
Amortized Analysis
• Not just consider one operation, but a sequence of 

operations on a given data structure.
• Average cost over a sequence of operations.
• Average case Analysis (Probabilistic Analysis):

– Average case running time: average over all possible inputs for 
one algorithm (operation).

– If using probability, called expected running time. 
• Amortized analysis:

– No involvement of probability
– Average performance on a sequence of data structure operations, 

even some operations are expensive.
– Guarantee average performance of each operation among the 

sequence in worst case.



Amotized Analysis

• We have a data structure

• We perform a sequence of operations 
– Operations may be of different types (e.g. 

Insert, delete)
– Depending on the state of structure the actual 

cost of an operation may differ

• Just analysing the worst case time of a 
single operation may not say too much

• We want the average running time of an 
operation (but from the worst-case 
sequence of operation)



Three Methods of Amortized Analysis

• Aggregate analysis:
– All operations are treated equally

– The worst case running time of a sequence of n operations 
is computed

– Amortized cost = Total cost of n operations/n,

• Accounting method:
– Assign each type of operation an (different) amortized cost
–  overcharge some operations, 
– store the overcharge as credit on specific objects, 
– then use the credit for compensation for some later 

operations.

• Potential method:
– Same as accounting method
– But store the credit as “potential energy” and as a whole.



Another example: increasing a binary counter

• Binary counter of length k, A[0..k-1] of bit 
array.

• INCREMENT(A)

1. i0

2. while i<k and A[i]=1

3.        do A[i]0 (flip, reset)

4.              ii+1

5. if  i<k

6. then A[i]1 (flip, set)



Analysis of INCREMENT(A)
• Cursory analysis: 

– A single execution of INCREMENT takes 
O(k) in the worst case (when A contains all 
1s)

– So a sequence of n executions takes O(nk) 
in worst case (suppose initial counter is 0). 

– This bound is correct, but not tight.

• The tight bound is O(n) for n 
executions.



Amortized (Aggregate) Analysis of INCREMENT(A)

Observation: The running time determined by #flips
                           but not all bits flip each time INCREMENT is called.

A[0] flips every time, total n times.
A[1] flips every other time, n/2 times.
A[2] flips every fourth time, n/4 times.
….

for i=0,1,…,k-1, A[i] flips   n/2i  times.

Thus total #flips is ∑i=0
k-1   n/2i 

                               < n∑i=0
∞ 1/2i

           =2n.



Amortized Analysis of INCREMENT(A)

• Thus the worst case running time is O(n) 
for a sequence of n INCREMENTs.

• So the amortized cost per operation is 
O(1).



Amortized Analysis: Accounting Method

• Idea:
– Assign different charges to different operations.
– The amount of the charge is called amortized cost.
– amortized cost is more or less than actual cost.
– When amortized cost > actual cost, the difference is 

saved in specific objects as credits.
– The credits can be used by later operations whose 

amortized cost < actual cost.

• As a comparison, in aggregate analysis, all 
operations have same amortized costs.



Accounting Method (cont.)

• Conditions: 
– suppose actual cost is ci for the ith operation in the 

sequence, and amortized cost is ci', 

–  ∑i=1
n ci' ≥ ∑i=1

n ci  should hold.
• since we want to show the average cost per 

operation is small using amortized cost, we need the 
total amortized cost is an upper bound of total actual cost.

• holds for all sequences of operations.

– Total credits is ∑i=1
n ci' - ∑i=1

n ci , which should be 
nonnegative, 

• Moreover, ∑i=1
t ci' - ∑i=1

t ci  ≥0 for any t>0.



Accounting method: binary counter
• Let $1 be the actual cost of flip of one bit).
• An amortized cost of $2 is assigned for setting a bit to 1.

– Amortized cost of resetting a bit is zero.
• Whenever a bit is set, use $1 to pay the actual cost, and 

store another $1 on the bit as credit.
• When a bit is reset, the stored $1 pays the cost.
• At any point, a 1 in the counter stores $1, the number of 1’s 

is never negative

– so total credit is never negative
• At most one bit is set in each operation, so the amortized 

cost of an operation is at most $2.
• Thus, total amortized cost of n operations is O(n), and 

average is O(1).



The Potential Method

• Same as accounting method: 
something prepaid is used later.

• Different from accounting method
– The prepaid work not as credit, but as 

“potential energy”, or “potential”.
– The potential is associated with the data 

structure as a whole rather than with 
specific objects within the data structure.



The Potential Method (cont.)
• Initial data structure D0, 

• n operations, resulting in D0, D1,…, Dn with costs c1, 
c2,…, cn. 

