Problems and Algorithms: Classes of problems

Nandini Mukherjee Department of Computer Science and Engineering

Problems and Algorithms

- We know about complexity of algorithms.
- We could compare different algorithms (e.g. $\Theta(n^2)$ versus $\Theta(n \log n)$ for sorting)
- But are we sure that we had the best possible algorithm?
- We must look for the inherent complexity in problems.
 - how "hard" is a problem?
 - what are the minimum resources required to solve a problem?
- We shall consider three classes of problems
 - P: problems solvable in polynomial time.
 - NP: problems verifiable in polynomial time.

NPC: problems in NP and as hard as any problem in NP.
However, we shall study these classes in the context of *decision* problems

What are decision problems?

- The statement of a decision has two parts:
 - The instance description part defines the information expected in the input
 - The question part states the actual yes-or-no question, which contains variables defined in the instance description
- e.g. given an undirected graph G and a positive integer k, is there a colouring of G using at most k colours?
- But more often we are interested in optimisation problems.

So how can we apply the concept of NP-completeness?

Fortunately, there is a convenient relationship between

optimisation problems and decision problems

Like the above problem is actually an optimisation problem stated as:

Given an undirected graph G = (V,E), produce an optimal colouring.

Optimisation and decision problems

- Example Knapsack
 - Optimisation problem Find the largest total profit of any subset of the objects that fit in the knapsack
 - Decision problem Given k, is there a subset of objects that fits in the knapsack and has total profit at least k?
- Example Shortest Path
 - Optimisation problem Given graph G, u,v, find a path from u to v with fewest edges
 - Decision problem Given graph G, u,v, and k, whether there exists a path from u to v consisting of at most k edges?
- Example Traveling Salesperson
 - Optimisation problem Given a complete, weighted graph, find a minimum weight Hamiltonian cycle
 - Decision problem Given a complete, weighted graph and integer k, is there a Hamiltonian cycle with total weight at most k?

Optimisation and decision problems

- Decision is easier (i.e., no harder) than optimization
- If there is an algorithm for an optimization problem, the algorithm can be used to solve the corresponding decision problem
- Relationship between the optimisation problems and decision problems actually helps us –
 - If an optimisation problem is easy, its related decision problem is easy as well.
 - If we can provide evidence that a decision problem is hard, we also provide evidence that its related optimisation problem is hard.

The Class P

- *P* is the class of decision problems that can be deterministically solved in polynomial time
- An algorithm is *polynomially bounded* if its worst-case complexity is bounded by a polynomial function of the input size.
- A problem is *polynomially bounded* if there exists a polynomially bounded algorithm for it.
- *P* is the class of decision problems that are polynomially bounded
- i.e. if input size is n, then worst-case running time is O(n °) for some constant c.

The Class P

Why do we use polynomial bound?

- If a problem is not in P, it will be extremely expensive and probably impossible to solve in practice
- Any algorithm built from several polynomially bounded algorithms in various natural ways (addition, multiplication and composition) is also polynomially bounded – nice closure properties
- It is independent of the particular formal model of the computation used
- There are problems for which
 - no polynomial algorithm is known
 - a superpolynomial algorithm is known
 - we have not (yet?) proved a superpolynomial lower bound.
 - we do not know whether or not those problems are in P.

 $\Theta(n^{100})$ vs. $\Theta(2^n)$ – very few problems are actually has algorithms with complexity $\Theta(n^{100})$

The Class NP

- *NP* is the class of decision problems for which there is a polynomially bounded nondeterministic algorithm.
- Nondeterministic algorithms:
 - A nondeterministic algorithm has two phases and an output step:
 - The nondeterministic "guessing" phase, and
 - The deterministic "verifying" phase
 - The guessing phase generates an arbitrary string of characters s (a certificate) is it a solution?
 - The verifying phase returns a value *true*, if *s* is a solution, else it returns a *false* value
 - If the verifying phase returns *true*, the algorithm outputs *yes*. Otherwise, there is no output.

