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What is an algorithm?
• No agreed-to definition of "algorithm" exists.

• A simple definition: A finite set of unambiguous instructions for 
solving a problem.

• Knuth defined the five properties of an algorithm:
• Finiteness: "An algorithm must always terminate after a finite number of 

steps ... a very finite number, a reasonable number"
• Definiteness: "Each step of an algorithm must be precisely defined; the 

actions to be carried out must be rigorously and unambiguously specified for 
each case"

• Input: "...quantities which are given to it initially before the algorithm begins. 
These inputs are taken from specified sets of objects"

• Output: "...quantities which have a specified relation to the inputs"
• Effectiveness: "... all of the operations to be performed in the algorithm must 

be sufficiently basic that they can in principle be done exactly and in a finite 
length of time by a man using paper and pencil"





• Problem – Sorting

• Algorithm?

• Selection Sort

• Insertion Sort

• Merge Sort

• Bubble Sort

• Quick Sort

• ……

Performance of an 
algorithm matters



Basic Issues

• How to design an algorithm

• How to express an algorithm

• Proving correctness of algorithms

• Efficiency / Performance
• Empirical Analysis

• Theoretical Analysis

• Optimality



Empirical Analysis - Why not just run the 
program?
• Machine architecture

• Operating System and libraries

• Instructions used – compilers

• Programming languages

• Programmer’s style

• …..

So we focus on theoretical analysis.



Analysis of Algorithms
• The theoretical study of computer-program performance and 

resource usage.

• What other things are important? 
• modularity 
• correctness 
• maintainability 
• functionality 
• robustness 
• user-friendliness 
• programmer time 
• simplicity 
• extensibility 
• reliability



Analysis of Algorithms

• How good is an algorithm?
• Correctness

• Time efficiency

• Space efficiency

• Does there exist a better 
algorithm?
• Lower bounds 

• Optimality



How to measure the performance

• Length of the program (lines of code)

• Ease of programming (bugs, maintenance)

• Memory required

• Running time
• Became a dominant standard

• Quantifiable and easily comparable

• Often the critical bottleneck

How do we measure running time theoretically?



How do we measure running time?

• Lines of code?

• Number of loops?

• Number of variables used?

• ….

• The basic idea is to count the number of basic operations

• And express the performance as a function of input size



How do we measure running time?
• However, there can be many input instances

• Which input instances should be the basis of our judgement?

• Generally, we seek upper bounds on the running time, because 
everybody likes a guarantee.

• We define 
• Best case – generally unrealistic

• Worst case - T(n) = maximum running time on any input of size n. Guarantees 
the performance

• Average case - T(n) = expected running time over all inputs of size n. 
• Needs assumption on statistical distribution of inputs. 



How do we measure running time?

• What is the worst case running time of Algorithm A?
• It depends on the speed of our computer: relative speed (on the same 

machine), 

• absolute speed (on different machines). 

• How to make the running time machine independent?

• Look at growth of T(n) as n → ∞  - Asymptotic Analysis



How do we measure running time?



How do we measure running time?

• The final expression may become too complicated

• Difficult to compare two such expressions

• Asymptotic behavior (as n increases) depends on the leading term



f(n) = O(g(n)) => g(n) is the upper bound

0 <=f(n) <= c g(n) for all n>=n0



f(n) = Ω(g (n)) => g(n) is the lower bound

O<= C g(n) <= f(n) for all n>=n 0



f(n) = Θ(g(n))



Algorithm design strategies

• Brute force

• Divide and Conquer

• Decrease and Conquer

• Transform and Conquer

• Greedy approach

• Dynamic programming

• Backtracking and Branch and Bound



Recursion

• Recursion is a powerful problem solving tool

• A function directly or indirectly makes a call to itself

• Many algorithms are easily expressed using recursion



Implementation of recursion

• Implemented using a stack and activation records

• Each time when a function is called, a new activation record is pushed 
onto the stack

• When a function returns, the stack is popped and the activation 
record of the calling method appears on top of the stack

• Each successive function call brings you closer to the solution –
general case

• A case for which the answer is known (and can be expressed without 
recursion) is called a base case



Solving recurrences 

• Recurrences are often applied for Divide-and-Conquer algorithms

Methods for solving recurrences

• Substitution method
• The most general method:

1. Guess the form of the solution

2. Verify by induction

3. Solve for constant

• Recursion-tree method

• The master method



Recursion-tree method

• A recursion tree models the costs (time) of a recursive execution of an 
algorithm

• The recursion-tree method can be unreliable

• The recursion-tree method promotes intuition

• The recursion tree method is good for generating guesses for the 
substitution method



The master method 
• The master method applies to recurrences of the form 

T(n) = a T(n/b) + f (n) , 

where a ≥ 1, b > 1, and f is asymptotically positive.

• Three cases –



Analysis of algorithms

• So far we considered only a single operation

• What happens if a sequence of operations are performed on a data 
structure?

• And if the operations have different costs?

• Next lecture – Amortized Analysis


