Linear Programming

Nandini Mukherjee
Department of Computer Science and Engineering

Introduction

- A linear programming problem may be defined as the problem of maximizing or minimizing a linear function subject to linear constraints.
- The constraints may be equalities or inequalities.
- For example
- Find numbers $x 1$ and $x 2$ that maximize the sum $x 1+x 2$ subject to the constraints $x 1 \geq 0, x 2 \geq 0$, and
$x 1+2$ * $x 2 \leq 4$
4 * $x 1+2$ * $x 2 \leq 12$
$-x 1+x 2 \leq 1$
- Two unknowns and five constraints
- First one is called non-negativity constraint
- Other constraints are called main constraints
- The function $x 1+x 2$ is called objective function

Introduction

- Simple problems with small number of unknowns (here only two) can be solved graphically
- In this example a family of parallel lines with slope -1 presents $\mathrm{x} 1+\mathrm{x} 2=\mathrm{c}$
- Here the maximum occurs at the intersection of the lines x1 + 2 * $x 2=4$ and
4 * $x 1+2$ * $x 2=12$,
i.e. $(x 1, x 2)=(8 / 3,2 / 3)$
- However, not all linear programming problems are so easily solved

General Linear Programming Problems

- Input
- A set of real variables X with arbitrary bounds
- A set of real constraints on X
- A linear objective function on X
- Output
- An assignment to X with optimal value of the objective function
- Standard Form

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
x_{j} \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{array}
$$

A small real life problem

- You are allowed to share your time between two companies.
- company C1 pays 1 dollar per hour;
- company C2 pays 10 dollars per hour.
- Knowing that you can only work up to 8 hours per day, what schedule should you go for?
- The solution is that you will work full-time at company C2.
- Linear formulation: $x 1$ is the time spent at $C 1$ and $x 2$ the time spent at C2
- Constraints: $x 1 \geq 0, x 2 \geq 0, x 1+x 2 \leq 8$
- Objective function: maximize $x 1+10$ * $x 2$
- Solution: $x 1=0, x 2=8$.

Standard form

- given an m-vector, $\boldsymbol{b}=\left(b_{1}, \ldots, b_{m}\right)^{T}$, an n-vector, $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right)^{T}$, and an $m \times n$ matrix of real numbers

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

- The Standard Maximum Problem aims at finding an n-vector, $\boldsymbol{x}=\left(x_{1}\right.$,
$\left.\cdots, x_{n}\right)^{\top}$, to maximize $\boldsymbol{c}^{\top} \boldsymbol{x}=c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to the constraints
$a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2}$
$a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}$
(or $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$) and
$x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0($ or $\boldsymbol{x} \geq 0)$.

Standard form

The Standard Minimum Problem aims at finding an m-vector, $\boldsymbol{y}=$ $\left(y_{1}, \ldots, y_{m}\right)$, to minimize $\boldsymbol{y}^{\top} \boldsymbol{b}=y_{1} b_{1}+\cdots+y_{m} b_{m}$ subject to the constraints

$$
\begin{aligned}
& y_{1} a_{11}+y_{2} a_{21}+\cdots+y_{m} a_{m 1} \geq c_{1} \\
& y_{1} a_{12}+y_{2} a_{22}+\cdots+y_{m} a_{m 2} \geq c_{2} \\
& y_{1} a_{1 n}+y_{2} a_{2 n}+\cdots+y_{m} a_{m n} \geq c_{n} \\
& y_{1} \geq 0, y_{2} \geq 0, \ldots, y_{m} \geq 0 \text { (or } \boldsymbol{y} \geq \mathbf{0} \text {). } \\
& \text { (or } \boldsymbol{y}^{\top} \boldsymbol{A} \geq \boldsymbol{c}^{\top} \text {) and }
\end{aligned}
$$

More than two variables

Source: http://control.ee.ethz.ch// mpt/downloads/25/gradcolor_off.png

Unbounded and infeasible problems

Unbounded and infeasible problems

- A vector, \boldsymbol{x}, is said to be feasible if it satisfies the corresponding constraints
- The set of feasible vectors is called the constraint set
- A linear programming problem is said to be feasible if the constraint set is not empty; otherwise it is said to be infeasible
- A feasible maximum (or minimum) problem is said to be unbounded if the objective function can assume arbitrarily large positive (or negative) values at feasible vectors; otherwise, it is said to be bounded
- The value of a bounded feasible maximum (or minimum) problem is the maximum (or minimum) value of the objective function as the variables range over the constraint set
- A feasible vector at which the objective function achieves the value is called optimal

Duality

- To every linear program there is a dual linear program with which it is intimately connected
- e.g. the dual of the standard maximum problem maximize $\boldsymbol{c}^{\top} \boldsymbol{x}$
subject to the constraints $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{x} \geq 0$ can be defined as a minimum problem
minimize $\boldsymbol{y}^{\boldsymbol{\top}} \boldsymbol{b}$
subject to the constraints $\boldsymbol{y}^{\top} \boldsymbol{A} \geq \boldsymbol{c}^{\top}$ and $\boldsymbol{y} \geq 0$

