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Optimization Problems

 The goal is to find the best solution among a collection 
of possible solution

 When the problem is NP-complete, no polynomial time 
algorithm exists for it unless P=NP

 In practice, we may not need the absolute best or 
optimal solution

 A nearly optimal solution may be good enough and may 
be much easier to find

 An algorithm that returns a near-optimal solution is 
called an approximation algorithm

For an optimization problem we define a positive cost for 
each potential solution and we wish to either minimize 
or maximize the cost



  

Approximation Ratio

 An algorithm for a problem has an approximation ratio of 
ρ(n) if for any input of size n, the cost C of the solution 
produced by the algorithm is within a factor of ρ(n) of the 
cost C* of an optimal solution

max (C/C*, C*/C) ≤ ρ(n) 
The algorithm that achieves an approximation ratio of ρ(n) is 

called a ρ(n)-approximation algorithm

For a maximization problem, 0 < C ≤ C*
For a minimization problem, 0 < C* ≤ C
Approximation ratio is never less than 1
A 1-approximation algorithm produces an optimal solution



  

Approximation Scheme

 Many problems have approximation algorithms with small 
constant approximation ratios

 For some problems, the best known polynomial-time 
approximation algorithms have approximation ratios that 
grow as functions of the input size n

 Some NP-complete problems allow polynomial time 
approximation algorithms that can achieve increasingly 
smaller approximation ratios by using more and more 
computation time

 For certain problems we can construct (1+ε)-
approximation algorithms for any fixed value ε

 Running time of such algorithms depend on both, n (size 
of its input) and the fixed value ε



  

Approximation Scheme

 Collection of such algorithms is called polynomial-time 
approximation scheme 

More formally
An approximation scheme for an optimization problem is an 

approximation algorithm that takes as input an instance of the 
problem and a value ε > 0 such that for any fixed ε, the scheme 
is a (1+ε)-approximation algorithm

The approximation scheme is a polynomial-time approximation 
scheme if for any fixed ε, the scheme runs in polynomial time in 
n (size of its input instance)

 When we have a polynomial-time approximation scheme for a 
given optimization problem, we can tune our performance 
guarantee based on how much time we can afford to spend

 Ideally, the running time is polynomial in both n  and 1/ε , in 
which case we have a fully polynomial-time approximation 
algorithm



  

Approximation Scheme

A polynomial time approximation scheme (PTAS) is an 
algorithm that takes as input not only an instance of the 
problem but also a value є > 0 and approximates the 
optimal solution to within a ratio bound 1 + є. For any 
choice of є, the algorithm has a running time that is 
polynomial in n, the size of the input.

Example: a PTAS may have a running time bound of O(n 2/є)
A fully polynomial-time approximation scheme (FPTAS) is a 

PTAS with a running time that is polynomial not only in n, 
but also in 1/є.

Example: a PTAS with a running time bound of O((1/є) 2 n 3) 
is an FPTAS.



  

The vertex-cover problem
 A vertex-cover of an undirected graph G=(V, E) is a subset V’  

V, such that if (u,v) is an edge of G, then either u  V’ or v  V’ 
(or both). The size of a vertex cover is the number of vertices in 
it

 The problem is to find a vertex-cover of minimum size in a 
given undirected graph – an NP-complete decision problem

 The approximation algorithm:
APPROX-VERTEX-COVER(G)

C  0
E’  E[G]
while E’ ≠ 0

do let (u,v) be an arbitrary edge of E’
C  C  {u,v}
remove from E’ every edge that is incident on 

either u or v 
return C



  

The vertex-cover problem
 Running time of this algorithm is O(V+E) using adjacency lists to represent E’

Theorem: APPROX-VERTEX-COVER is polynomial-time 2-approximation 
algorithm

Proof: 

Step-1: Prove that APPROX-VERTEX-COVER runs in polynomial time
You can prove it by simply analysing the algorithm
Running time of this algorithm is O(V+E) using adjacency lists to represent E’

Step-2: Prove that Set C is a vertex cover
Set C is a vertex cover, since the algorithm loops until every edge in E[G] has been 

covered by some vertex in C



  

The vertex-cover problem

Step-3:
Let A denotes the set of edges that were picked in the first step of the while loop of 

APPROX-VERTEX-COVER
In order to cover the edges in A, any vertex cover must include at least one 

endpoint of each edge in A
No two edges in A share an endpoint  - why?
Thus, |C*| ≥ |A|
Each execution of the first step of the while loop picks an edge for which neither of 

its endpoints is already in C, yielding an upper bound on the size of the vertex 
cover returned

Thus, |C| = 2|A|
Combining the two equations, |C| = 2|A| ≤ 2|C*| --  Hence proved.



  

The Traveling-salesman problem

 Given a complete undirected graph G=(V,E) that has a 
nonnegative integer cost c(u,v) associated with each 
edge (u,v)E, goal is to find a Hamiltonian cycle of G with 
minimum cost. 

 We shall use the concept of triangle inequality, i.e. for all 
vertices u, v, w  V,
c(u,w) ≤ c(u,v) + c(v,w) 

 This is satisfied if we assume that the vertices are points 
in the plane and the cost of traveling is the ordinary 
Euclidean distance between them

 The problem even with the triangle inequality remains NP-
complete



  

The Traveling-salesman problem 
with the triangle inequality

A 2-approximation algorithm for traveling salesman
APPROX-TSP-TOUR(G,c)
select a vertex r  V[G] to be a “root” vertex
compute a minimum spanning tree T for G from root r 

using MST-PRIM(G,c,r)
let L be the list of vertices visited in a preorder tree 

walk of T 
return the Hamiltonian cycle H that visits the vertices in 

the order L
 The running time of APPROX-TSP-TOUR is (V2)



  

The Traveling-salesman problem 
with the triangle inequality

Theorem: APPROX-TSP-TOUR is a polynomial-time 2-
approximation algorithm for the traveling salesman problem 
with triangle inequality

Proof: APPROX-TSP-TOUR runs in polynomial time
Let H* denotes an optimal tour for the given set of vertices 
If T is the minimum spanning tree, c(T) ≤ c(H*)
[c(A) denotes the total cost of the edges in the subset A  E]
A full walk W of the tree lists the vertices when they are first visited 

and also whenever they are returned to after a visit to a subtree
Thus, full walk traverses every edge of T exactly twice
Therefore, c(W) = 2c(T)
From above we get, c(W) ≤ 2c(H*)
However, W  is not a tour, since it visits some vertices more than 

once



  

The Traveling-salesman problem 
with the triangle inequality

By triangle inequality, we delete a visit to any vertex from W 
and the cost does not increase

(we directly move from one vertex to the other)
By repeatedly applying this operation, we can remove from 

W all but the first visit to each vertex
Ordering of these vertices is same as that obtained by a 

preorder walk of the tree T. 
Let H be the cycle corresponding to this preorder walk – this 

is a Hamiltonian cycle
We have, c(H) ≤ c(W)
Thus, c(H) ≤ 2c(H*) 
Hence Proved.
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