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CHAPTER 1.  

INTRODUCTION 

 

1.1 INTRODUCTION 

The phenomena of Partial Discharge has become the center of attraction of the researchers 

for last two decades because of its implicit influence upon the lifetime of insulation 

system of any high voltage equipment. Partial Discharge degrades the quality of 

insulating media which may ultimately transpire into failure of the equipment and 

subsequent revenue loss. Therefore, efficient detection of Partial Discharge phenomena 

inside high voltage equipments is very important for on-line and off-line condition 

monitoring of such equipments. This chapter provides basic insight into the Partial 

Discharge phenomena inside insulation systems and different detection methods of 

Partial Discharge that are commonly employed. At the later part of the chapter, the main 

objectives of the present work have been discussed alongwith brief outline of this thesis. 

1.2 PARTIAL DISCHARGE 

Partial Discharge (PD) is a localized electrical discharge within any insulation system, as 

applied in electrical apparatus, components or systems, that only partially links the insulation 

between conductors and may or may not occur adjacent to a conductor [1]. 

 In insulation systems, Partial Discharges occur due to various reasons which mainly 

include local defects and imperfections inside the insulation such as voids, cracks or bubbles 

and presence of foreign particles or irregularities on the surface of the insulations [2]. The 

insulation system may comprise of solid, liquid or gaseous dielectrics, or any combination of 

these materials [3].  

Generally, PDs are consequence of local electrical stress concentrations appearing in such 

local defects or surface irregularities when the insulation is subjected to high voltage. When 

a void inside an insulating medium undergoes breakdown due to high electric stress, short 

time bursts of charge flow through the void takes place. Such short time charge bursts give 

rise to PD pulses. Normally for discharges in solid and liquid media, current pulses of 

duration of much less than 1 µs appear through the void.  In case of gaseous dielectric media, 

pulseless discharges of more continuous form may occur [3].   
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In general, PDs remain confined within a part of the dielectric medium, which explains its 

characterisation as ‘localised electrical discharge’. Contrary to the total breakdown, PD 

partially bridges the electrodes between which the high voltage has been applied. Technically 

the term ‘Partial Discharge’ describes a wide variety of discharge phenomena such as [3] - 

(i.) Internal discharges occurring within voids or cavities in solid dielectrics and bubbles 

in liquid dielectrics. 

(ii.) Surface discharges occurring at the boundaries and interfaces between different types 

of dielectric media. Surface discharges can also occur due to presence of 

contaminations on the surface. 

(iii.) Corona discharges occurring in gaseous media which are remotely located from solid 

and liquid dielectrics. 

(iv.) Discharge channels in solid dielectrics due to energy impact of continuous 

discharges. This type of PD phenomenon is generally called treeing [4] [5]. 

To comprehend the PD phenomenon in a void within a solid or liquid dielectric media, 

consider the scheme of an insulation system as given in Figure 1.1. The insulation system 

comprises of solid or liquid dielectric medium between two electrodes. There is a void inside 

the dielectric medium which has been assumed to be gas filled. In practical situations, this 

insulation system represents dielectric test specimen or any HV apparatus which is 

undergoing PD test.  

If high voltage is applied between the electrodes then 

the dielectric medium alongwith the void experiences 

very high electric field stress. The dielectric medium 

and the void constitute capacitances between the 

electrodes. In Figure 1.1, the capacitance formed by 

void is represented as VC . The part of dielectric 

between the top electrode and top surface of void 

constitutes capacitance SC . Similarly, capacitance SC   

is formed between bottom surface of void and bottom 

electrode. Clearly from Figure 1.1 it can be observed that capacitances VC , SC  and SC   are 

in series combination. The equivalent capacitance will be, 

                                  SVSSVSVSeq CCCCCCCCC ||)||(||||||                             (1.1)  

Therefore, capacitances SC  and SC   can be combined together to form capacitance SC . 

Capacitance BC  represents the remaining body of the dielectric between the electrodes. 

Figure 1.1 Insulation system consisting of 

a void 
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Usually for a practical insulation system, SVB CCC  .  

When voltage applied between the electrodes is sufficiently high, the gaseous media inside 

the void undergoes breakdown because of enhanced field gradients by the difference in 

permittivities. This breakdown is localised within the void only and rest of the dielectric is 

not affected. Therefore, the void becomes a source of PD. The gaseous discharge inside void 

creates electrons and ions of both polarity. These charges get deposited at the surfaces of the 

void which creates additional polarisation of the dielectric material. The breakdown process 

of the void depends on various important factors such as [6 - 10] –  

 Type of gaseous medium inside the void 

 Size and shape of the void 

 Surface properties and amount of trapped charges on the walls of the void 

 Dielectric constant of the surrounding medium and environmental conditions.  

 Type of contaminations present in the surrounding medium 

If the applied voltage is further increased then the discharge continues. For ac voltage of 

sufficiently high peak amplitude, the discharge will be repeated in each cycle. Instead, if 

increasing dc voltage is given input then some discharge events take place during the increase 

of the voltage. If the dc voltage becomes steady, then partial discharges stop due to 

accumulated charges on the surface of the void [3]. 

Due to rapid discharge of void capacitance VC , voltage across the void is considerably 

lowered during PD.  The voltage drop across the void, due to occurrence of PD, lowers the 

potential across the test object. Drop in voltage across the terminals of test object will be 

given by, 

          V
CC

C
V

BS

S
t 


                                                  (1.2) 

In equation (1.2), 
V

V

C

q
V


 denotes the voltage drop across the void during discharge and 

Vq  is the charge flow through the void during discharge. It seems that by measuring the 

voltage drop across the test object V , the actual charge flow Vq  can be measured from 

equation (1.1). However, values of capacitances SC  and BC  are generally not known. Due 

to this reason, direct measurement of actual charge flow during Partial Discharge is 

impossible [3].  
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1.3 DETECTION OF PARTIAL DISCHARGE 

The impact of partial discharges, which may be a sustained one or may be sporadic in 

nature, on the life of insulation has long been recognized as a crucial issue and investigation 

of such effects have gained substantial importance [3] [11 - 13] . The number of discharge 

events occurring in an insulation system during a chosen time interval is directly dependent 

on the kind of voltage applied and will be largest for ac voltages. Every discharge event 

causes a short-time avalanche of high energy electrons or accelerated ions which cause 

chemical transformations of many types by their energy impact. This in turn results in gradual 

deterioration of the material and if unchecked may ultimately lead to complete failure of the 

apparatus involved. Hence, presence of Partial Discharge in an apparatus is an indication to 

transpiring dielectric defects in the insulation of the apparatus. However actual deterioration 

will be explicitly dependent on the type of dielectric media used. By measuring the intensity 

of PD inside an equipment, qualitative and quantitative idea about the deterioration of 

insulation of that equipment can be obtained [14].  

Measurement and detection of partial discharge has drawn considerable attention in recent 

times and most of the research in this field are directed towards establishment of correlation 

between partial discharge and longevity of the equipments [3]. However such quantitative 

formulations are very hard to guarantee. Needless to say, early detection and localization of 

Partial Discharges may prevent the impending apparatus outage and the resulting 

inconvenience or revenue loss. Therefore, for effective condition monitoring of equipments 

and systems, efficient detection and measurement of partial discharge is very crucial [13].  

