
Amortized Analysis
• Not just consider one operation, but a sequence of

operations on a given data structure.
• Average cost over a sequence of operations.
• Average case Analysis (Probabilistic Analysis):

– Average case running time: average over all possible inputs for
one algorithm (operation).

– If using probability, called expected running time.
• Amortized analysis:

– No involvement of probability
– Average performance on a sequence of data structure operations,

even some operations are expensive.
– Guarantee average performance of each operation among the

sequence in worst case.

Amotized Analysis

• We have a data structure

• We perform a sequence of operations
– Operations may be of different types (e.g.

Insert, delete)
– Depending on the state of structure the actual

cost of an operation may differ

• Just analysing the worst case time of a
single operation may not say too much

• We want the average running time of an
operation (but from the worst-case
sequence of operation)

Three Methods of Amortized Analysis

• Aggregate analysis:
– All operations are treated equally

– The worst case running time of a sequence of n operations
is computed

– Amortized cost = Total cost of n operations/n,

• Accounting method:
– Assign each type of operation an (different) amortized cost
– overcharge some operations,
– store the overcharge as credit on specific objects,
– then use the credit for compensation for some later

operations.

• Potential method:
– Same as accounting method
– But store the credit as “potential energy” and as a whole.

Another example: increasing a binary counter

• Binary counter of length k, A[0..k-1] of bit
array.

• INCREMENT(A)

1. i0

2. while i<k and A[i]=1

3. do A[i]0 (flip, reset)

4. ii+1

5. if i<k

6. then A[i]1 (flip, set)

Analysis of INCREMENT(A)
• Cursory analysis:

– A single execution of INCREMENT takes
O(k) in the worst case (when A contains all
1s)

– So a sequence of n executions takes O(nk)
in worst case (suppose initial counter is 0).

– This bound is correct, but not tight.

• The tight bound is O(n) for n
executions.

Amortized (Aggregate) Analysis of INCREMENT(A)

Observation: The running time determined by #flips
 but not all bits flip each time INCREMENT is called.

A[0] flips every time, total n times.
A[1] flips every other time, n/2 times.
A[2] flips every fourth time, n/4 times.
….

for i=0,1,…,k-1, A[i] flips  n/2i  times.

Thus total #flips is ∑i=0
k-1   n/2i 

 < n∑i=0
∞ 1/2i

 =2n.

Amortized Analysis of INCREMENT(A)

• Thus the worst case running time is O(n)
for a sequence of n INCREMENTs.

• So the amortized cost per operation is
O(1).

Amortized Analysis: Accounting Method

• Idea:
– Assign different charges to different operations.
– The amount of the charge is called amortized cost.
– amortized cost is more or less than actual cost.
– When amortized cost > actual cost, the difference is

saved in specific objects as credits.
– The credits can be used by later operations whose

amortized cost < actual cost.

• As a comparison, in aggregate analysis, all
operations have same amortized costs.

Accounting Method (cont.)

• Conditions:
– suppose actual cost is ci for the ith operation in the

sequence, and amortized cost is ci',

– ∑i=1
n ci' ≥ ∑i=1

n ci should hold.
• since we want to show the average cost per

operation is small using amortized cost, we need the
total amortized cost is an upper bound of total actual cost.

• holds for all sequences of operations.

– Total credits is ∑i=1
n ci' - ∑i=1

n ci , which should be
nonnegative,

• Moreover, ∑i=1
t ci' - ∑i=1

t ci ≥0 for any t>0.

Accounting method: binary counter
• Let $1 be the actual cost of flip of one bit).
• An amortized cost of $2 is assigned for setting a bit to 1.

– Amortized cost of resetting a bit is zero.
• Whenever a bit is set, use $1 to pay the actual cost, and

store another $1 on the bit as credit.
• When a bit is reset, the stored $1 pays the cost.
• At any point, a 1 in the counter stores $1, the number of 1’s

is never negative

– so total credit is never negative
• At most one bit is set in each operation, so the amortized

cost of an operation is at most $2.
• Thus, total amortized cost of n operations is O(n), and

average is O(1).

The Potential Method

• Same as accounting method:
something prepaid is used later.

• Different from accounting method
– The prepaid work not as credit, but as

“potential energy”, or “potential”.
– The potential is associated with the data

structure as a whole rather than with
specific objects within the data structure.

The Potential Method (cont.)
• Initial data structure D0,

• n operations, resulting in D0, D1,…, Dn with costs c1,
c2,…, cn.