Nondeterministic graph colouring

- The string s can be interpreted as a list of integers c₁, c₂, c₃, ..., c_q
- Assign c_i to v_i
- In the second phase:
 - Check that there are n colours listed (i.e. q=n)
 - Check that each c_i is in the range 1, ..., k
 - Scan the list of edges in the graph and for each edge $v_i v_j$ check that $c_i \neq c_j$

The Class NP

 A nondeterministic algorithm is said to be polynomially bounded if there is a fixed polynomial p such that for each input of size n for which the answer is 'yes', there is some execution of the algorithm that produces a yes output in at most p(n) steps.

In other words, *NP* is the class of problems that are "verifiable" in polynomial time, i.e. we can verify in *O(n ^c)* time whether a proposed solution is correct.

We can certainly say that $P \subseteq NP$

Classes P and NP $\mathsf{P} \subset \mathsf{NP}$ Does NP \subset P? whether P = NP or $P \neq NP$? $P \neq NP$: one of the deepest, most perplexing open research problems in

theoretical computer science since 1971.

Deciding if a problem is in P

- To show that a problem A is in P
 - We can prove a O(n ^c) bound for A directly (This is hard)
 - We can find a $O(n^{c})$ algorithm for A
 - We can show that A is reducible to some problem already known to be in *P*.

What do we mean by 'reducible'? – discussed later.

- To show a problem A is not in P,
 - We can prove a Ω(f (n)) bound for some superpolynomial f (n) (e.g. f (n) = 2ⁿ).
 - We can show some problem already known not to be in *P* is reducible to A.

NP-complete problems

- This is the class of problems for which it is *unknown* whether a polynomial-time algorithm does exist
 - No polynomial time algorithm has yet been discovered for an NPC problem
 - No one has proven that no polynomial time algorithm exist for any of them
- If any NPC problem can be solved in polynomial time then *every* NPC problem has polynomial time algorithm

Why study NPC problems?

- If a problem is NPC, it is highly unlikely to find a P-time algorithm to solve it
- Computer scientists believe that NPC is intractable (i.e., hard, and P ≠ NP)
- Instead of wasting time on finding an efficient algorithm, try to design approximation algorithms to solve the problem
- Find heuristics that give correct answer in many cases

Classes P, NP and NPC

• View of Computer Scientists:

 $P \subset NP, NPC \subset NP, P \cap NPC = \emptyset$

Polynomial reductions

- Consider problems A and B
- Consider a mapping from any instance α of A to an instance β of B
- This transformation is polynomial reduction
 - If it is "fast", i.e. takes place in polynomial time
 - If it is "answer-preserving"
 - The answer of A for α is "yes" if and only if the answer of B for β is "yes"

Polynomial reductions

- What is its implication?
 - If decision algorithm for B is polynomial, so does A
 - $B \in P$ implies $A \in P$
 - A is no harder than B (or B is no easier than A)
 - If A is hard (e.g. NPC), so does B
 - $A \notin P$ implies $B \notin P$

NP-Complete problems

- The term *NP-complete* describes the decision problems that are the hardest ones in *NP*
- A problem p is NP-complete if
 - 1. $p \in NP$ and
 - 2. $p' \leq_p p$ for every $p' \in NP$

(if p satisfies 2, then p is said NP-hard)

) i.e.

- A problem Q in NP-hard if every problem P in NP is reducible to Q
 - NP-hard puts a lower-bound on the complexity of the problem
 - An *NP-hard* problem may itself not be an *NP* problem
- A problem **Q** is *NP-complete* it is in *NP* and is *NP-hard*

NP-Complete problems

- How to prove a problem B to be NPC?
 - At first, prove B is in NP, which is generally easy
 - Find a already proved NPC problem A
 - Establish a polynomial reduction from A to B

Question: What is and how to prove the first NPC problem?

- Circuit-satisfiability problem.
- Cook-Levin Theorem
 - The satisfiability problem in NP-complete

First NP-complete problem Circuit Satisfiability

- Boolean combinational circuit
 - Boolean combinational elements, wired together
 - Each element, inputs and outputs (binary)
 - Limit the number of outputs to 1
 - Called *logic gates*: NOT gate, AND gate, OR gate
 - truth table: giving the outputs for each setting of inputs
 - true assignment: a set of boolean inputs.
 - satisfying assignment: a true assignment causing the output to be 1.
 - A circuit is satisfiable if it has a satisfying assignment

