doing so, we use the following lemma:

• If L1 ≤ p L2  and L2 ≤ p L3 , then L1 ≤ p L3 

• The reductions generally take one of three forms:
• Restrictions: Show that a problem L is NP-hard by noting that a 

known NPC problem M is actually just a special case of L.
• Local Replacement: Reduce a known NPC problem M to L by 

dividing instances of M and L into “basic units” and then showing 
how each basic unit of M can be locally converted into a basic unit 
of L.

• Component design: Reduce a known NPC problem M to L by 
building components for an instance of L that will enforce 
important structural functions for instances of M. 

• Most difficult to construct. Used in the Cook-Levin theorem



  

CNF-SAT is NP-complete
 Takes a boolean formula in conjunctive normal form 

(CNF) as input and asks if there is an assignment of 
boolean values to its variables so that the formula 
evaluates to 1.
• CNF is formed as a collection of subexpressions, called 

clauses, that are combined using AND, with each clause 
formed as the OR of boolean variables or their negation, 
called literals.

 CNF-SAT is NP
• for a given boolean formula S, we can construct a 

nondeterministic algorithm that first “guesses” as 
assignment of boolean values for the variables in S and 
then evaluates each clause of S in turn. If all the clauses 
evaluate to 1, then S is satisfied; otherwise it is not.

 CNF-SAT is NP-hard 



  

CNF-SAT is NP-complete

 CNF-SAT is NP-hard
 We shall reduce the circuit satisfiability 

(CIRCUIT-SAT) problem to CNF-SAT
• Assume that each AND and OR gate has two inputs 

and each NOT gate has one input

• Create a variable xi for each input for the entire circuit 
C

• (Don’t start constructing a formula just using these xis, 
because this won’t give you polynomial time reduction)

• Create a variable yi for each output of a gate in C 

• Create a formula Bg that corresponds to each gate g



  

CNF-SAT is NP-complete
• If g is an AND gate with inputs a and b  (could be either xis or 

yis) and output c, then Bg = (c ↔ (a.b))

• If g is an OR gate with inputs a and b  and output c, then Bg = 
(c ↔ (a+b))

• If g is a NOT gate with input a  and output b, then Bg = (b ↔ ā)

• Convert each Bg to be in CNF

• Combine all transformed Bgs by AND operations to define the 
CNF formula S‘ that corresponds exactly to each input and 
logic gate in the circuit C

• Final boolean formula S is then given by S = S` . y, where y is 
the variable that is associated with the output of the gate that 
defines the value of C itself

• Thus, C is satisfiable if and only if S is satisfiable
• Construction from C to S builds a constant-sized 

subexpression for each input and gate of C
• This construction runs in polynomial time

 Thus CNF-SAT is NP-complete 



  

3-CNF Satisfiability Problem
 A boolean formula which is in CNF form is in 3-CNF form 

if each clause has exactly three distinct literals
 In 3-CNF satisfilability (or 3-SAT), we are asked whether 

a given boolean formula S in 3-CNF form is satisfiable.
 We shall prove that 3-SAT is NP-complete
 (2-SAT problem, where every clause has exactly two 

literals, can be solved in polynomial time)
 3-SAT is in NP, because we can construct a 

nondeterministic algorithm that takes a CNF formula S 
with 3-literals per clause, guesses an assignment of 
boolean values for S, and then evaluates S to see if it is 
equal to 1



  

3-SAT is NP-complete
 Now to show that 3-SAT is NP-hard

• Reduce CNF-SAT to 3-SAT in polynomial time
• Let C be a boolean formula in CNF
• Perform local replacements for each clauses Ci in C to 

generate a formula Si

• Values assigned to the newly introduced variables are 
irrelevant. No matter what we assign to them, the clause Ci 
is 1 if and only if Si is 1

• Thus, C is 1 if and only if S is 1
• Moreover, each clause increases in size by at most a 

constant factor and that the computations involved are 
simple substitutions

 Thus, 3-SAT is NP-complete


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