• A potential function Φ: {Di}  R (real numbers)

∀ Φ(Di) is called the potential of Di.

• Amortized cost ci' of the ith operation is:

ci' = ci + Φ(Di) - Φ(Di-1). (actual cost + potential change)

∑i=1
n ci' = ∑i=1

n (ci + Φ(Di) - Φ(Di-1)) 

•              = ∑i=1
nci + Φ(Dn) - Φ(D0)



The Potential Method (cont.)

• If Φ(Dn) ≥  Φ(D0), then total amortized cost is an upper 
bound of total actual cost.

• But we do not know how many operations, so Φ(Di) ≥  
Φ(D0) is required for any i.

• It is convenient to define Φ(D0)=0,and so Φ(Di) ≥ 0, for all i.

• If the potential change is positive (i.e., Φ(Di) - Φ(Di-1)>0), 
then ci' is an overcharge (so store the increase as 
potential), 

• otherwise, undercharge (discharge the potential to pay the 
actual cost). 



Potential method: binary counter
• Define the potential of the counter after the ith INCREMENT is 

Φ(Di) =bi, the number of 1’s. clearly, Φ(Di)≥ 0.

• Let us compute amortized cost of an operation
– Suppose the ith operation resets ti bits.

– Actual cost ci of the operation is at most ti +1.

– If bi=0, then the ith operation resets all k bits, so bi -1=ti=k.

– If bi>0, then bi=bi -1-ti+1

– In either case, bi≤ bi -1-ti+1.

– So potential change is Φ(Di) - Φ(Di -1) ≤ bi -1-ti+1-bi -1=1-ti.

– So amortized cost is: ci' = ci + Φ(Di) - Φ(Di -1) ≤  ti +1+1-ti=2.

• The total amortized cost of n operations is O(n). 
• Thus worst case cost is O(n). 



Amortized analyses: dynamic table

• A nice use of amortized analysis
• Table-insertion, table-deletion.
• Scenario:

– A table –maybe a hash table
– Do not know how large in advance
– May expend with insertion
– May contract with deletion
– Detailed implementation is not important

• Goal: 
– O(1) amortized cost.
– Unused space always ≤ constant fraction of allocated space.



Dynamic table

• Load factor α = num/size, where num = # 
items stored, size = allocated size.

• If size = 0, then num = 0. Call α = 1.

• Never allow α > 1.

• Keep α >a constant fraction  goal (2).



Dynamic table: expansion with insertion

• Table expansion

• Consider only insertion.

• When the table becomes full, double its 
size and reinsert all existing items.

• Guarantees that α ≥ 1/2.

• Each time we actually insert an item into 
the table, it’s an elementary insertion.
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Num[t] ele. insertion

1 ele. insertion

Initially, num[T ] = size[T ] = 0.



Aggregate analysis
• Running time: Charge 1 per elementary insertion. Count only 

elementary insertions,
• since all other costs together are constant per call.
• ci = actual cost of ith operation

– If not full, ci = 1.
– If full, have i − 1 items in the table at the start of the ith operation. Have 

to copy all i − 1 existing items, then insert ith item, ⇒ ci = i 
• Cursory analysis: n operations ⇒ ci = O(n) ⇒ O(n2) time for n 

operations.
• Of course, we don’t always expand:

– ci =    i   if i − 1 is exact power of 2 ,
             1   otherwise .

• So total cost =∑i=1
n ci ≤n+ ∑i=0

log(n) 2i ≤n+2n=3n
• Therefore, aggregate analysis says amortized cost per operation = 

3.



Accounting analysis
• Charge $3 per insertion of x.

–  $1 pays for x’s insertion.
–  $1 pays for x to be moved in the future.
–  $1 pays for some other item to be moved.

• Suppose we’ve just expanded, size = m before next expansion, size 
= 2m after next expansion.

• Assume that the expansion used up all the credit, so that there’s no 
credit stored after the expansion.

• Will expand again after another m insertions.
• Each insertion will put $1 on one of the m items that were in the 

table just after expansion and will put $1 on the item inserted.
•  Have $2m of credit by next expansion, when there are 2m items to 

move. Just enough to pay for the expansion, with no credit left over!



Potential method

• Potential method
∀ Φ(T ) = 2 ・ num[T ] − size[T ]
• Initially, num = size = 0⇒ Φ = 0.
• • Just after expansion, size = 2 ・ num ⇒ Φ = 

0.
• Just before expansion, size = num ⇒ Φ = num ⇒ 

 have enough potential to pay for moving all 
items.

