PRAM Algorithms

Why do we need a PRAM model?

- to make it easy to reason about algorithms
- to achieve complexity bounds
- to analyze the maximum parallelism

PRAM Complexity Measures

- for each individual processor
- time: number of instructions executed
- space: number of memory cells accessed
- PRAM machine
- time: time taken by the longest running processor
- hardware: maximum number of active processors

Two Technical Issues

- How processors are activated
- How shared memory is accessed

Processor Activation

P_{0} places the number of processors (p) in the designated shared-memory cell

- each active P_{i}, where $i<p$, starts executing
- $O(1)$ time to activate
- all processors halt when P_{0} halts
- Active processors explicitly activate additional processors via FORK instructions
- tree-like activation
- $O(\log p)$ time to activate
- Also known as Spawning

Computing the "Boolean OR" of A[1], A[2], A[3], A[4], A[5]

- Using CRCW PRAM
- Initially
- table A contains values 0 and 1
- output contains value 0
for each $1 \leq i \leq 5$ do in parallel if $A[i]=1$ then output=1;

Minimum of n numbers

Comparisons between numbers can be done independently
The second part is to find the result using concurrent write mode
For n numbers ----> we have $\sim n^{2}$ pairs

If $a_{i}>a_{j}$ then a_{i} cannot be the minimal number

Minimum of n numbers

for each $1 \leq i \leq n$ do in parallel
M[i]:=0
for each $1 \leq i, j \leq n$ do in parallel if $i \neq j C[i] \leq C[j]$ then $M[j]:=1$
for each $1 \leq i \leq n$ do in parallel if $M[i]=0$ then output:=i
computes MIN of n numbers stored in the array $\mathrm{C}[1 . . n]$ in $\mathrm{O}(1)$ time with n^{2} processors.

Sum of n elements

$\log (\mathrm{n})$ steps
$\mathrm{n} / 2$ processors
Speed-up $=n / \log (n)$
Applicable for other operations too

EREW PRAM algorithm

SUM (EREW PRAM)
Input: A[0 ... (n-1)]
Output: sum stored in $\mathrm{A}[0]$
Begin

$$
\operatorname{spawn}\left(P 0, P 1, P 2, \ldots P_{n / 2-1}\right)
$$

for all P_{i} where $0 \leq i \leq n / 2-1$ do in parallel
for $j=0$ to $\log n-1$ do
if i modulo $2^{\mathrm{j}}=0$ and $2 \mathrm{i}+2^{\mathrm{j}}<\mathrm{n}$ then
$A[2 i]=A[2 i]+A\left[2 i+2^{j}\right]$
endif
endfor
endfor
end

Time complexity
Spawning $\log n / 2$
Sequential for loop executes in log n time

Overall

$\Theta(\log n)$ on $n / 2$ processors

Sorting using CRCW PRAM

Spawn n^{2} Processors
for $\mathrm{i}=1$ to n do in parallel
for $\mathrm{j}=1$ to n do in parallel
if $\mathrm{Si}>\mathrm{Sj}$ or $(\mathrm{Si}=\mathrm{Sj}$ and $\mathrm{i}>\mathrm{j})$ then
$P_{i, j}$ writes 1 to r_{i}
endif
endfor
endfor
for $\mathrm{i}=1$ to n do in parallel $P_{i, 1}$ puts $S i$ in $\left(r_{i}+1\right)$ position of S
endfor

