Linear Programming

Nandini Mukherjee Department of Computer Science and Engineering

Introduction

- A linear programming problem may be defined as the problem of *maximizing or minimizing a linear function subject to linear constraints*.
- The constraints may be equalities or inequalities.
- For example
 - Find numbers x1 and x2 that maximize the sum x1 + x2 subject to the constraints $x1 \ge 0$, $x2 \ge 0$, and
 - $x1 + 2 * x2 \le 4$
 - $4 * x1 + 2 * x2 \le 12$
 - $-x1 + x2 \le 1$
 - Two unknowns and five constraints
 - First one is called *non-negativity constraint*
 - Other constraints are called *main constraints*
 - The function x1 + x2 is called *objective function*

Introduction

- Simple problems with small number of unknowns (here only two) can be solved graphically
- In this example a family of parallel lines with slope -1 presents x1 + x2 = c
- Here the maximum occurs at the intersection of the lines x1 + 2 * x2 = 4 and

4 * x1 + 2 * x2 = 12,

- i.e. (*x*1, *x*2) = (8/3, 2/3)
- However, not all linear programming problems are so easily solved

General Linear Programming Problems

- Input
 - A set of real variables X with arbitrary bounds
 - A set of real constraints on X
 - A linear objective function on X
- Output
 - An assignment to X with optimal value of the objective function
- Standard Form

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^n c_j x_j \\\\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j \leq b_i \quad \text{for } i=1,2,\ldots,m \\\\ & x_j \geq 0 \quad \text{for } j=1,2,\ldots,n \end{array}$$

A small real life problem

- You are allowed to share your time between two companies.
 - company C1 pays 1 dollar per hour;
 - company C2 pays 10 dollars per hour.
- Knowing that you can only work up to 8 hours per day, what schedule should you go for?
- The solution is that you will work full-time at company C2.
- Linear formulation: *x*1 is the time spent at C1 and *x*2 the time spent at C2
 - Constraints: $x1 \ge 0$, $x2 \ge 0$, $x1 + x2 \le 8$
 - Objective function: maximize x1 + 10 * x2
 - Solution: x1 = 0, x2 = 8.

Standard form

• given an *m*-vector, $\mathbf{b} = (b_1, \dots, b_m)^T$, an *n*-vector, $\mathbf{c} = (c_1, \dots, c_n)^T$, and an $m \times n$ matrix of real numbers

 $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$

• The Standard Maximum Problem aims at finding an *n*-vector, $\mathbf{x} = (x_1, \dots, x_n)^T$, to maximize $\mathbf{c}^T \mathbf{x} = c_1 x_1 + \dots + c_n x_n$ subject to the constraints $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$... $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$ (or $A\mathbf{x} \le \mathbf{b}$) and $x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$ (or $\mathbf{x} \ge \mathbf{0}$).

Standard form

The Standard Minimum Problem aims at finding an *m*-vector, $y = (y_1, \ldots, y_m)$, to minimize $y^T b = y_1 b_1 + \cdots + y_m b_m$ subject to the constraints

 $y_{1}a_{11} + y_{2}a_{21} + \dots + y_{m}a_{m1} \ge C_{1}$ $y_{1}a_{12} + y_{2}a_{22} + \dots + y_{m}a_{m2} \ge C_{2}$... $y_{1}a_{1n} + y_{2}a_{2n} + \dots + y_{m}a_{mn} \ge C_{n}$ (or $y^{T}A \ge c^{T}$) and $y_{1} \ge 0, y_{2} \ge 0, \dots, y_{m} \ge 0$ (or $y \ge 0$).

More than two variables

Source: http://control.ee.ethz.ch/~mpt/downloads/25/gradcolor_off.png

Unbounded and infeasible problems

Unbounded and infeasible problems

- A vector, **x**, is said to be **feasible** if it satisfies the corresponding constraints
- The set of feasible vectors is called the **constraint set**
- A linear programming problem is said to be **feasible** if the constraint set is not empty; otherwise it is said to be **infeasible**
- A feasible maximum (or minimum) problem is said to be unbounded if the objective function can assume arbitrarily large positive (or negative) values at feasible vectors; otherwise, it is said to be bounded
- The **value** of a bounded feasible maximum (or minimum) problem is the maximum (or minimum) value of the objective function as the variables range over the constraint set
- A feasible vector at which the objective function achieves the value is called **optimal**