• Need Φ ≥ 0, always.
• Always have

– size ≥ num ≥ ½ size ⇒ 2 ・ num ≥ size ⇒ Φ ≥ 0 .



Potential method
• Amortized cost of ith operation:

– numi = num after ith operation ,
– sizei = size after ith operation ,
� Φi = Φ after ith operation .

• If no expansion:
– sizei = sizei−1 ,
– numi = numi−1 +1 ,
– ci = 1 .

• Then we have
– Ci’ = ci + Φi − Φi−1 = 1 + (2numi −sizei ) − (2numi−1 −sizei−1) =3.

• If expansion:
– sizei = 2sizei−1 ,
– sizei−1 = numi−1 = numi −1 ,
– ci = numi−1 +1 = numi.

• Then we have
• Ci’ = ci + Φi − Φi−1 = numi + (2numi −sizei ) − (2numi−1 −sizei−1) = numi + 

(2numi −2(numi −1)) − (2(numi −1) − (numi −1)) = numi + 2 − (numi −1) = 3
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Expansion and contraction

• Expansion and contraction
• When α drops too low, contract the table.

– Allocate a new, smaller one.
– Copy all items.

• Still want
– α bounded from below by a constant,
– amortized cost per operation = O(1).

• Measure cost in terms of elementary 
insertions and deletions.



Obvious strategy
• Double size when inserting into a full table (when α = 1, so that after 

insertion α would become <1).
• Halve size when deletion would make table less than half full (when 

α = 1/2, so that after deletion α would become >= 1/2).
• Then always have 1/2 ≤ α ≤ 1.
• Suppose we fill table.

– Then insert ⇒ double
– 2 deletes ⇒ halve
– 2 inserts ⇒ double
– 2 deletes ⇒ halve
– ・ ・ ・
– Cost of each expansion or contraction is Θ(n), so total n operation will 

be Θ(n2).
• Problem is that: Not performing enough operations after expansion 

or contraction to pay for the next one.



Simple solution

• Double as before: when inserting with α = 1 ⇒ after doubling, α = 1/2.
• Halve size when deleting with α = 1/4 ⇒ after halving, α = 1/2.
• Thus, immediately after either expansion or contraction, have α = 1/2.
• Always have 1/4 ≤ α ≤ 1.
• Intuition:
• Want to make sure that we perform enough operations between 

consecutive expansions/contractions to pay for the change in table 
size.

• Need to delete half the items before contraction.
• Need to double number of items before expansion.
• Either way, number of operations between expansions/contractions is 

at least a constant fraction of number of items copied. 



Potential function

∀Φ(T) =   2num[T] − size[T]  if α ≥ ½

                 size[T]/2 −num[T]  ifα < ½ .

• T empty ⇒ Φ = 0.

• α ≥ 1/2 ⇒ num ≥ 1/2size ⇒ 2num ≥ size ⇒ 
Φ ≥ 0.

• α < 1/2 ⇒ num < 1/2size ⇒ Φ ≥ 0.



intuition
• measures how far from α = 1/2 we are.

– α = 1/2 ⇒ Φ = 2num−2num = 0.
– α = 1 ⇒ Φ = 2num−num = num.
–  α = 1/4 ⇒ Φ = size /2 − num = 4num /2 − num = num.

• Therefore, when we double or halve, have enough potential to pay for 
moving all num items.

• Potential increases linearly between α = 1/2 and α = 1, and it also increases 
linearly between α = 1/2 and α = 1/4. 

• Since α has different distances to go to get to 1 or 1/4, starting from 1/2, 
rate of increase differs.

• For α to go from 1/2 to 1, num increases from size /2 to size, for a total 
increase of size /2. Φ  increases from 0 to size. Thus, Φ  needs to increase 
by 2 for each item inserted. That’s why there’s a coefficient of 2 on the 
num[T ] term in the formula for  when α ≥ 1/2.

• For α to go from 1/2 to 1/4, num decreases from size /2 to size /4, for a total 
decrease of size /4. Φ increases from 0 to size /4. Thus, Φ  needs to 
increase by 1 for each item deleted. That’s why there’s a coefficient of −1 on 
the num[T ] term in the formula for  when α < 1/2.



• Amortized costs: more cases
– insert, delete

– α ≥ 1/2, α < 1/2 (use αi, since α can vary a lot)

– size does/doesn’t change

Amortized cost for each operation



Summary

• Amortized analysis
– Different from probabilistic analysis 

• Three methods and their differences

• how to analyze
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