
PRAM Algorithms

Why do we need a PRAM model?

• to make it easy to reason about algorithms
• to achieve complexity bounds
• to analyze the maximum parallelism

PRAM Complexity Measures

• for each individual processor
• time: number of instructions executed
• space: number of memory cells accessed

• PRAM machine
• time: time taken by the longest running processor
• hardware: maximum number of active processors

Two Technical Issues

• How processors are activated

• How shared memory is accessed

Processor Activation
P0 places the number of processors (p)
in the designated shared-memory cell

• each active Pi, where i < p, starts
executing

• O(1) time to activate
• all processors halt when P0 halts

• Active processors explicitly
activate additional processors via
FORK instructions
• tree-like activation
• O(log p) time to activate

• Also known as Spawning

1 0 0 0 0 0 0

i processor will activate a processor 2i and a processor

2i+1

Computing the “Boolean OR” of A[1], A[2], A[3], A[4], A[5]

• Using CRCW PRAM

• Initially

• table A contains values 0 and 1

• output contains value 0

Minimum of n numbers

[a1,a2,a3,a4]

(a1,a2)

(a2, a3)

(a3, a4)

(a2, a4)

(a1, a3)

(a1, a4)

001 0

(ai ,aj)

If ai > aj then ai cannot be the minimal number

i j1 n

M[1..n]

Comparisons between numbers can be done independently
The second part is to find the result using concurrent write mode
For n numbers ----> we have ~ n2 pairs

Minimum of n numbers

for each 1 i n do in parallel

M[i]:=0

for each 1 i,j n do in parallel

if ij C[i] C[j] then M[j]:=1

for each 1 i n do in parallel

if M[i]=0 then output:=i

computes MIN of n
numbers stored in the
array C[1..n] in O(1)
time with n2

processors.

Sum of n elements

Reduction:

Given a set of n values a1, a2, … an
and an associative binary operator
+, reduction is the process of
computing a1+a2+ … +an

log(n) steps
n/2 processors
Speed-up = n/log(n)
Applicable for other
operations too

EREW PRAM algorithm
SUM (EREW PRAM)

Input: A[0 … (n-1)]

Output: sum stored in A[0]

Begin

spawn (P0, P1, P2, … Pn/2 – 1)

for all Pi where 0 ≤ i ≤ n/2 -1 do in parallel

for j = 0 to log n -1 do

if i modulo 2 j = 0 and 2i + 2j < n then

A[2i] = A[2i] + A[2i + 2j]

endif

endfor

endfor

end

Time complexity
Spawning log n/2
Sequential for loop executes in
log n time

Overall
Θ (log n) on n/2 processors

Sorting using CRCW PRAM

Spawn n2 Processors

for i = 1 to n do in parallel

for j = 1 to n do in parallel

if Si > Sj or (Si = Sj and i > j) then

P i, j writes 1 to r i
endif

endfor

endfor

for i = 1 to n do in parallel

P i, 1 puts Si in (ri + 1) position of S

endfor

