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Introduction
 A linear programming problem may be defined as the 

problem of maximizing or minimizing a linear function 
subject to linear constraints. 

 The constraints may be equalities or inequalities. 
 For example

• Find numbers x1 and x2 that maximize the sum x1 + x2 
subject to the constraints x1 ≥ 0, x2 ≥ 0, and

x1 + 2 * x2 ≤ 4
4 * x1 + 2 * x2 ≤ 12
−x1 + x2 ≤ 1
• Two unknowns and five constraints
• First one is called non-negativity constraint
• Other constraints are called main constraints
• The function x1 + x2 is called objective function



  

Introduction
 Simple problems with small 

number of unknowns (here only 
two) can be solved graphically

 In this example a family of 
parallel lines  with slope -1 
presents x1 + x2 = c 

 Here the maximum occurs at the 
intersection of the lines x1 + 2 * 
x2 = 4 and 

4 * x1 + 2 * x2 = 12, 

i.e. (x1, x2) = (8/3, 2/3)
 However, not all linear 

programming problems are so 
easily solved



  

General Linear Programming 
Problems
 Input

• A set of real variables X with arbitrary bounds
• A set of real constraints on X
• A linear objective function on X

 Output
• An assignment to X with optimal value of the objective function

 Standard Form



  

A small real life problem 
 You are allowed to share your time between two 

companies.
• company C1 pays 1 dollar per hour;
• company C2 pays 10 dollars per hour.

 Knowing that you can only work up to 8 hours per day, 
what schedule should you go for?

 The solution is that you will work full-time at company C2.
 Linear formulation: x1 is the time spent at C1 and x2 the 

time spent at C2
• Constraints: x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 8
• Objective function: maximize x1 + 10 * x2
• Solution: x1 = 0, x2 = 8.



  

Standard form
 given an m-vector, b = (b1, . . . , bm)T, an n-vector, c = (c1, . . . , cn)T, 

and an m × n matrix of real numbers

 The Standard Maximum Problem aims at finding an n-vector, x = (x1, 
. . . , xn)T, to maximize cTx = c1x1 + · · · + cnxn subject to the constraints

a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxn ≤ b2

...
am1x1 + am2x2 + · · · + amnxn ≤ bm

(or Ax ≤ b) and
x1 ≥ 0, x2 ≥ 0, . . . , xn ≥0 (or x ≥ 0).



  

Standard form
The Standard Minimum Problem aims at finding an m-vector, y = 

(y1, . . . , ym), to minimize yTb = y1b1 + · · · + ymbm subject to the 
constraints

y1a11 + y2a21 + · · · + ymam1 ≥ c1

y1a12 + y2a22 + · · · + ymam2 ≥ c2

...
y1a1n + y2a2n + · · · + ymamn ≥ cn

(or yTA ≥ cT) and
y1 ≥ 0, y2 ≥ 0, . . . , ym ≥0 (or y ≥ 0).



  

More than two variables



  

Unbounded and infeasible 
problems



  

Unbounded and infeasible 
problems
 A vector, x, is said to be feasible if it satisfies the corresponding 

constraints
 The set of feasible vectors is called the constraint set
 A linear programming problem is said to be feasible if the constraint 

set is not empty; otherwise it is said to be infeasible
 A feasible maximum (or minimum) problem is said to be unbounded if 

the objective function can assume arbitrarily large positive (or 
negative) values at feasible vectors; otherwise, it is said to be 
bounded

 The value of a bounded feasible maximum (or minimum) problem is 
the maximum (or minimum) value of the objective function as the 
variables range over the constraint set

 A feasible vector at which the objective function achieves the value is 
called optimal



  

Duality

 To every linear program there is a dual linear program with 
which it is intimately connected

 e.g. the dual of the standard maximum problem
maximize cTx

subject to the constraints Ax ≤ b and x ≥ 0

can be defined as a minimum problem
minimize yTb

subject to the constraints yTA ≥ cT and y ≥ 0



  

Duality

e.g. dual of the following problem:
Find numbers x1 and x2 that maximize the sum x1 + x2 subject to the 

constraints x1 ≥ 0, x2 ≥ 0, and

x1 + 2 * x2 ≤ 4

4 * x1 + 2 * x2 ≤ 12

−x1 + x2 ≤ 1

is
Find y1 , y2 , and y3 to minimize 4 * y1 + 12 * y2 + y3 subject to the 

constraints y1 ≥ 0, y2 ≥ 0,
y3 ≥ 0, and

y1 + 4 * y2 − y3 ≥ 1

2 * y1 + 2 * y2 + y3 ≥ 1.



  

The general standard maximum 
problem and the dual standard 
minimum problem

Our example



  

The Diet Problem
m different types of food, F1, . . . , Fm, that supply varying quantities of the n 

nutrients, N1, . . . ,Nn , that are essential to good health. Let cj be the minimum 
daily requirement of nutrient, Nj. Let bi be the price per unit of food, Fi. Let aij be 
the amount of nutrient Nj contained in one unit of food Fi.

The problem is to supply the required nutrients at minimum cost.