As partial discharges cannot be measured directly, usually its energy by-products are 

measured [15]. Different techniques that are employed for PD measurement are as follows- 

 High Frequency Radio Waves: Partial Discharges can be measured by detecting and 

analyzing High Frequency (HF) radio waves arising out of PD sources [16 - 24]. The 

PD measurement by HF radio waves can be segregated into two classes based on the 

range of frequency chosen for measurement - Very High Frequency (VHF) 

measurement and Ultra High Frequency (UHF) measurement.  

For measurement of PDs by VHF radio waves, the frequency range of 30 MHz to 

300 MHz is generally used [15]. Measurement of VHF radio waves are usually 

performed by employing aerial antennas [16] [18]. Less commonly, window-type 

receiver devices are used to monitor the VHF radio waves. The signal attenuation and 

noise reduction in this type of measurement is less compared to measurement of UHF 

radio waves [17]. 
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For UHF measurement, normally the frequency range of 300 MHz to 3 GHz is 

chosen [14]. UHF measurements are performed using window style radio wave 

receiver [19] [24]. It is one of the widely used technique for PD measurement because 

the UHF radio waves are less affected by external noise [20 - 23]. However, UHF 

radio signals are strongly attenuated when they pass through the bushings or travel 

longer distances within the oil and noises may be introduced by external sources 

which also operate in the same UHF band. Radio waves generated due to discharges 

occurring in oils have an upper frequency limit of only a few hundred kilohertz and 

cannot be detected by this method. 

 Radio Frequency Current Transformers (RFCTs): PD Measurement by RFCTs 

also involve detection of the radio waves but they are generally designed to measure 

comparatively low frequency span, up to several hundreds of MHz. They can be 

employed for both off-line and on-line measurements. 

 Coupling Capacitor (CC): It is a type of electrical PD detection method and is most 

frequently used [3] [25]. This method aims to approximate the effects of charge flow 

due to PD pulse by measuring a quantity called apparent charge, which is defined as 

the unipolar charge which, if injected between the terminals of the relevant test object 

within a very short time span, would give the same reading on the measuring 

instrument as the actual PD current pulse [3]. Apparent charges are generally 

measured in picocoulombs. Series assembly of a stable storage capacitor and a low 

resistance coaxial shunt is connected across the test object [1]. The storage capacitor 

is called the coupling capacitor. It injects the apparent charge to the test object during 

the short time span of PD. The measuring instrument is connected across the shunt.  

 Acoustic Emissions: Measurement of PD by detecting and analyzing acoustic 

emissions from PD sources is one of the extensively used methods [26 - 32]. The 

acoustic emissions are captured by one or more ultrasonic transducers, which are 

sensitive to the frequency range of the emanated acoustic waves from PD sources. 

Considering the propagation characteristics of the acoustic waves in insulation media 

and different possible apparatus structures [33] [34], the frequency range 20 kHz to 

500 kHz is generally chosen for PD measurement [15]. 

 Ultraviolet Radiations: This method of PD measurement is basically an optical 

method [35 - 38]. The frequency band of the optical signals radiated by a PD source, 

spans from ultraviolet to infrared region [35]. Specifically, UV radiations are generated 

by corona discharges, external surface PDs and arcing due to flashover. Optical 
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radiations are captured by optical sensors, sensitive to blue-UV region of light 

spectrum. Clearly the optical method provides isolation and is immune to unwanted noise 

if suitable light blocking filters are used [15]. However, this method is only applicable 

for transparent solid dielectrics, gaseous dielectrics and liquid dielectrics to some extent. 

The opacity of the media should not diminish the intensity of PD signals significantly 

during transmission. Also the PD generated optical signals must have lines-of -sight 

from the sensors. 

 Dissolved Gas Analysis (DGA): PD measurement by DGA monitoring is a common 

tool for condition monitoring of oil filled equipments such as transformers [39 - 43]. 

Due to chemical effect of PDs, different types of gases are generated in the oil inside 

the equipment which remain dissolved in the oil. For DGA analysis, first oil is 

sampled from inside the equipment and dissolved gases are separated from oil by 

employing extraction techniques. Then the extracted gases are identified by gas 

chromatography. Lastly, the amount of PD present inside the equipment is ascertained 

by observing the levels of gases in the oil. However, this method cannot pinpoint 

exact location of PD inside the equipment, which is its main disadvantage [44]. 

 Power Loss: Any PD phenomena is associated with power loss which is proportional 

to the applied voltage. Due to presence of PD power factor changes with respect to 

applied voltage. PD can be detected and measured by observing the change in the 

power factor. 

Each of the methods described above has its own advantages and disadvantages. Modern 

trend is to employ combination of these methods for more efficient PD detection [45 - 

50]. Recently, different Artificial Intelligence and Machine learning based PD 

measurement techniques are also finding prominence [50 -54]. 

1.4 OBJECTIVES OF THE THESIS 

The main objective of the present work is to identify and locate single and multiple Partial 

Discharge sources based on both optical and acoustic signals. This work has been taken up 

to investigate whether presence of PD phenomena inside emulated metallic enclosure of an 

equipment (such as a transformer) can be detected from outside by analysing the optical or 

acoustic signals captured by suitable sensors located at the inside and outside wall 

respectively.  

For that purpose, an optical PD source and an acoustic PD source have been fabricated. In 

addition to these, a steel-made cubical box has been constructed which emulates the 

equipment enclosure. For capture of either type of signals from these sources, optical and 
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acoustic sensors have been mounted on the walls of this box. Each type of PD sources have 

been separately placed inside the box at different strategic locations and data corresponding 

to each type of PD signal for all the locations have been recorded. For emulation of single 

PD phenomena, only one type of PD source was placed inside the box. Whereas, to emulate 

multiple PDs, two such PD sources have been placed at different locations inside the box. 

Recording of each type of PD signals for all the locations inside the cubical box has been 

termed as PD data acquisition. The placement of PD sources at a given location inside the 

box has been termed as PD events. The recorded optical signals and acoustic signals have 

been analysed separately. 

For optical PD data acquisition, wavelength range corresponding to visible light (300 nm - 

500 nm) has been chosen. As the optical signals must have a line of sight, the optical sensors 

have been placed at the inside walls of the cubical box. In the present work, positions of the 

optical PD source inside the cubical box has been identified by employing feature 

classification techniques. It has been observed that the recorded optical signals are mostly 

sparse in nature. Mathematical Morphology, a time domain based signals transformation tool 

has been employed to transform and fill up the sparse domains of the captured optical PD 

signals. After that, suitable statistical features have been extracted from the morphologically 

transformed optical PD signals. These extracted features have been classified with two 

separate classification techniques – Rough Set Theory and Sparse Representation 

Classification. Lastly, the performances of these classification techniques have been 

compared.  

For acoustic PD data acquisition, the frequency range of 20 kHz – 500 kHz has been 

considered. Moreover the acoustic sensors have been placed at the outside walls of the 

cubical box. The locations of acoustic PD source inside the cubical box have been 

identified by adopting a completely different approach. In the present work, the locations 

have been identified by two parameters, one is sequence of arrival of PD generated 

acoustic waves at different acoustic sensors mounted on outside walls of the cubical box 

and another one is levels of peak amplitudes of the captured acoustic signals by those 

sensors. 