• A potential function Φ: {Di}  R (real numbers)

∀ Φ(Di) is called the potential of Di.

• Amortized cost ci' of the ith operation is:

ci' = ci + Φ(Di) - Φ(Di-1). (actual cost + potential change)

∑i=1
n ci' = ∑i=1

n (ci + Φ(Di) - Φ(Di-1))

• = ∑i=1
nci + Φ(Dn) - Φ(D0)

The Potential Method (cont.)

• If Φ(Dn) ≥ Φ(D0), then total amortized cost is an upper
bound of total actual cost.

• But we do not know how many operations, so Φ(Di) ≥
Φ(D0) is required for any i.

• It is convenient to define Φ(D0)=0,and so Φ(Di) ≥ 0, for all i.

• If the potential change is positive (i.e., Φ(Di) - Φ(Di-1)>0),
then ci' is an overcharge (so store the increase as
potential),

• otherwise, undercharge (discharge the potential to pay the
actual cost).

Potential method: binary counter
• Define the potential of the counter after the ith INCREMENT is

Φ(Di) =bi, the number of 1’s. clearly, Φ(Di)≥ 0.

• Let us compute amortized cost of an operation
– Suppose the ith operation resets ti bits.

– Actual cost ci of the operation is at most ti +1.

– If bi=0, then the ith operation resets all k bits, so bi -1=ti=k.

– If bi>0, then bi=bi -1-ti+1

– In either case, bi≤ bi -1-ti+1.

– So potential change is Φ(Di) - Φ(Di -1) ≤ bi -1-ti+1-bi -1=1-ti.

– So amortized cost is: ci' = ci + Φ(Di) - Φ(Di -1) ≤ ti +1+1-ti=2.

• The total amortized cost of n operations is O(n).
• Thus worst case cost is O(n).

Amortized analyses: dynamic table

• A nice use of amortized analysis
• Table-insertion, table-deletion.
• Scenario:

– A table –maybe a hash table
– Do not know how large in advance
– May expend with insertion
– May contract with deletion
– Detailed implementation is not important

• Goal:
– O(1) amortized cost.
– Unused space always ≤ constant fraction of allocated space.

Dynamic table

• Load factor α = num/size, where num = #
items stored, size = allocated size.

• If size = 0, then num = 0. Call α = 1.

• Never allow α > 1.

• Keep α >a constant fraction  goal (2).

Dynamic table: expansion with insertion

• Table expansion

• Consider only insertion.

• When the table becomes full, double its
size and reinsert all existing items.

• Guarantees that α ≥ 1/2.

• Each time we actually insert an item into
the table, it’s an elementary insertion.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Num[t] ele. insertion

1 ele. insertion

Initially, num[T] = size[T] = 0.

Aggregate analysis
• Running time: Charge 1 per elementary insertion. Count only

elementary insertions,
• since all other costs together are constant per call.
• ci = actual cost of ith operation

– If not full, ci = 1.
– If full, have i − 1 items in the table at the start of the ith operation. Have

to copy all i − 1 existing items, then insert ith item, ⇒ ci = i
• Cursory analysis: n operations ⇒ ci = O(n) ⇒ O(n2) time for n

operations.
• Of course, we don’t always expand:

– ci = i if i − 1 is exact power of 2 ,
 1 otherwise .

• So total cost =∑i=1
n ci ≤n+ ∑i=0

log(n) 2i ≤n+2n=3n
• Therefore, aggregate analysis says amortized cost per operation =

3.

Accounting analysis
• Charge $3 per insertion of x.

– $1 pays for x’s insertion.
– $1 pays for x to be moved in the future.
– $1 pays for some other item to be moved.

• Suppose we’ve just expanded, size = m before next expansion, size
= 2m after next expansion.

• Assume that the expansion used up all the credit, so that there’s no
credit stored after the expansion.

• Will expand again after another m insertions.
• Each insertion will put $1 on one of the m items that were in the

table just after expansion and will put $1 on the item inserted.
• Have $2m of credit by next expansion, when there are 2m items to

move. Just enough to pay for the expansion, with no credit left over!

Potential method

• Potential method
∀ Φ(T) = 2 ・ num[T] − size[T]
• Initially, num = size = 0⇒ Φ = 0.
• • Just after expansion, size = 2 ・ num ⇒ Φ =

0.
• Just before expansion, size = num ⇒ Φ = num ⇒

 have enough potential to pay for moving all
items.

