PRAM Algorithms

Why do we need a PRAM model?

* to make it easy to reason about algorithms
* to achieve complexity bounds
* to analyze the maximum parallelism

PRAM Complexity Measures

 for each individual processor
e time: number of instructions executed
* space: number of memory cells accessed

e PRAM machine

e time: time taken by the longest running processor
* hardware: maximum number of active processors

Two Technical Issues

* How processors are activated
* How shared memory is accessed

Processor Activation

P, places the number of processors (p) . . .
in the designated shared-memory cell Active processors explicitly

, _ activate additional processors via
each active P, where j < p, starts FORK instructions

executing * tree-like activation
O(1) ti t tivat _ ' [
(1) time to activate * O(log p) time to activate

all processors halt when P, halts .
* Also known as Spawning

AN

1. 0/0/0]/ 0/010

| processor will activate a processor 2i and a processor
21+1

Computing the “Boolean OR” of A[1], A[2], A[3], A[4], A[5]

* Using CRCW PRAM
* Initially
* table A contains values 0 and 1
contains value 0

tor each 1 <1 < 5 do 1 parallel
if Al7] = 1 then output=1;

Minimum of n numbers

Comparisons between numbers can be done independently
The second part is to find the result using concurrent write mode
For n numbers ----> we have ~ n? pairs

[a1,35,83,8,]
(& ,a)

M[1..n] | 0000000000(* |00000000000(C° |0000000000000000000

It a; > @, then @ cannot be the minimal number

Minimum of n numbers

foreach 1<i <ndoin parallel
M(i]:=0

foreach 1<i,j <ndo in parallel
if iz C[i] <C[j] then M[j]:=1

foreach 1<i <n do in parallel
if M[i]=0 then output:=i

computes MIN of n
numbers stored in the
array C[1..n] in O(1)
time with n?
processors.

Reduction:

Given a set of nvalues al, a2, ... an
and an associative binary operator
+, reduction is the process of
computing al+a2+... +an

Sum of n elements
O

P P, 1 p, T ""_'_'_jj;

pﬂ._f
log(n) steps
TNl n/2 processors

Speed-up = n/log(n)
Applicable for other
operations too

EREW PRAM algorithm

SUM (EREW PRAM)
Input: A[O ... (n-1)]
Output: sum stored in A[O]

Begin

end

spawn (PO, P1, P2, ... P ,, _,)
for all P, where 0<i<n/2-1doin parallel
forj=0tologn-1do

endfor

endfor

if i modulo 2/=0and 2i + 2! < nthen
A[2i] = A[2i] + A[2i + 2]
endif

Time complexity

Spawning log n/2

Sequential for loop executes in
log n time

Overall
© (log n) on n/2 processors

Sorting using CRCW PRAM

Spawn n? Processors

fori=1tondoin parallel
forj=1tondoin parallel
if Si>Sjor(Si=Sjandi>j)then
P,,writesltor,
endif
endfor
endfor
fori=1tondoin parallel
P, putsSiin (r; + 1) position of S
endfor

