
Algorithms - Introduction
Nandini Mukherjee

Department of Computer Science and Engineering

Jadavpur University

What is an algorithm?
• No agreed-to definition of "algorithm" exists.

• A simple definition: A finite set of unambiguous instructions for
solving a problem.

• Knuth defined the five properties of an algorithm:
• Finiteness: "An algorithm must always terminate after a finite number of

steps ... a very finite number, a reasonable number"
• Definiteness: "Each step of an algorithm must be precisely defined; the

actions to be carried out must be rigorously and unambiguously specified for
each case"

• Input: "...quantities which are given to it initially before the algorithm begins.
These inputs are taken from specified sets of objects"

• Output: "...quantities which have a specified relation to the inputs"
• Effectiveness: "... all of the operations to be performed in the algorithm must

be sufficiently basic that they can in principle be done exactly and in a finite
length of time by a man using paper and pencil"

• Problem – Sorting

• Algorithm?

• Selection Sort

• Insertion Sort

• Merge Sort

• Bubble Sort

• Quick Sort

• ……

Performance of an
algorithm matters

Basic Issues

• How to design an algorithm

• How to express an algorithm

• Proving correctness of algorithms

• Efficiency / Performance
• Empirical Analysis

• Theoretical Analysis

• Optimality

Empirical Analysis - Why not just run the
program?
• Machine architecture

• Operating System and libraries

• Instructions used – compilers

• Programming languages

• Programmer’s style

• …..

So we focus on theoretical analysis.

Analysis of Algorithms
• The theoretical study of computer-program performance and

resource usage.

• What other things are important?
• modularity
• correctness
• maintainability
• functionality
• robustness
• user-friendliness
• programmer time
• simplicity
• extensibility
• reliability

Analysis of Algorithms

• How good is an algorithm?
• Correctness

• Time efficiency

• Space efficiency

• Does there exist a better
algorithm?
• Lower bounds

• Optimality

How to measure the performance

• Length of the program (lines of code)

• Ease of programming (bugs, maintenance)

• Memory required

• Running time
• Became a dominant standard

• Quantifiable and easily comparable

• Often the critical bottleneck

How do we measure running time theoretically?

How do we measure running time?

• Lines of code?

• Number of loops?

• Number of variables used?

• ….

• The basic idea is to count the number of basic operations

• And express the performance as a function of input size

How do we measure running time?
• However, there can be many input instances

• Which input instances should be the basis of our judgement?

• Generally, we seek upper bounds on the running time, because
everybody likes a guarantee.

• We define
• Best case – generally unrealistic

• Worst case - T(n) = maximum running time on any input of size n. Guarantees
the performance

• Average case - T(n) = expected running time over all inputs of size n.
• Needs assumption on statistical distribution of inputs.

How do we measure running time?

• What is the worst case running time of Algorithm A?
• It depends on the speed of our computer: relative speed (on the same

machine),

• absolute speed (on different machines).

• How to make the running time machine independent?

• Look at growth of T(n) as n → ∞ - Asymptotic Analysis

How do we measure running time?

How do we measure running time?

• The final expression may become too complicated

• Difficult to compare two such expressions

• Asymptotic behavior (as n increases) depends on the leading term

f(n) = O(g(n)) => g(n) is the upper bound

0 <=f(n) <= c g(n) for all n>=n0

f(n) = Ω(g (n)) => g(n) is the lower bound

O<= C g(n) <= f(n) for all n>=n 0

f(n) = Θ(g(n))

Algorithm design strategies

• Brute force

• Divide and Conquer

• Decrease and Conquer

• Transform and Conquer

• Greedy approach

• Dynamic programming

• Backtracking and Branch and Bound

Recursion

• Recursion is a powerful problem solving tool

• A function directly or indirectly makes a call to itself

• Many algorithms are easily expressed using recursion

Implementation of recursion

• Implemented using a stack and activation records

• Each time when a function is called, a new activation record is pushed
onto the stack

• When a function returns, the stack is popped and the activation
record of the calling method appears on top of the stack

• Each successive function call brings you closer to the solution –
general case

• A case for which the answer is known (and can be expressed without
recursion) is called a base case

Solving recurrences

• Recurrences are often applied for Divide-and-Conquer algorithms

Methods for solving recurrences

• Substitution method
• The most general method:

1. Guess the form of the solution

2. Verify by induction

3. Solve for constant

• Recursion-tree method

• The master method

Recursion-tree method

• A recursion tree models the costs (time) of a recursive execution of an
algorithm

• The recursion-tree method can be unreliable

• The recursion-tree method promotes intuition

• The recursion tree method is good for generating guesses for the
substitution method

The master method
• The master method applies to recurrences of the form

T(n) = a T(n/b) + f (n) ,

where a ≥ 1, b > 1, and f is asymptotically positive.

• Three cases –

Analysis of algorithms

• So far we considered only a single operation

• What happens if a sequence of operations are performed on a data
structure?

• And if the operations have different costs?

• Next lecture – Amortized Analysis