Duality

e.g. dual of the following problem:

Find numbers $x 1$ and $x 2$ that maximize the sum $x 1+x 2$ subject to the constraints $x 1 \geq 0, x 2 \geq 0$, and

$$
\begin{aligned}
& x 1+2 * x 2 \leq 4 \\
& 4^{*} x 1+2 * x 2 \leq 12 \\
& -x 1+x 2 \leq 1
\end{aligned}
$$

is

Find $y 1, y 2$, and $y 3$ to minimize $4 * y 1+12 * y 2+y 3$ subject to the constraints $y 1 \geq 0, y 2 \geq 0$,
$y 3 \geq 0$, and
$y 1+4 * y 2-y 3 \geq 1$
$2 * y 1+2 * y 2+y 3 \geq 1$.

The general standard maximum problem and the dual standard minimum problem

	x_{1}	x_{2}	\cdots	x_{n}	
y_{1}	a_{11}	a_{12}	\cdots	$a_{1 n}$	$\leq b_{1}$
y_{2}	a_{21}	a_{22}	\cdots	$a_{2 n}$	$\leq b_{2}$
\vdots	\vdots	\vdots		\vdots	\vdots
y_{m}	$a_{m 1}$	$a_{m 2}$	\cdots	$a_{m n}$	$\leq b_{m}$
	$\geq c_{1}$	$\geq c_{2}$	\cdots	$\geq c_{n}$	

	x_{1}	x_{2}	
y_{1}	1	2	≤ 4
y_{2}	4	2	≤ 12
y_{3}	-1	1	≤ 1
	≥ 1	≥ 1	

Our example

The Diet Problem

m different types of food, F_{1}, \ldots, F_{m}, that supply varying quantities of the n nutrients, N_{1}, \ldots, N_{n}, that are essential to good health. Let c_{j} be the minimum daily requirement of nutrient, N_{i}. Let b_{i} be the price per unit of food, F_{i}. Let $a_{i j}$ be the amount of nutrient N_{j} contained in one unit of food F_{i}.
The problem is to supply the required nutrients at minimum cost.
Let y_{i} be the number of units of food F_{i} to be purchased per day. The cost per day of such a diet is

$$
\begin{equation*}
b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{m} y_{m} \tag{1}
\end{equation*}
$$

The amount of nutrient N_{j} contained in this diet is

$$
a_{1} y_{1}+a_{2} y_{2}+\cdots+a_{m} y_{m} \text { for } j=1, \ldots, n
$$

We do not consider such a diet unless all the minimum daily requirements are met, that is, unless

$$
\begin{equation*}
a_{1} y_{1}+a_{2} y_{2}+\cdots+a_{m i} y_{m} \geq c_{j} \text { for } j=1, \ldots, n \ldots . \tag{2}
\end{equation*}
$$

We cannot purchase a negative amount of food, so

$$
\begin{equation*}
y_{1} \geq 0, y_{2} \geq 0, \ldots, y_{m} \geq 0 \tag{3}
\end{equation*}
$$

The Transportation Problem

There are I ports, P_{1}, \ldots, P_{I}, that supply a certain commodity, and there are J markets, M_{1}, \ldots, M_{J}, to which this commodity must be shipped. Port P_{i} possesses an amount s_{i} of the commodity ($i=1,2, \ldots, l$), and market M_{j} must receive the amount r_{j} of the commodity $(j$ $=1, \ldots, J)$. Let $b_{i j}$ be the cost of transporting one unit of the commodity from port P_{i} to market M_{j}. The problem is to meet the market requirements at minimum transportation cost.
Let $y_{i j}$ be the quantity of the commodity shipped from port P_{i} to market M_{j}. The total transportation cost is

The Transportation Problem

Let $y_{i j}$ be the quantity of the commodity shipped from port P_{i} to market M_{j}. The total transportation cost is given by 1.

The amount sent from port P_{i} is Y and since the amount available at port P_{i} is s_{i}, we must satisfy inequality 2.

The amount sent to market M_{j} is W and since the amount required there is r_{j}, we must satisfy inequality 3.

It is assumed that we cannot send a negative amount from P_{1} to M_{j}, thus, inequality 4 is to be satisfied.

$$
\sum_{i=1}^{I} y_{i j} \geq r_{j} \quad \text { for } j=1, \ldots, J
$$

Our problem is: minimize (1) subject to (2), (3) and (4).

$$
\begin{aligned}
& \sum_{i=1}^{I} \sum_{j=1}^{J} y_{i j} b_{i j} \ldots .1 \\
& \mathrm{Y}=\quad \sum_{j=1}^{J} \xi_{i j} \\
& \sum_{j=1}^{J} y_{i j} \leq s_{i} \text { for } i=1, \ldots, I \ldots .2 \\
& \mathrm{~W}=\quad \sum_{i=1}^{I} y_{i j}
\end{aligned}
$$

$y_{i j} \geq 0 \quad$ for $i=1, \ldots, I$ and $j=1, \ldots, J$.