Solving circuit-satisfiability problem

Solution

- For each possible assignment, check whether it generates 1.
- suppose the number of inputs is *k*
- total possible assignments are 2^k
- the running time is $\Omega(2^k)$
- Thus, the running time is not polynomial

Circuit-satisfiability problem is in NP

- Now we shall formally prove that circuit-satisfiability is NPcomplete
- First let us prove that circuit-satisfiability belongs to NP
- i.e. there exists a non-deterministic algorithm A which is verifiable in polynomial time
 - Given (an encoding of) a boolean combinational circuit C and a certificate, which is an assignment of boolean values to (all) wires in C
 - The algorithm is constructed as follows:
 - 1. "Guess" the values of input nodes as well as the output value of each logic gate a certificate
 - 2. Visit each logic gate g in C and check that the "guessed" value for the output of g is the correct value for g's boolean function based on the given values for the inputs for g
 - 3. If any check for a gate fails, or if the guessed value for output is 0, then the algorithm outputs "no"
 - 4. If the check for every gate succeeds and the output is 1, the algorithm outputs "yes"

Circuit-satisfiability problem is in NP

- Step 2 is always performed in polynomial time
- Whenever a satisfiable circuit is input to the algorithm A, there is a certificate whose length is polynomial in the size of C and that causes A to output 1
- Whenever an unsatisfiable circuit is input, A will produce output 0 for every certificate
- The algorithm is executed in polynomial time
- Therefore, circuit satisfiability is in NP

- To prove circuit satisfiability is NP-hard:
- Suppose X is any problem in NP
 - We shall construct a polynomial time algorithm F that maps every problem instance x in X to a circuit C=f(x) such that the answer to x is YES if and only if C is satisfiable
 - Since X∈NP, there exists a polynomial time algorithm A which verifies X
 - Let T(n) denote the worst-case running time of algorithm A on input strings of length n
 - Let k be the constant such that T(n)=O(nk) and the length of the certificate is O(nk)

- Any deterministic algorithm can be implemented on a simple computational model consisting of a CPU and a bank *M* of addressable memory cells
- A can be represented as a sequence of configurations, c_0 , $c_1, \ldots, c_i, c_{i+1}, \ldots, c_{T(n)}$, each c_i can be broken into
 - (program for A, program counter PC, auxiliary machine state, input x, certificate y, working storage) and
 - c_i is mapped to c_{i+1} by the combinational circuit M implementing the computer hardware.
 - The output of *A:* 0 or 1– is written to some designated location in working storage when A finishes executing
 - If the algorithm runs for at most T(n) steps, the output appears as one bit in $c_{T(n)}$
 - Note: *A*(*x*,*y*)=1 or 0

- The reduction algorithm F constructs a single combinational circuit C as follows:
 - Paste together all T(n) copies of the circuit M.
 - The output of the *i*th circuit, which produces c_i, is directly fed into the input of the (*i*+1)th circuit.
 - All items in the initial configuration, except the bits corresponding to certificate y, are wired directly to their known values.
 - The bits corresponding to *y* are the inputs to C.
 - All the outputs to the circuit are ignored, except the one bit of $c_{\tau(n)}$ corresponding to the output of A.

- Two properties remain to be proven:
 - F correctly constructs the reduction, i.e., C is satisfiable if and only if there exists a certificate y, such that A(x,y)=1.
 - Suppose there is a certificate y, such that A(x,y)=1. Then if we apply the bits of y to the inputs of C, the output of C is the bit of A(x,y), that is C(y)= A(x,y) =1, so C is satisfiable.
 - Suppose C is satisfiable, then there is a y such that C(y)=1. So, A(x,y)=1.
 - F runs in polynomial time.

- F runs in polynomial time.
 - Polynomial space:
 - Size of *x* is *n*.
 - Size of A is constant, independent of *x*.
 - Size of *y* is *O*(*n*^{*k*}).
 - Amount of working storage is polynomial in n since A runs at most O(n^k).
 - M has size polynomial in length of configuration, which is polynomial in O(n^k), and hence is polynomial in n.
 - C consists of at most $O(n^k)$ copies of M, and hence is polynomial in *n*.
 - Thus, the C has polynomial space.
 - The construction of C takes at most O(n^k) steps and each step takes polynomial time, so F takes polynomial time to construct C from x.