Let yi be the number of units of food Fi to be purchased per day. The cost per day 
of such a diet is 

b1y1 + b2y2 + · · · + bmym ….(1)
The amount of nutrient Nj contained in this diet is 

a1jy1 + a2jy2 + · · · + amjym for j = 1, . . . , n
We do not consider such a diet unless all the minimum daily requirements
are met, that is, unless

a1jy1 + a2jy2 + · · · + amjym ≥ cj for j = 1, . . . , n ….(2)
We cannot purchase a negative amount of food, so

y1 ≥ 0, y2 ≥ 0, . . . , ym ≥ 0   …. (3)



  

The Transportation Problem

There are I ports, P1, . . . , PI , that supply a certain 
commodity, and there are J markets, M1, . . . , MJ , to 
which this commodity must be shipped. Port Pi possesses 
an amount si of the commodity (i = 1, 2, . . . , I), and 
market Mj must receive the amount rj of the commodity (j 
= 1, . . . , J ). Let bij be the cost of transporting one unit of 
the commodity from port Pi to market Mj . The problem is 
to meet the market requirements at minimum 
transportation cost.

Let yij be the quantity of the commodity shipped from port Pi 
to market Mj. The total transportation cost is



  

The Transportation Problem
Let yij be the quantity of the commodity shipped 

from port Pi to market Mj. The total 
transportation cost is given by 1.

The amount sent from port Pi is  Y  and since the 
amount available at port Pi is si, we must 
satisfy inequality 2.

The amount sent to market Mj is  W and since the 
amount required there is rj , we must satisfy 
inequality 3.

It is assumed that we cannot send a negative 
amount from PI to Mj ,, thus, inequality 4 is to 
be satisfied. 

Our problem is: minimize (1) subject to (2), (3) 
and (4).

….1

….2

Y=

W=

….3

….4



  

All Linear Programming Problems 
Can be Converted to Standard Form
 A minimum problem can be changed to a maximum problem by 

multiplying the objective function by −1
 Constraints with ≥ can be changed to constraints with ≤ by 

multiplying both sides of the inequality with -1
 An equality constraint Σaijxj = bi may be removed, by solving this 

constraint for some xj for which aij ≠ 0 and substituting this 
solution into the other constraints and into the objective 
function wherever xj appears

• This removes one constraint and one variable from the problem.

 If a variable may not be restricted to be nonnegative, the 
unrestricted variable, xj, may be replaced by the difference of 
two nonnegative variables, xj = uj − vj, where uj ≥ 0 and vj ≥ 0.

• This adds one variable and two non-negativity constraints to the 
problem.



  

Duality

 To every linear program there is a dual linear program with 
which it is intimately connected

 e.g. the dual of the standard maximum problem
maximize cTx

subject to the constraints Ax ≤ b and x ≥ 0

can be defined as a minimum problem
minimize yTb

subject to the constraints yTA ≥ cT and y ≥ 0



  

Duality

Theorem 1: If x is feasible for the standard maximum 
problem and if y is feasible for its dual, then cTx ≤ yTb

Proof: cTx ≤ yTAx ≤ yTb
The first inequality follows from x ≥ 0 and cT ≤ yTA. The 

second inequality follows from y ≥ 0 and Ax ≤ b.
Corollary 1: If a standard problem and its dual are both 

feasible, then both are bounded feasible.
Proof. If y is feasible for the minimum problem, then 

theorem 1 shows that yTb is an upper bound for the 
values of cTx for x feasible for the maximum problem. 
Similarly for the converse.



  

Duality

Corollary 2: If there exists feasible x  and ∗ y  for a standard ∗
maximum problem and its dual such that cTx  ∗ = y∗Tb, then 
both are optimal for their respective problems.

Proof: If x is any feasible vector for the maximum problem, then 
cTx ≤ y∗Tb = cTx  ∗ . which shows that x  ∗ is optimal. A similar 
argument works for y  ∗ .

The Duality Theorem: If a standard linear 
programming problem is bounded feasible, 
then so is its dual, their values are equal, and 
there exists optimal vectors for both problems.



  

Duality
 Three possibilities for a linear program:

• feasible bounded (f.b.),

• feasible unbounded (f.u.), or 

• infeasible (i). 
 As per corollary 1 if a problem and its dual are both feasible, then 

both must be bounded feasible
 As per Duality Theorem if a program is feasible bounded, its dual 

cannot be infeasible
 The remaining four possibilities can occur



  

Example of Corollary 2
 A maximum problem:
Find x1 , x2 , x3 , x4 to maximize 2x1 + 4x2 + x3 + x4 , subject to the constraints xj ≥ 0 for all 

j, and
x1 + 3x2 + x4 ≤ 4
2x1 + x2 ≤ 3
x2 + 4x3 + x4 ≤ 3.
 The dual problem: 
Find y1 , y2 , y3 to minimize 4y1 + 3y2 + 3y3 subject to the constraints yi ≥ 0 for all i, and
y1 + 2y2 ≥ 2
3y1 + y2 + y3 ≥ 4
4y3 ≥ 1
y1 + y3 ≥ 1.
 The vector (x1, x2, x3, x4) = (1, 1, 1/2, 0) satisfies the constraints of the maximum 

problem; value of the objective function being 13/2. 
 The vector (y1, y2, y3) = (11/10, 9/20, 1/4) satisfies the constraints of the minimum 

problem and has the same value 13/2 also. 



  

The Simplex Algorithm

Lecture notes of ´Eric Schost

file:///home/nandini/Desktop/WinXPBackup/Nandini's Document on Laptop2/teaching/Advanced Algorithms/CS445-lecture3.pdf
file:///home/nandini/Desktop/WinXPBackup/Nandini's Document on Laptop2/teaching/Advanced Algorithms/CS445-lecture3.pdf
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