• Need Φ ≥ 0, always.
• Always have

– size ≥ num ≥ ½ size ⇒ 2 ・ num ≥ size ⇒ Φ ≥ 0 .

Potential method
• Amortized cost of ith operation:

– numi = num after ith operation ,
– sizei = size after ith operation ,
� Φi = Φ after ith operation .

• If no expansion:
– sizei = sizei−1 ,
– numi = numi−1 +1 ,
– ci = 1 .

• Then we have
– Ci’ = ci + Φi − Φi−1 = 1 + (2numi −sizei) − (2numi−1 −sizei−1) =3.

• If expansion:
– sizei = 2sizei−1 ,
– sizei−1 = numi−1 = numi −1 ,
– ci = numi−1 +1 = numi.

• Then we have
• Ci’ = ci + Φi − Φi−1 = numi + (2numi −sizei) − (2numi−1 −sizei−1) = numi +

(2numi −2(numi −1)) − (2(numi −1) − (numi −1)) = numi + 2 − (numi −1) = 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Expansion and contraction

• Expansion and contraction
• When α drops too low, contract the table.

– Allocate a new, smaller one.
– Copy all items.

• Still want
– α bounded from below by a constant,
– amortized cost per operation = O(1).

• Measure cost in terms of elementary
insertions and deletions.

Obvious strategy
• Double size when inserting into a full table (when α = 1, so that after

insertion α would become <1).
• Halve size when deletion would make table less than half full (when

α = 1/2, so that after deletion α would become >= 1/2).
• Then always have 1/2 ≤ α ≤ 1.
• Suppose we fill table.

– Then insert ⇒ double
– 2 deletes ⇒ halve
– 2 inserts ⇒ double
– 2 deletes ⇒ halve
– ・ ・ ・
– Cost of each expansion or contraction is Θ(n), so total n operation will

be Θ(n2).
• Problem is that: Not performing enough operations after expansion

or contraction to pay for the next one.

Simple solution

• Double as before: when inserting with α = 1 ⇒ after doubling, α = 1/2.
• Halve size when deleting with α = 1/4 ⇒ after halving, α = 1/2.
• Thus, immediately after either expansion or contraction, have α = 1/2.
• Always have 1/4 ≤ α ≤ 1.
• Intuition:
• Want to make sure that we perform enough operations between

consecutive expansions/contractions to pay for the change in table
size.

• Need to delete half the items before contraction.
• Need to double number of items before expansion.
• Either way, number of operations between expansions/contractions is

at least a constant fraction of number of items copied.

Potential function

∀Φ(T) = 2num[T] − size[T] if α ≥ ½

 size[T]/2 −num[T] ifα < ½ .

• T empty ⇒ Φ = 0.

• α ≥ 1/2 ⇒ num ≥ 1/2size ⇒ 2num ≥ size ⇒
Φ ≥ 0.

• α < 1/2 ⇒ num < 1/2size ⇒ Φ ≥ 0.

intuition
• measures how far from α = 1/2 we are.

– α = 1/2 ⇒ Φ = 2num−2num = 0.
– α = 1 ⇒ Φ = 2num−num = num.
– α = 1/4 ⇒ Φ = size /2 − num = 4num /2 − num = num.

• Therefore, when we double or halve, have enough potential to pay for
moving all num items.

• Potential increases linearly between α = 1/2 and α = 1, and it also increases
linearly between α = 1/2 and α = 1/4.

• Since α has different distances to go to get to 1 or 1/4, starting from 1/2,
rate of increase differs.

• For α to go from 1/2 to 1, num increases from size /2 to size, for a total
increase of size /2. Φ increases from 0 to size. Thus, Φ needs to increase
by 2 for each item inserted. That’s why there’s a coefficient of 2 on the
num[T] term in the formula for when α ≥ 1/2.

• For α to go from 1/2 to 1/4, num decreases from size /2 to size /4, for a total
decrease of size /4. Φ increases from 0 to size /4. Thus, Φ needs to
increase by 1 for each item deleted. That’s why there’s a coefficient of −1 on
the num[T] term in the formula for when α < 1/2.

• Amortized costs: more cases
– insert, delete

– α ≥ 1/2, α < 1/2 (use αi, since α can vary a lot)

– size does/doesn’t change

Amortized cost for each operation

Summary

• Amortized analysis
– Different from probabilistic analysis

• Three methods and their differences

• how to analyze

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