NP-complete Problems

- How do we prove a problem to be NP-complete?
 - Given a new problem *L*, we first prove that *L* is in NP
 - Then we reduce a known NP-complete problem to L in polynomial time showing L to be NP-hard
 - In doing so, we use the following lemma:
 - If $L_1 \leq {}_pL_2$ and $L_2 \leq {}_pL_3$, then $L_1 \leq {}_pL_3$
 - The reductions generally take one of three forms:
 - **Restrictions:** Show that a problem *L* is NP-hard by noting that a known NPC problem *M* is actually just a special case of *L*.
 - Local Replacement: Reduce a known NPC problem *M* to *L* by dividing instances of *M* and *L* into "basic units" and then showing how each basic unit of *M* can be locally converted into a basic unit of *L*.
 - **Component design:** Reduce a known NPC problem *M* to *L* by building components for an instance of *L* that will enforce important structural functions for instances of *M*.
 - Most difficult to construct. Used in the Cook-Levin theorem

CNF-SAT is NP-complete

- Takes a boolean formula in conjunctive normal form (CNF) as input and asks if there is an assignment of boolean values to its variables so that the formula evaluates to 1.
 - CNF is formed as a collection of subexpressions, called clauses, that are combined using AND, with each clause formed as the OR of boolean variables or their negation, called literals.
- CNF-SAT is NP
 - for a given boolean formula S, we can construct a nondeterministic algorithm that first "guesses" as assignment of boolean values for the variables in S and then evaluates each clause of S in turn. If all the clauses evaluate to 1, then S is satisfied; otherwise it is not.
- CNF-SAT is NP-hard

CNF-SAT is NP-complete

- CNF-SAT is NP-hard
- We shall reduce the circuit satisfiability (CIRCUIT-SAT) problem to CNF-SAT
 - Assume that each AND and OR gate has two inputs and each NOT gate has one input
 - Create a variable x_i for each input for the entire circuit
 - (Don't start constructing a formula just using these x_is, because this won't give you polynomial time reduction)
 - Create a variable y_i for each output of a gate in C
 - Create a formula B_g that corresponds to each gate g

CNF-SAT is NP-complete

- If *g* is an AND gate with inputs *a* and *b* (could be either x_i s or y_i s) and output *c*, then $B_g = (c \leftrightarrow (a.b))$
- If g is an OR gate with inputs a and b and output c, then B_g = (c ↔ (a+b))
- If g is a NOT gate with input a and output b, then $B_g = (b \leftrightarrow \bar{a})$
- Convert each B_q to be in CNF
- Combine all transformed B_gs by AND operations to define the CNF formula S' that corresponds exactly to each input and logic gate in the circuit C
- Final boolean formula S is then given by S = S`. y, where y is the variable that is associated with the output of the gate that defines the value of C itself
- Thus, *C* is satisfiable if and only if *S* is satisfiable
- Construction from C to S builds a constant-sized subexpression for each input and gate of C
- This construction runs in polynomial time
- Thus CNF-SAT is NP-complete

3-CNF Satisfiability Problem

- A boolean formula which is in CNF form is in 3-CNF form if each clause has exactly three distinct literals
- In 3-CNF satisfilability (or 3-SAT), we are asked whether a given boolean formula S in 3-CNF form is satisfiable.
- We shall prove that 3-SAT is NP-complete
- (2-SAT problem, where every clause has exactly two literals, can be solved in polynomial time)
- 3-SAT is in NP, because we can construct a nondeterministic algorithm that takes a CNF formula S with 3-literals per clause, guesses an assignment of boolean values for S, and then evaluates S to see if it is equal to 1

3-SAT is NP-complete

- Now to show that 3-SAT is NP-hard
 - Reduce CNF-SAT to 3-SAT in polynomial time
 - Let C be a boolean formula in CNF
 - Perform local replacements for each clauses C_i in C to generate a formula S_i
 - Values assigned to the newly introduced variables are irrelevant. No matter what we assign to them, the clause C_i is 1 if and only if S_i is 1
 - Thus, *C* is 1 if and only if *S* is 1
 - Moreover, each clause increases in size by at most a constant factor and that the computations involved are simple substitutions
- Thus, 3-SAT is NP-complete