- To every linear program there is a dual linear program with which it is intimately connected
- e.g. the dual of the standard maximum problem maximize $c^T x$

subject to the constraints $Ax \le b$ and $x \ge 0$ can be defined as a minimum problem minimize $y^{T}b$ subject to the constraints $y^{T}A \ge c^{T}$ and $y \ge 0$

e.g. dual of the following problem:

Find numbers x1 and x2 that maximize the sum x1 + x2 subject to the constraints $x1 \ge 0$, $x2 \ge 0$, and

 $x1 + 2 * x2 \le 4$

 $4 * x1 + 2 * x2 \le 12$

 $-x1 + x2 \leq 1$

İS

Find y1, y2, and y3 to minimize 4 * y1 + 12 * y2 + y3 subject to the constraints $y1 \ge 0$, $y2 \ge 0$,

 $y3 \ge 0$, and

```
y1 + 4 * y2 - y3 \ge 1
```

```
2 * y1 + 2 * y2 + y3 \ge 1.
```

The general standard maximum problem and the dual standard minimum problem

	x_1	x_2	 x_n	
y_1	a_{11}	a_{12}	 a_{1n}	$\leq b_1$
y_2	a_{21}	a_{22}	 a_{2n}	$\leq b_2$
:	:	:	:	:
y_m	a_{m1}	a_{m2}	 a_{mn}	$\leq b_{m}$
	$\geq c_1$	$\geq c_2$	 $\geq c_n$	

	x_1	x_2	
y_1	1	2	≤ 4
y_2	4	2	≤ 12
y_3	$^{-1}$	1	≤ 1
	≥ 1	≥ 1	

Our example

The Diet Problem

m different types of food, F_1, \ldots, F_m , that supply varying quantities of the *n* nutrients, N_1, \ldots, N_n , that are essential to good health. Let c_j be the minimum daily requirement of nutrient, N_j . Let b_j be the price per unit of food, F_i . Let a_{ij} be the amount of nutrient N_j contained in one unit of food F_i .

The problem is to supply the required nutrients at minimum cost.

Let y_i be the number of units of food F_i to be purchased per day. The cost per day of such a diet is

$$b_1y_1 + b_2y_2 + \cdots + b_my_m \dots (1)$$

The amount of nutrient N_i contained in this diet is

$$a_{1j}y_1 + a_{2j}y_2 + \cdots + a_{mj}y_m$$
 for $j = 1, ..., n$

We do not consider such a diet unless all the minimum daily requirements are met, that is, unless

$$a_{1j}y_1 + a_{2j}y_2 + \cdots + a_{mj}y_m \ge c_j$$
 for $j = 1, \ldots, n$ (2)

We cannot purchase a negative amount of food, so

 $y_1 \ge 0, y_2 \ge 0, \dots, y_m \ge 0 \dots$ (3)

The Transportation Problem

There are *I ports*, P_1 , ..., P_i , that supply a certain commodity, and there are *J* markets, M_1 , ..., M_j , to which this commodity must be shipped. Port P_i possesses an amount s_i of the commodity (i = 1, 2, ..., I), and market M_j must receive the amount r_j of the commodity (j= 1, ..., *J*). Let b_{ij} be the cost of transporting one unit of the commodity from port P_i to market M_j . The problem is to meet the market requirements at minimum transportation cost.

Let y_{ij} be the quantity of the commodity shipped from port P_i to market M_i . The total transportation cost is

The Transportation Problem

Let y_{ij} be the quantity of the commodity shipped from port P_i to market M_j . The total transportation cost is given by 1.