1.5 OUTLINE OF THE THESIS 

Chapter 1: This chapter provides introduction to the Partial Discharge phenomenon as 

applicable in high voltage equipments and different detection and measurement methods 

of Partial Discharge. 
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Chapter 2: This chapter describes the construction of optical and acoustic PD sources, 

scheme of placement of sensors and experimental setup for PD data acquisition through 

optical and acoustic sensors in detail. 

Chapter 3: This chapter explains theoretical formulation and working principle of time 

domain based signal transformation technique, Mathematical Morphology. The feature 

extraction from morphologically transformed optical PD signals has also been discussed 

in this chapter. 

Chapter 4: This chapter presents theoretical background and working principles of the 

classification techniques – Rough Set Theory and Sparse Representation Classification. 

Chapter 5: This chapter provides the theoretical background behind the identification of 

acoustic PD sources based on sequence of arrival and levels of peak amplitude. 

Chapter 6: This chapter presents the results pertaining to the identification and 

localisation of both types of single and multiple PD sources using proposed methods. 

Chapter 7: The concluding notes and future scopes of the present work have been 

presented in this chapter. 
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   EXPERIMENTAL SETUP
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Figure 2.2 (a) Detailed view of Partial Discharge Source Simulator (PDSS) box 

(b) Actual photograph of PDSS box 

(a) (b) 

CHAPTER 2.  

EXPERIMENTAL SETUP & PD DATA ACQUISITION 

2.1 INTRODUCTION 

Data acquisition through real life experiments is one of the crucial parts of any research 

work. As already discussed, the aim of the present work is to identify and localize partial 

discharge sources based on optical and acoustic signals emanated from such sources. It 

has been also mentioned that this work has been taken up to investigate the PD 

phenomena inside an emulated metallic enclosure of an equipment and to ascertain whether 

the presence of such phenomena can be detected from outside by recording and analysing 

the optical or acoustic signals captured by suitable sensors located at the outside and 

inside wall respectively. The experimental setup used in the present work emulates such 

occurrences of PDs in small scale. In the present work, optical signals and acoustic signals 

that are emitted from the PD sources have been analysed separately. For these two 

methods, the experimental procedure and apparatus used are same. Different approaches 

have been taken for Optical PD and Acoustic PD data acquisition techniques. Various 

aspects of the experimentation have been discussed in the following sections.  

2.2 PARTIAL DISCHARGE SOURCE SIMULATOR (PDSS) BOX 

For PD data acquisition, a cubical steel box with insulated top lid has been constructed. 

This box has side length of 0.32 m or 32 cm. The details of this box has been 

schematically shown Figure 2.1(a).  The PD source is placed inside this box and made to 

discharge continuously for a short time so that the emitted optical or acoustic signals can 
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(a) 

be captured through sensors. The insulated top lid of the box holds the solid conductor of 

HV supply for the PD source. A fixing collar and a lock arrangement hold this conductor 

tightly. This box has been labelled as Partial Discharge Source Simulator box or PDSS 

box from now on.   

As two types of PD sources i.e. optical PD and acoustic PD sources have been 

considered, each of the sources requires different sensors for capturing the respective 

signals. Depending upon the type of PD signal, optical or acoustic sensors will be 

mounted on the walls of the PDSS box. To record the optical signals coming out of PD 

source, the PDSS box has been kept air-filled. Whereas in case of capturing the acoustic 

signals, the box has been filled with transformer oil.  

2.3 PARTIAL DISCHARGE (PD) SOURCE 

Generation of partial discharge from breakdown of a void under high electric field stress 

is a well-known phenomenon. Here this phenomenon has been utilized to create the 

required PD sources. For two types of PD scheme, two types of PD sources have been 

constructed i.e. Optical PD source and Acoustic PD source. 

2.3.1 OPTICAL PARTIAL DISCHARGE SOURCE 

Optically transparent materials are obvious choices for crafting the optical PD source. In 

the laboratory, an artificial cylindrical void with known dimensions has been created 

inside a transparent acrylic disc having 10 mm diameter and 3 mm thickness. The 

cylindrical void has 0.8 mm diameter and a length of 1.5 mm. Figure 2.2 schematically 

depicts PD source made up of transparent acrylic discs with cylindrical void inside. The 

breakdown of this void actually generates the optical PD signals. The inception voltage 

for the void, having dimensions shown in Figure 2.2, is calculated to be 7 kV. The void 

Figure 3.2 (a) Optical Partial Discharge Source with plane-plane electrode system (b) Detailed 

schematic view showing the dimensions of transparent acrylic discs with cylindrical void inside  

(b) 
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should undergo continuous breakdown at least throughout the time required for data 

acquisition. For that reason, the high voltage applied to the top electrode of Figure 2.2 

has been kept higher than 7 kV during the data acquisition. Optical radiations arising out 

of PD travel through transparent acrylic disc and air to reach the optical sensors mounted 

on walls of PDSS box. The acrylic discs are sandwiched between two brass electrodes. 

One of the electrodes is connected to HV supply and other one is kept at earth potential 

by connecting a flexible copper wire as earth conductor. For optical PD source, both these 

electrodes have plane cross-section. Hence this PD source has plane-plane electrode 

system and due to this, the voltage gradient between top and bottom planes of the void is 

uniform. When the void undergoes breakdown, the resulting short burst of charge flow is 

volumetrically uniform. The frequency of PD generated optical radiations lies in the 

upper frequency range of visible light spectrum (i.e. in the blue region) and extends into 

the UV region. Optical signals, being electromagnetic radiation, will undergo relative 

change in speed if any other medium was used inside the PDSS box instead of air. 

Although relative phase displacement between signals captured by different sensors 

remain same, there will be relative decrease in magnitude due to absorption in the media. 

For this reason PDSS box has been kept air filled during optical PD data acquisition.  

2.3.2 ACOUSTIC PARTIAL DISCHARGE SOURCE 

The acoustic PD source has different assembly than its optical counterpart. Instead of 

using plane-plane electrode system, here one of the plane-faced electrode has been 

replaced with a point-faced electrode. So the electrode system becomes the point-plane 

electrode system for acoustic PD source. Figure 2.3 schematically shows the acoustic PD 

source with point-plane electrode system. An acrylic disc having thickness of 3 mm and 

Figure 2.4 Acoustic Partial Discharge Source made up of transparent acrylic discs 

with cylindrical void inside and point-plane electrode system 
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diameter of 10 mm has been placed between above mentioned point-plane electrodes. 

Clearly it can be seen from Figure 2.3 that, due to point electrode, the electric field stress 

at the interface of point electrode and the acrylic disc wall will be very much high. When 

the voltage applied to HV electrode is sufficiently large, very high electric stress will 

cause partial breakdown of oil at the vicinity of that interface. The resulting blast and 

subsequent energy release at that interface creates the mechanical disturbance that travels 

through the transformer oil as acoustic waves. So in this case, the PD generated energy is 

converted into a mechanical wave. These PD generated acoustic waves are captured by 

the acoustic sensors mounted on walls of the PDSS box. The generated acoustic waves 

may get significantly attenuated due to energy dissipation, as they reach the wall of the 

box. In order to have higher amplitudes of the captured acoustic signals, such that these 

signals are clearly differentiable from the prevailing background noise, the initial energy 

release from the blast should be high. This initial energy release depends on the amount 

of non-linear electric stress the oil is subjected to, in vicinity of the interface, which in 

turn is dependent upon the amount of voltage applied to the HV electrode. Hence to 

capture acoustic signals of much higher amplitudes, the voltage applied to the HV 

electrode should be of much greater value than that is applied in case of optical PD source. 

