
In the microprocessor based system the interrupts are used for
data transfer between the peripheral devices and the
microprocessor.

A small program or a routine
that when executed services
the corresponding interrupting
source is called as an ISR.

1. A peripheral sends interrupt requests to the
Microprocessor.

2. After accepting the interrupts Microprocessor send the
INTA (active low) signal to the peripheral.

3. The vectored address of particular interrupt is stored in
program counter.

4. The processor executes an interrupt service routine (ISR)
addressed in program counter.

Hardware Interrupts

The Interrupt Vector Table
(IVT) is located between
00-FFH

Q. So what is the max. no
of interrupts?

1.TRAP 0024H NMI Edge & Level
2.RST7.5 003CH MI Edge
3.RST6.5 0034H MI Level
4.RST5.5 002CH MI Level
5.INTR

Priority

Enable Interrupt (EI) – The interrupt enable
flip-flop is set and all interrupts are enabled
following the execution of next instruction
followed by EI. No flags are affected. After a
system reset, the interrupt enable flip-flop is
reset, thus disabling the interrupts. This
instruction is necessary to enable the
interrupts again (except TRAP).

Disable Interrupt (DI) – This instruction is
used to reset the value of enable flip-flop
hence disabling all the interrupts. No flags are
affected by this instruction.

Set Interrupt Mask (SIM) – It is used to
implement the hardware interrupts (RST 7.5,
RST 6.5, RST 5.5) by setting various bits to
form masks or generate output data via the
Serial Output Data (SOD) line. First the
required value is loaded in accumulator then
SIM will take the bit pattern from it.

Read Interrupt Mask (RIM) – This
instruction is used to read the status of
the hardware interrupts (RST 7.5, RST
6.5, RST 5.5) by loading into the A
register a byte which defines the
condition of the mask bits for the
interrupts. It also reads the condition of
SID (Serial Input Data) bit on the
microprocessor.

EI
MVI A,
SIM

Interrupt Structure of 8085A

Output set with a 0 to 1 transition

This must be 1 so that the AND gate is enabled

This must be 0 so that the AND gate output is LO

This is reset at power on.
Must be set explicitly
Control using EI/DI

There us another internal
FF INTA F/F . Whenever a valid interrupt
occurs the INTE F/F is reset and the INTA
F/F is set.

Trap: Edge & Level Triggered
to avoid false triggering.
Whenever Trap occurs, the
Trap goes HI to set the F/F and it remains
high till it is reset explicitly by a Trap
acknowledge

When the 8085 recognizes a valid interrupt it
produces a
HI ANY INTERRUPT ACKNOWLEDGE bit. This
disables all interrupts except TRAP.
Interrupts must be specifically enabled by
EI at the end of a ISR before RET

Interrupts are sensed by the 8085 one cycle before the end of execution of an instruction. The longest instruction
takes 18 clock cycles. So interrupts must be there for 17 clock cycles at least

Software Interrupts: Restart F Instructions

Mnemonics, Operand Opcode(in HEX) In Binary Byte
s

Target Address (n*8)

RST 0 C7 1100 0111 1 0000H

RST 1 CF 1100 1111 1 0008H

RST 2 D7 1101 0111 1 0010H

RST 3 DF 1101 1111 1 0018H

RST 4 E7 1110 0111 1 0020H

RST 5 EF 1110 1111 1 0028H

RST 6 F7 1111 0111 1 0030H

RST 7 FF 1111 1111 1 0038H

RST n = CALL n*8

For example, the advantage of RST 2 is that it is only 1 Byte,
whereas CALL 0010H is 3-Byte long. Thus RST instructions are
useful for branching to frequently used subroutines.
Q. Why 8 Bytes? (Hint : CALL 0010H = PUSH PC + JMP 4050H)

The RST instruction has only one
interrupt acknowledge cycle of 6
T-states.

Whenever INTR is HI:

T1: The first T state of all the machine
cycles involving data transfer is for the
demultiplexing of AD0-AD7. INTA
remains HI
T2:T3: RST Code is received
T4:T6 : The instruction is decoded

and depending on the
Instruction further machine
cycles are executed

Stack will be taken up in next
lecture