- The amount sent from port P_i is Y and since the amount available at port P_i is s_i , we must satisfy inequality 2.
- The amount sent to market M_j is W and since the amount required there is r_j , we must satisfy inequality 3.
- It is assumed that we cannot send a negative amount from P_i to $M_{j,i}$, thus, inequality 4 is to be satisfied.
- Our problem is: minimize (1) subject to (2), (3) and (4).

$$\sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij} b_{ij} \dots 1$$

$$Y = \sum_{j=1}^{J} y_{ij}$$

$$\sum_{j=1}^{J} y_{ij} \leq s_i \quad \text{for } i = 1, \dots, I. \dots 2$$

$$W = \sum_{i=1}^{I} y_{ij},$$

$$\sum_{i=1}^{I} y_{ij} \geq r_j \quad \text{for } j = 1, \dots, J. \dots 3$$

$$h_{ij} \geq 0 \quad \text{for } i = 1, \dots, I \text{ and } j = 1, \dots, J.$$

$$\dots 4$$

All Linear Programming Problems Can be Converted to Standard Form

- A minimum problem can be changed to a maximum problem by multiplying the objective function by -1
- Constraints with ≥ can be changed to constraints with ≤ by multiplying both sides of the inequality with -1
- An equality constraint $\sum a_{ij}x_j = b_i$ may be removed, by solving this constraint for some x_j for which $a_{ij} \neq 0$ and substituting this solution into the other constraints and into the objective function wherever x_j appears
 - This removes one constraint and one variable from the problem.
- If a variable may not be restricted to be nonnegative, the unrestricted variable, x_j , may be replaced by the difference of two nonnegative variables, $x_j = u_j v_j$, where $u_j \ge 0$ and $v_j \ge 0$.
 - This adds one variable and two non-negativity constraints to the problem.

- To every linear program there is a dual linear program with which it is intimately connected
- e.g. the dual of the standard maximum problem maximize $c^T x$

subject to the constraints $Ax \le b$ and $x \ge 0$ can be defined as a minimum problem minimize $y^{T}b$ subject to the constraints $y^{T}A \ge c^{T}$ and $y \ge 0$

Theorem 1: If x is feasible for the standard maximum problem and if y is feasible for its dual, then c^Tx ≤ y^Tb
Proof: c^Tx ≤ y^TAx ≤ y^Tb

The first inequality follows from $x \ge 0$ and $c^{T} \le y^{T}A$. The second inequality follows from $y \ge 0$ and $Ax \le b$.

- **Corollary 1:** If a standard problem and its dual are both feasible, then both are bounded feasible.
- **Proof.** If y is feasible for the minimum problem, then theorem 1 shows that $y^{T}b$ is an upper bound for the values of $c^{T}x$ for x feasible for the maximum problem. Similarly for the converse.

- **Corollary 2:** If there exists feasible **x*** and **y*** for a standard maximum problem and its dual such that **c**^T**x*** = **y***^T**b**, then both are optimal for their respective problems.
- **Proof:** If *x* is any feasible vector for the maximum problem, then $c^T x \le y *^T b = c^T x *$. which shows that x * is optimal. A similar argument works for y *.
- **The Duality Theorem:** *If a standard linear programming problem is bounded feasible, then so is its dual, their values are equal, and there exists optimal vectors for both problems.*

- Three possibilities for a linear program:
 - feasible bounded (f.b.),
 - feasible unbounded (f.u.), or
 - infeasible (i).
- As per corollary 1 if a problem and its dual are both feasible, then both must be bounded feasible
- As per Duality Theorem if a program is feasible bounded, its dual cannot be infeasible
- The remaining four possibilities can occur

Standard Maximum Problem

Example of Corollary 2

• A maximum problem:

Find x1 , x2 , x3 , x4 to maximize 2x1 + 4x2 + x3 + x4 , subject to the constraints $xj \ge 0$ for all j, and

 $x1 + 3x2 + x4 \le 4$

 $2x1 + x2 \leq 3$

 $x^2 + 4x^3 + x^4 \le 3$.

• The dual problem:

Find y1, y2, y3 to minimize 4y1 + 3y2 + 3y3 subject to the constraints $yi \ge 0$ for all i, and $y1 + 2y2 \ge 2$ $3y1 + y2 + y3 \ge 4$

 $4y3 \ge 1$

 $y1+y3\geq 1.$

- The vector (x1, x2, x3, x4) = (1, 1, 1/2, 0) satisfies the constraints of the maximum problem; value of the objective function being 13/2.
- The vector $(y_1, y_2, y_3) = (11/10, 9/20, 1/4)$ satisfies the constraints of the minimum problem and has the same value 13/2 also.

The Simplex Algorithm

Lecture notes of ´Eric Schost