The frequency of PD generated acoustic waves lie in the range of ultrasonic spectrum (20 

kHz – 500 kHz).  

2.4 PLACEMENT OF PD SOURCE INSIDE PDSS BOX 

Placement of either type of PD source inside the PDSS box is an important task. The PD 

source is placed inside the box at specific positions which have been strategically chosen. 

Also a well-defined notation system has been developed to identify them. For acoustic 

and optical PD, these notations are different. The PD source is placed inside the PDSS 

box by inserting the HV conductor through a hole on the insulated top lid. The flexible 

earth conductor has length sufficient to facilitate free movement of PD source inside the 

box. 

2.4.1 FOR OPTICAL PD DATA ACQUISITION 

Inside the box, several locations have been chosen for placing the optical PD source. 

These locations are symmetrically distributed with respect to all the walls of the box. It 

has been observed that at these locations, optimum signals are captured by the optical 

sensors. The coordinates of these locations can be treated as imaginary grid points of a 

virtual cubic region having 16 cm side and 8 cm apart from all the walls of PDSS box.  
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This has been depicted in Figure 2.4. Three parallel cross-sectional surfaces of that virtual 

cube, that are designated as A, B and C, have been considered. Upon these surfaces grid 

positions are uniformly distributed and are consecutively 8 cm apart from each other. The 

grid points are numerically 

marked, starting from the 

middle point of the surface 

A, which has been 

designated as ‘1A’. Then 

corner points of the surface A 

are marked progressively as 

‘2A’, ‘3A’, ‘4A’ and ‘5A’. 

Lastly midpoints of the four 

sides are marked as ‘6A’, 

‘7A’, ‘8A’ and ‘9A’. In this 

way there will be nine grid 

points belonging to surface A. Same procedure has been followed for marking the grid 

points on cross-sectional surfaces B and C. Clearly there will be in total 27 such grid 

positions in the virtual cubic region. All the marked grid points are shown in Figure 2.4. 

2.4.2 FOR ACOUSTIC PD DATA ACQUISITION 

For marking the positions of acoustic PD source, a different approach has been taken. 

Figure 2.5 given below shows the marked locations for placement of acoustic PD source. 

Figure 2.5 Imaginary cubic sub-regions in three parallel square blocks 1, 2 and 3 

for placing the acoustic PD source inside the PDSS box 

Figure 2.4 Imaginary grid points on three parallel square surfaces A, 

B and C in the virtual cubic region inside the PDSS box 
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Here the same virtual cubic region of Figure 2.4 has been considered. But instead of 

placing the acoustic PD source at specific points, several different sub-regions have been 

chosen for placing the source. The virtual cubic region has been subdivided into 27 small 

cubic sub-regions having equal volume and uniformly distributed into three parallel 

blocks, as shown in Figure 2.5.  

The small cubic regions have been marked as follows – three parallel blocks have been 

numerically marked as 1, 2 and 3. Now the cubic sub-region at the middle of block 1 has 

been marked ‘11’. Next the corner sub-regions are progressively marked as ‘12’, ‘13’, 

‘14’ and ‘15’. Lastly the regions at the middles of the four sides have been progressively 

marked as ‘16’, ‘17’, ‘18’ and ‘19’. Sub-regions in the blocks 2 and 3 have been marked 

in similar fashion. All the marked cubic sub-regions have been shown in Figure 2.5. In 

this case also the total number of sub-regions is 27. The acoustic PD source has been 

placed at these designated regions for data acquisition. 

2.4.3 PD EVENTS & NOTATION SCHEME 

The PD source is placed at one of the imaginary grid positions (for optical PD data 

acquisition) or sub-regions (for acoustic PD data acquisition) by maneuvering the HV 

electrode fixed with it. Once desired vertical and horizontal position is obtained, the HV 

electrode is fixed with the top insulating lid tightly by collar and lock arrangement. 

Location of any point or region inside the box can be found out by setting the origin of 

coordinate system to any one of the base corner points of the PDSS box. The points of 

Figure 2.4 and the sub-regions of Figure 2.5 have been marked with respect to same 

coordinate system reference. As in both the cases, the locations or sub-regions are on or 

inside the same virtual cubic region, the optical PD locations are situated on one of the 

outer surfaces of the corresponding acoustic PD sub-regions. For example, location 1A 

of Figure 2.4 is situated on the left-side surface of sub-region 11 of Figure 2.5. Hence by 

this marking scheme, a parity is maintained between the two types of source placement. 

If a single PD source is placed inside PDSS box and all the sensors capture signal from 

this discharge, then this event is termed as a Single Partial Discharge (SPD) event. On 

the other hand, when two such PD sources are placed at two locations of the virtual cubic 

region and PD is made to occur simultaneously in both the locations such that all sensors 

capture signal from both the discharges, then this event is termed as Double Partial 

Discharge (DPD) event. In the present work, 27 SPD events have been considered for 

both the optical PD and acoustic PD. In addition to that, 20 DPD events have been 

considered for both the cases.  For further manipulation of the recorded signals, every PD 
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event has been assigned with suitable notation. Table 2.1 shown below summarizes the 

PD events and the corresponding notation scheme. 

Table 2.1. SPD and DPD events and their corresponding notations 

In Table 2.1, the notation for SPD events is same as the position of PD source at the 

corresponding grid point of Figure 2.4 or sub-region of Figure 2.5. For example, if optical 

PD source is placed at location ‘1A’ then the notation to denote set of five signals captured 

by five sensors will be ‘1A’. Similarly notation ‘11’ denotes set of signals captured when 

the acoustic PD source is placed inside sub-region ‘11’.Whereas for a DPD event, the 

notation to is of the form ‘1A_1C’ for optical PD events or ‘11_31’ for acoustic PD 

events. Notation ‘1A_1C’ implies that two optical PD sources have been placed at 

locations ‘1A’ and ‘1C’ and PD is taking place at both the locations simultaneously. The 

notation for DPD event ‘11_31’ can be interpreted in similar fashion. For 27 locations or 

sub-regions, a large number of DPD events are possible but only 20 of such events have 

been selected. Two locations or sub-regions, which are directly adjacent to each other or 

are situated along the same vertical line, have been avoided while selecting the DPD 

events mentioned in Table 2.1. 

2.5 PLACEMENT OF SENSORS IN PDSS BOX 

In order to detect the optical or acoustic signals from the PD source, suitable type of 

sensors have been placed on the walls of PDSS box. The placement of sensors should be 

such that they would be able to capture good quality optical or acoustic signals from all 

the PD locations successfully.  