All Linear Programming Problems Can be Converted to Standard Form

- A minimum problem can be changed to a maximum problem by multiplying the objective function by -1
- Constraints with \geq can be changed to constraints with \leq by multiplying both sides of the inequality with -1
- An equality constraint $\Sigma a_{i j} x_{j}=b_{i}$ may be removed, by solving this constraint for some x_{j} for which $a_{i j} \neq 0$ and substituting this solution into the other constraints and into the objective function wherever x_{j} appears
- This removes one constraint and one variable from the problem.
- If a variable may not be restricted to be nonnegative, the unrestricted variable, x_{j}, may be replaced by the difference of two nonnegative variables, $x_{j}=u_{j}-v_{j}$, where $u_{j} \geq 0$ and $v_{j} \geq 0$.
- This adds one variable and two non-negativity constraints to the problem.

Duality

- To every linear program there is a dual linear program with which it is intimately connected
- e.g. the dual of the standard maximum problem maximize $\boldsymbol{c}^{\top} \boldsymbol{x}$
subject to the constraints $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{x} \geq 0$ can be defined as a minimum problem
minimize $\boldsymbol{y}^{\boldsymbol{\top}} \boldsymbol{b}$
subject to the constraints $\boldsymbol{y}^{\top} \boldsymbol{A} \geq \boldsymbol{c}^{\top}$ and $\boldsymbol{y} \geq 0$

Duality

Theorem 1: If \boldsymbol{x} is feasible for the standard maximum problem and if \boldsymbol{y} is feasible for its dual, then $\boldsymbol{c}^{\top} \boldsymbol{x} \leq \boldsymbol{y}^{\top} \boldsymbol{b}$
Proof: $\boldsymbol{c}^{\top} \boldsymbol{x} \leq \boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{b}$
The first inequality follows from $\boldsymbol{x} \geq 0$ and $\boldsymbol{c}^{\top} \leq \boldsymbol{y}^{\top} \boldsymbol{A}$. The second inequality follows from $\boldsymbol{y} \geq 0$ and $\boldsymbol{A x} \leq \boldsymbol{b}$.
Corollary 1: If a standard problem and its dual are both feasible, then both are bounded feasible.
Proof. If \boldsymbol{y} is feasible for the minimum problem, then theorem 1 shows that $\boldsymbol{y}^{\top} \boldsymbol{b}$ is an upper bound for the values of $\boldsymbol{c}^{T} \boldsymbol{x}$ for \boldsymbol{x} feasible for the maximum problem. Similarly for the converse.

Duality

Corollary 2: If there exists feasible $\mathbf{x} *$ and $\boldsymbol{y} *$ for a standard maximum problem and its dual such that $\mathbf{c}^{\top} \boldsymbol{x} \boldsymbol{*}=\boldsymbol{y} \boldsymbol{*}^{\top} \boldsymbol{b}$, then both are optimal for their respective problems.
Proof: If \boldsymbol{x} is any feasible vector for the maximum problem, then $\boldsymbol{c}^{\top} \boldsymbol{x} \leq \boldsymbol{y} *^{\top} \boldsymbol{b}=\boldsymbol{c}^{\top} \boldsymbol{x} *$. which shows that $\boldsymbol{x} *$ is optimal. A similar argument works for $y *$.
The Duality Theorem: If a standard linear programming problem is bounded feasible, then so is its dual, their values are equal, and there exists optimal vectors for both problems.

Duality

- Three possibilities for a linear program:
- feasible bounded (f.b.),
- feasible unbounded (f.u.), or
- infeasible (i).
- As per corollary 1 if a problem and its dual are both feasible, then both must be bounded feasible
- As per Duality Theorem if a program is feasible bounded, its dual cannot be infeasible
- The remaining four possibilities can occur

Standard Maximum Problem

Dual

f.b.	b.	f.u.	i.
		X	X
f.u.	x	x	
1.	X		

Example of Corollary 2

- A maximum problem:

Find $x 1, x 2, x 3, x 4$ to maximize $2 x 1+4 x 2+x 3+x 4$, subject to the constraints $x j \geq 0$ for all j, and
$x 1+3 x 2+x 4 \leq 4$
$2 x 1+x 2 \leq 3$
$x 2+4 \times 3+x 4 \leq 3$.

- The dual problem:

Find $y 1, y 2, y 3$ to minimize $4 y 1+3 y 2+3 y 3$ subject to the constraints $y i \geq 0$ for all i, and

$$
y 1+2 y 2 \geq 2
$$

$3 y 1+y 2+y 3 \geq 4$
$4 y 3 \geq 1$
$y 1+y 3 \geq 1$.

- The vector $(x 1, x 2, x 3, x 4)=(1,1,1 / 2,0)$ satisfies the constraints of the maximum problem; value of the objective function being $13 / 2$.
- The vector $(y 1, y 2, y 3)=(11 / 10,9 / 20,1 / 4)$ satisfies the constraints of the minimum problem and has the same value $13 / 2$ also.

The Simplex Algorithm

Lecture notes of 'Eric Schost