Type of PD Event PD locations or sub-regions and corresponding notations 

Optical SPD Events 1A, 2A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 8B, 

9B, 1C, 2C, 3C, 4C, 5C, 6C, 7C, 8C, 9C 

Optical DPD Events 1A_1C, 1A_2C, 1A_7C, 1C_2A, 1C_7A, 2A_3A, 2A_4A, 3A_5A, 

5A_4A, 9A_7A, 2B_3B, 2B_4B, 3B_5B, 5B_4B, 9B_7B, 2C_3C, 

2C_4C, 3C_5C, 5C_4C, 9C_7C 

Acoustic SPD Events 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 

32, 33, 34, 35, 36, 37, 38, 39 

Acoustic DPD Events 11_31, 11_32, 11_37, 31_12, 31_17, 12_13, 12_14, 13_15, 15_14, 

19_17, 22_23, 22_24, 23_25, 25_24, 29_27, 32_33, 32_34, 33-35, 

35_34, 39_37 



P a g e  | 16 

 

  

Let us now take the example of optical PD locations as shown in Figure 2.4. Assuming 

that the optical PD source has been placed at one of the locations on surface A, the square 

face of PDSS box right in front of surface A is a logical choice to place an optical sensor. 

This is because that particular square face has the least distance form all the locations of 

surface A. Let this optical sensor be marked as OS1. Clearly, optical signals captured by 

OS1, when the optical PD source has been placed at one of the locations on surface A, 

would have high amplitudes and intensities. Now when the optical PD source has been 

placed at distant locations, such as locations on surface C, the amplitude and intensity of 

the captured signals by OS1 will become very low due to attenuation, owing to greater 

relative distance of these locations from OS1. Hence in order to capture good quality 

optical signals from the locations on surface C, another optical sensor should be placed 

at the square face which is right in front of that surface. Extending this reasoning for all 

the locations, it can be inferred that for six faces of the virtual cubic region of Figure 2.4, 

there should be an optical sensor placed in front of every face i.e. optical sensor should 

be mounted on every square face of PDSS box. But as the top lid of the box holds the HV 

conductor, placing a sensor on top lid will be unsuitable. Hence to avoid clumsiness, no 

sensor can be placed on the top lid of the box. The placement of five optical sensors on 

five walls of the PDSS box has been schematically depicted in Figure 2.6. For simplicity 

five sensors have been placed right in the middle points of the respective square faces. 

As the PD generated optical radiations must have line of sights from the walls, the optical 

sensors have been mounted on the inside walls of the PDSS box for optical PD data 

acquisition 

This contention can be extended 

for placing the acoustic sensors in 

similar manner and the scheme of 

sensor placement, shown in Figure 

2.6, is also applicable for acoustic 

PD data acquisition. In case of PD 

generated acoustic signals, effect of 

attenuation can be much significant 

if sensors are placed much further 

from the PD source and the acoustic signals may become too noisy. Moreover, sensors 

which are at different distances from the PD locations will experience different signal 

arrival times.  

Figure 2.6 Placement of Optical or Acoustic Sensors in 

PDSS Box 
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Unlike the placement of optical sensors, the acoustic sensors have been mounted at the 

outside walls of the PDSS box. The advantages of placing the acoustic sensors outside 

the walls include easy fixation, better flexibility and scope for reconfiguration. Also the 

sensors may malfunction and get damaged due to direct contact with transformer oil if 

placed inside the box. Hence placing five acoustic sensors at the middle points of five 

outside walls of PDSS box is an optimum arrangement for acoustic PD data acquisition. 

If fewer sensors were used then some of the important information from the PD sources 

might have been lost. Although there is no generalized strategy to choose the optimum 

number and position of sensors, depending on relevant situation suitable schemes are to 

be implemented. Optical and acoustic sensors have been marked with suitable notations 

for identification. Placement schemes, sensitive regions and notations for optical and 

acoustic sensors have been shown in Table 2.2 given below.  

Table 2.2 Placement schemes, sensitive regions and notations for optical and acoustic sensors 

Type of the sensor Placement in the 

PDSS box 

Sensitive to frequency 

spectrum 

Notation 

Optical Sensor At inside walls Blue-UV spectrum OS1, OS2, OS3, OS4, 

OS5 

Acoustic Sensor At outside walls Ultrasonic spectrum AS1, AS2, AS3, AS4, 

AS5 

Various salient properties and specifications of the optical and acoustic sensor used in the 

present work can be found in [56] [57].  

2.6 CIRCUIT ARRANGEMENT FOR PD DATA ACQUISITION 

Similar circuit arrangements have been used for optical and acoustic PD data acquisition. 

The schematic of the experimental setup used in the laboratory for optical PD data 

acquisition has been shown in Figure 2.7. The optical PD source comprises of plane-plane 

electrode system. The HV electrode of the PD source is connected to a 10 kVA, 

230V/50kV high voltage testing transformer. An assembly of 1:1 isolation transformer 

Figure 2.7 Schematic circuit diagram of experimental procedure for optical PD data acquisition 
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and an autotransformer, as shown in Figure 2.7, is connected to the input of the testing 

transformer. As mentioned before, the inception voltage of discharge for the void shown 

in Figure 2.2 is 7 kV. In order to obtain sustained partial discharge, the test voltage has 

been kept slightly higher than the inception voltage i.e. at 9kV for optical-PD data 

acquisition. 

The schematic of the experimental setup for acoustic PD data acquisition has been 

shown in Figure 2.9. The acoustic PD source comprises of an acrylic disc sandwiched in 

between pointed electrode and plane electrode. The test voltage has been kept at a much 

higher value of 30kV such that sustained explosion in oil can occur at the site of PD. This 

higher test voltage yields acoustic signals having higher amplitudes. 

The five sensors, placed at walls of the PDSS box, 

capture the optical or acoustic signals emitted out by 

the PD sources. The captured signals are digitized by 

a digitizer which facilitates data acquisition in a 

computer. As shown in the schematics of Figure 2.8 

and 2.9, there is a selector switch to select a particular 

sensor. When a particular sensor is selected, a current, 

proportional to amount of signal energy collected by 

that sensor, flows through the R1, R2 resistance bridge. 

A two channel digitizer from National Instrument™ 

with sampling rate of 100MS/s has been used in the 

present work to digitize the analog signals captured by 

the sensors [58]. The voltage drop across R2 which is proportional to the current, has been 

fed to the CH1 (Channel 1) of the digitizer. A capacitor divider reduces the high voltage 

input to a much smaller value of 5-8 Vp. This capacitor bridge provides the phase 

Figure 2.10 High Voltage Testing 

Transformer 

Figure 2.9 Schematic circuit diagram of experimental procedure for acoustic PD data acquisition 
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reference of the digitizer through CH2 (Channel 2). The time duration of recorded analog 

signal has been measured from the zero crossing of positive half cycle of high voltage 

supply applied to the sample. 

 For optical signals, the time duration of each data capture is 0.025s or 25ms. 

 For acoustic signals, the time duration of each data capture is 500µs. 

 The digitizer is connected to computer through USB. For the data acquisition, a 

software has been developed in LabVIEW© environment. In order to ensure a fixed 

starting point with respect to the supply frequency cycles, the data capture through 

sensors start whenever the power frequency reference potential in CH2 of digitizer 

becomes greater than a preset threshold value, Vref. For an SPD event, first the PD source 

is placed at a particular location of Figure 2.4 or Figure 2.5 and five sensors capture 

optical or acoustic signals. This is a single data set of five data from five sensors. This 

process is repeated five times with an interval of 1 hrs between two consecutive data 

capture. By this process total of five data sets, each containing five data corresponding to 

five signals captured by five sensors, is obtained for a single PD source i.e. a single SPD 

event. The same procedure is applied to all the DPD events. A complete database of all 

the data pertaining to signals captured by all the sensors for every optical and acoustic 

PD event has been created.  

One set of optical PD signals, recorded by five optical sensors, corresponding to SPD 

event ‘1A’ and DPD event ‘1A_1C’ have been respectively shown in Figure 2.10 and 

Figure 2.11. In Figure 2.10, note that the sensor S1 records maximum intensity because 

it is closest to PD location 1A, whereas intensities of signals captured by other sensors 

are lower. Therefore for any optical SPD event, optical sensors which are close to location 

of optical source record optical signals of higher intensity. Also note from Figure 2.10 

and Figure 2.11 that the optical signals are mostly sparse in nature i.e. in general, the 

domains of optical signals are sparse. This phenomena happens due to sporadic charge 

flow through the partially discharging cylindrical void, inside the optical PD source of 

Figure 2.2, during the time span of data capture.  

One set of acoustic PD signals, recorded by five acoustic sensors, corresponding to SPD 

event ‘31’ and DPD event ‘12_13’ have been respectively illustrated in Figure 2.12 and 

2.13. It can be seen from these figures that, the acoustic signals have completely different 

nature compared to optical signals. Also unlike the optical signals, domains of acoustic 

signals are not sparse. Detailed discussion about the nature of acoustic PD signals have 

been provided in Chapter 5. 
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 Figure 2.11 Optical signals captured by different 

sensors when optical PD source is placed at ‘1A’ a) 

Sensor, OS1 (b) Sensor, OS2 (c) Sensor, OS3 (d) 

Sensor, OS4 (e) Sensor, OS5. 

 

 

 

  

Figure 2.12 Optical signals captured by different 

sensors when two optical PD sources are placed at 

‘1A’ and ‘7C’ a) Sensor, OS1 (b) Sensor, OS2 (c) 

Sensor, OS3 (d) Sensor, OS4 (e) Sensor, OS5 
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Figure 2.12 Acoustic signals captured by different 

sensors when acoustic PD source is placed at ‘31’ a) 

Sensor, AS1 (b) Sensor, AS2 (c) Sensor, AS3 (d) 

Sensor, AS4 (e) Sensor, AS5. 

 

 

Figure 2.13 Acoustic signals captured by different 

sensors when two acoustic PD sources are placed at 

‘12’ and ‘13’ a) Sensor, AS1 (b) Sensor, AS2 (c) 

Sensor, AS3 (d) Sensor, AS4 (e) Sensor, AS5. 
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CHAPTER 3.  

MATHEMATICAL MORPHOLOGY AIDED FEATURE 

EXTRACTION FROM OPTICAL PD SIGNALS 

3.1 INTRODUCTION 

In the present work, locations of optical PD source have been identified by extracting 

suitable features form mathematically transformed optical PD signals and subsequently 

classifying the extracted features with the help of classification techniques. First, the PD 

generated optical signals have been transformed by employing Mathematical 

Morphology, a time domain-based signal transformation tool. Then, different statistical 

features have been extracted from the transformed PD signals. The extracted features 

have been classified by two separate classification techniques - Rough Set Theory and 

Sparse Representation Classification. Mathematical Morphology and subsequent feature 

extraction from transformed optical PD signals have been discussed in this chapter.  

3.1.1 FEATURE EXTRACTION  

Artificial Intelligence (AI) based techniques are very popular for data analysis and 

interpretation due to their robust theoretical background and wide range of applicability. 

One of the fundamental aims of AI is to achieve rationalization of the machines i.e. to 

help machines make decisions like rational beings and improve performance through 

experience. The techniques followed for implementing this rationalization are 

collectively called the Machine Learning techniques. The concept of Machine Learning 

evolved from other branches of AI such as pattern recognition and computational learning 

theory. Machine learning deals with the construction of algorithms that can formulate 

decisions by analysing a set of input data or can learn to make predictions about that data.  

One of the important tasks performed by the Machine learning algorithms is called the 

dimensionality reduction which is defined as the process of mapping a large set of input 

data into a lower dimensional space. One of the major problems that stems while 

processing a large set of data is the large number of associated variables to be handled. 

Also there could be unknown redundancy present in the data.  
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Processing that large amount of data and associated variables may require larger 

memory for storage, more time for processing and unnecessary large computational 

facility. If that data is given input to a classification algorithm then the algorithm may 

perform poorly due to overfitting and may not be able to classify new samples. Hence, 

one of the main objectives while processing a large data will be to analyse out information 

from the data such that the complete set of associated variables can be represented by a 

minimal set of variables which is as informative as possible and the desired task can be 

performed with that reduced representation instead of using the whole data.   

For that purpose, some measureable and quantifiable properties are analysed out from 

the data which are called the explanatory variables or features. Features may be 

categorical, ordinal, integer valued or real valued. The process of computing and 

obtaining features is called the feature extraction. Typically, several features are extracted 

from a set of data to form the feature vector. Feature extraction reduces the variables 

required to represent a large set of data which facilitates easier and faster classification of 

that data. Hence, feature extraction prepocesses the input data to make it more 

explanatory and manipulable. If input data pertaining to a set of signals are to be 

processed for the purpose of classification, then it will be advantageous to reduce the 

dimension of the signal space by feature extraction. But, extraction of features from a 

signal by mere visual inspection will be very difficult. Due to this reason, different 

specialized feature extraction techniques are employed for extraction of the features. 

3.2 MATHEMATICAL MORPHOLOGY 

Morphology is defined as the study of shapes. Mathematical Morphology (MM) is a time-

domain based non-linear signal transformation technique that deals with the mathematical 

theory of characterizing and manipulating signals with sets. The theory of Mathematical 

Morphology was collaboratively developed by Jean Serra and Georges Matheron in 1964 

[58 - 61]. Since then it has seen tremendous theoretical development in next four decades.  

A signal is a function which describes any quantity that exhibits variation in time or 

space and provides information about the status of a physical phenomenon or entity. 

Signal processing is a general technique by which signals are manipulated and 

transformed in such a way that important information can be extracted from the processed 

signals [64]. In that sense, Mathematical Morphology is a specialized signal processing 

technique. MM deals with the shape, structure and form of the signal presented to it and 

locally modifies geometric features of that signal [62]. The operation of MM can be 

considered as imparting filtering effect upon the signal and such morphological 
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transformation operations are collectively termed as the Morphological filters [62] [63]. 

In general, morphological filters perform set-operations and transforms the graph of the 

signal to provide quantitative description of signal’s geometric structure. Hence, MM is 

similar to other conventional linear signal processing techniques that employ filtering 

windows. But there is a fundamental difference between MM and linear transformations. 

The basic morphological operations are non-linear in nature and hence the algebra 

involved is much different form the linear algebra. Moreover it exclusively works in time 

domain, unlike other conventional frequency domain based transform methods [65].  

MM is most commonly employed for digital image processing and has become one of 

the widely used sophisticated mathematical tool for such applications. The areas of 

application of MM in various image processing and applications (such as biomedical 

image processing) are wide and numerous. Some of the applications of MM in image 

processing are – shape recognition, shape smoothing, texture analysis, thinning, 

enhancement, edge detection, representation and coding etc. In addition to these, MM is 

a well-established and effective technique for denoising and nonlinear filtering [66 - 69].  

3.2.1 REPRESENTATION OF SIGNALS BY SETS AND FUNCTIONS 

The theory and technique of MM is based on various important fields of mathematics 

such as set theory, lattice theory, random functions and topology. Morphological 

operations are applicable for both continuous and discrete spaces. One of the basic 

assumptions in the context of MM is that signals can be completely characterized by sets 

[62]. In general, an n-dimensional signal can be mathematically represented as a function 

of n-independent variables. As a special case, if that function only takes two distinct 

values, then it can be shown that the signal can be represented as an n-dimensional set in 

Euclidean space. 

 Let us take the example of a bi-level 

signal, as shown in Figure 3.1. Bi-level 

signals are characterized by two levels of 

amplitude i.e. the signal continuously toggles 

between high-level amplitude and low-level 

amplitude. Let these amplitudes be denoted 

in binary form i.e. high-level amplitude is 

denoted as 1 and low-level amplitude is 

denoted as 0.  

Figure 3.1 Bi-level signal comprising lobes 

between consecutive instants of toggle 
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As the amplitude of the signal can assume two distinct values, bi-level signals are also 

be termed as binary signals. At the instants of toggle, signal changes its amplitude from 

one level to another and vice-versa. The part of the signal between two consecutive 

instants of toggle has been termed as lobe. The signal can be considered to be made up of 

many such lobes. Alternate lobes of the signal have same amplitude levels. 

Let parameter   denote the lobes of the signal and a function )(f   associated with the 

bi-level signal be defined as, 

                                                 lobeofamplitudef )(                                          (3.1) 

Clearly, )(f  can assume two possible values. As the amplitude levels have been denoted 

in binary form, 1)( f  for the lobes which have high-level amplitudes and 0)( f  for 

lobes which have low-level amplitudes. All the lobes which are at high level amplitude 

can be comprehensively described by the set,  

                                                        }1)(|{   fF                                                  (3.2) 

The lobes which are at low-level amplitude are represented by the complement of set F , 

as shown below. 

                                                       }0)(|{   fF c
                                              (3.3) 

Hence, the set F  alongwith its complement completely describes the bi-level signal. 

Function )(f  assumes value 1 for all the elements which are members of set F  and 

assumes value 0 for all the elements which are not in F . This type of function is called 

the characteristics function or indicator function, which maps the elements of a set into 

the discrete range of {0, 1}.  Generalising the foregoing analysis it can be inferred that, 

bi-level signals are comprehensively represented by sets, whose elements are mapped by 

binary characteristic functions. 

Now consider a more general case of a multilevel signal, shown in Figure 3.2. As 

depicted in that figure, the amplitude of the signal can assume a finite set of discrete 

Figure 3.2 Multilevel signal 
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values i.e. levels of amplitude are discretely distributed. Similar to binary image, here 

also we can mark the lobes between two consecutive points, at which the amplitude of 

the signal changes from one value to another.  

Let a function )( associated with the multilevel signal be defined as,  

                                              lobeofamplitude)(                                           (3.4) 

The lobes of the signal which have the same level of amplitude can be grouped together 

to form a level set. As levels of amplitudes for all the lobes are discretely distributed, 

)(  is a discrete valued function. If parameter ja  denotes the 
thj  level of amplitude, 

then the multilevel signal can be represented as a function of ja . If there are m different 

levels of amplitude in the signal then, 

                                       mjaa jj ,...,3,2,1},)(|{)(                                    (3.5) 

Here, ja  only assumes discrete values. Lobes which have level of amplitude not less than 

ja  forms the level set, )( ja . Levels sets are related to each other by the relation, 

)()( 1 jj aa   . For 
thj  level of greyness intensity, complement of the level set )( ja  

is given by, mjaa jj ,...,3,2,1},)(|{)(   C
. 

Thus each specific amplitude level in the signal constitutes a level set. If all the discrete 

amplitude levels are taken into account then the whole signal can be completely 

represented as a function comprising stack of level sets. Hence contrary to bi-level signal, 

the multi-level are represented as functions. In general, multilevel signals are represented 

by functions, comprising stacks of level sets.  

Thus, signals can be mathematically represented both as a set and a function. But the 

primitive representation will be set and functions are to be considered as particular cases 

of such sets. Sets will be obtained from functions by inducting the level cuts, which is a 

reverse process of stacking. Basic set operations can be translated to signals if the 

corresponding set follows certain conditions. A signal can be completely characterized 

by a set and that set shall be deemed suitable for morphological operations, if the set 

adheres to following conditions [62] [63] - 

(i.) The elements of the set can be partially ordered and all the non-empty subsets can 

be properly identified alongwith their boundaries. 

(ii.) Each non-empty subset of that set has a maximum and minimum.  

Clearly every electrical signal, whether continuous or discrete, satisfies these two 

conditions and such signals can be morphologically processed. Similar set representations 
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can be also formulated for continuously varying signals, but such formulations will be 

very much complex in nature. In the context of MM, representation of signals by sets is 

essential because all morphological operations are applicable for sets only [62].  

3.2.2 STRUCTURING ELEMENTS AND FUNCTIONS 

The basic concept in MM is to probe a given signal with a simple and predefined element. 

That probe element interacts with the signal and locally modifies geometric 

characteristics of the signal. This probe is called the Structuring Element (SE) [58 - 65]. 

The information that can be extracted from a signal depends upon the way the signal is 

probed or observed [61]. Interaction of SE with the signal provides the basis for 

deductions on how the element touches or misses the signal. Depending on the 

information to be extracted, a given signal can be probed in many ways and accordingly 

the SE could be of different shapes and dimensions. Hence, shape and size of an SE are 

the two most important characteristics [65]. Also the signal to be probed can be a bi-level 

signal or a multilevel signal. Furthermore, multilevel signal can be of discrete or 

continuous type. Hence, different classes of structuring elements will be required to probe 

bi-level and multilevel signals 

 The structuring element required for probing a bi-level signal will be a set, defined 

on Euclidean subspace and characterised by a binary indicator function.  

 The structuring element intended for probing a multilevel signal is a function 

instead of a set and is called the Structuring Function. Structuring function will 

be discrete or continuous depending upon the type of multilevel signal to be 

processed.  

Types of SE required corresponding to different types of signal to be processed have been 

summarized in Table 3.1.  

Table 3.1 Different types of structuring element 

Type of Signal Type of Structuring Element 

Bi-level or Binary signal Set defined on Euclidean 

subspace and characterised by 

a binary indicator function. 

Multilevel 

signal 

Discrete multilevel signal Discrete–valued structuring 

function 

Continuous multilevel signal Continuous structuring 

function 
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Figure 3.3 Different types of continuous and discrete structuring elements (The symbol ‘ ’ denotes the 

reference points or the origins of respective structuring elements) 

Some of the commonly used shapes of SE are linear, inclined line, circular, semi-circular, 

square, disk, polygon, beeline etc. Different types of continuous and discrete structuring 

elements have been shown in Figure 3.3. 

 

Structuring elements operate upon a chunk of data obtained from the signal and not on 

the whole signal. Thus the interaction of SE with the signal is highly localised [62]. To 

probe the whole signal, the SE needs to be translated through the body and along the 

boundary of the signal. The effect of SE is more pronounced on the boundary of the signal 

than on the body and is proportional to the size of SE. In any case rotation of SE is not 

allowed. It is important to note that SE can be placed anywhere on the signal. The 

placement of SE is dictated by the reference point or origin of the SE. Choice of the 

reference point is completely arbitrary. In Figure 3.3, the symbol ‘ ’ denotes the 

reference points or the origins of respective structuring elements. It is normal practice to 

choose structuring elements which are symmetric with respect to reference point. If 

asymmetric structuring elements are chosen then they need to be transposed with respect 

to origin before operation. 

The structuring element preserves details and reduces noises from the signal. For a 

given application, a specific structuring element performs optimally. Choice of shape and 

size of optimal SE are governed by several important factors such as dimensions of 

signals being transformed, type and frequency of interference present in the signal and 

sampling rate of digitization [58 - 60] [65]. Ultimately the selection of SE is based on 

past experience and trial-and-error method. Generally it is noticed that with the increase 

in size of the data to be analysed the size of SE is also to be increased, but not necessarily 

proportionately [65].  
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3.2.3 MORPHOLOGICAL OPERATIONS 

Different mathematical operations can be performed in MM by probing a signal with a 

structuring element [58] [61]. The two most basic operations in MM are Dilation and 

Erosion of a signal.  

Let, F denote a set corresponding to a binary signal, )(xf  denote a multilevel 

continuous signal and )(nf  denote a multilevel discrete signal defined in the discrete 

domain, },...,,{ 10 nf fffD  . Binary signal F is probed with set B  defined on Euclidean 

subspace. Multilevel continuous signal )(xf  is probed with continuous structuring 

function )(xb , having same dimensions as )(xf . Lastly, multilevel discrete signal )(nf  

is probed with discrete structuring function )(mb  defined in the discrete domain

},...,,{ 10 mb bbbD  . Here n  and m  are integers and mn  . Note that all the structuring 

elements have been defined following the conventions provided in Table 3.1. Also it is 

assumed that all the signals are suitable for morphological operations and all the 

structuring elements are symmetric to origin.  

3.2.3.1 DILATION AND EROSION 

In dilation operation, first SE is placed somewhere in the signal and if SE touches the 

signal then the dilated signal includes the SE alongwith its origin. Then the SE is 

translated to the whole signal including its boundary to yield the dilated signal. 

Depending on the type of input signal and corresponding SE, Dilation operation can have 

three forms. Equations (3.6), (3.7) and (3.8) depict these three forms of Dilation. In these 

equations, operator ‘ ’ is the Dilation operator. 

(i.) Binary Dilation is closely related to Minkowski set addition. Dilation of F by 

structuring element B is given as, 

                                         }|{ BFBF                                       (3.6) 

(ii.) Dilation of continuous function )(xf  with structuring function )(xb is given by, 

                                       )}()({sup))(()( yxbyfxbfxD
y

                            (3.7) 

In the above equation, ‘sup’ denotes the supremum or least upper bound of a 

partially ordered set. (Function )(xf  can be represented as partially ordered set.) 

(iii.) Dilation of discrete function )(nf  with structuring function )(mb is similar to its 

continuous counterpart and is defined as, 

                                      )}()(max{))(()( mbmnfnbfnD                           (3.8) 

0,)(0  mnmn  
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Dilation thickens the boundary of the signal i.e. this operation ‘dilates’ any sharp change 

present in the boundary. Hence any high frequency noise superimposed on the signal will 

get blunted due to dilation.  

Erosion is the dual operation of dilation. In erosion operation, first SE is placed 

somewhere in the signal and if SE is completely contained by the signal then the dilated 

signal includes the origin of the SE. The eroded signal is obtained by translating the SE 

to the whole body of signal including boundary. Erosion can also have of three forms 

depending on the type of signal probed. These are given in the equations (3.9), (3.10) and 

(3.11). In these equations, operator ‘ ’ is the Erosion operator. 

(i.) Binary Erosion is related to Minkowski set subtraction. Erosion of F by structuring 

element B is the complement of dilation of cF by the same structuring element, as 

shown in equation (3.9).  

                                     
cc BFFBBF )(},|{                            (3.9) 

(ii.) Erosion of )(xf  with structuring function )(xb is defined as, 

                                       )}()({inf))(()( yxbyfxbfxE
y

                           (3.10) 

In the above equation, ‘inf’ signifies the infimum or greatest lower bound of a 

partially ordered set. 

(iii.) Erosion of )(nf  with structuring function )(mb is similar to continuous counterpart 

and is given by, 

                                     )}()(max{))(()( mbmnfnbfnE                           (3.11) 

0,)(0  mnmn  

Erosion performs the reverse operation of dilation and ‘erodes’ the boundary of the signal. 

Consequently, the amplitude of the signal alongwith the noise will get attenuated. Hence, 

both the basic operations, Dilation and Erosion, are capable of denoising the signal. [62] 

3.2.3.2 OPENING AND CLOSING 

Using the basic operations dilation and erosion, two equally important derivative 

operations can be formulated. These are called Opening and Closing of a signal [58].  

Opening of a signal by a structuring element is defined as Dilation of the eroded signal. 

This operation opens up narrow valleys, gaps and holes near the boundary but removes 

small protrusions from the boundary. Three different forms of Opening have been given 

in equations (3.12), (3.13) and (3.14). In these equations, ‘  ’ is the Opening operator. 

(i.) Binary opening of F by structuring element B is defined as, 

                                                        BBFBF  )(                                            (3.12) 
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Figure 3.4 Effects of basic morphological operations upon a noisy sinusoidal signal by a linear SE 

(a) Dilation and Erosion (b) Opening and Closing  

(ii.) Opening of )(xf  with structuring function )(xb is given by, 

                                             ))()(())(()( xbbfxbfxO                                (3.13) 

(iii.) Opening of )(nx with structuring function )(mf  is defined as, 

                                             ))()(())(()( nbbfnbfnO                                (3.14) 

Closing of a signal by a structuring element is the dual operation of opening and is 

defined as Erosion of the dilated signal. Closing performs the reverse operation of 

opening and fills the narrow valleys and gaps in the proximity of the boundary [65]. Three 

different forms of Closing have been given in equations (3.15), (3.16) and (3.17). In these 

equations, ‘ ’ is the Closing operator. 

(i.) Binary Closing of F by structuring element B is given by, 

                                                      BBFBF  )(                                             (3.15) 

(ii.) Closing of )(xf  with structuring function )(xb is defined as, 

                                          ))()(())(()( xbbfxbfxC                                 (3.16) 

(iii.) Closing of )(nx with structuring function )(mf  is given by, 

                                           ))()(())(()( nbbfnbfnO                                 (3.17) 

Opening and Closing operations impart composite effects of dilation and erosion upon 

the signal [63] [64]. 

While performing morphological operations, every bi-level signal is considered to be a 

subset of Euclidean space. Similarly, multilevel signals are considered as functions that 

map Euclidean subspace into the set of real numbers. Figure 3.4 illustrates the effects of 

Dilation, Erosion, Opening and Closing by a linear SE upon a noisy sinusoidal signal. 

This figure clearly shows that, all the basic operations are very effective for denoising.  

 

 

 

 

 

 

 

 

 

 
(a) (b) 
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Different properties of the four basic morphological operations have been provided in 

Table 3.2. 

Table 3.2 Different Properties of Dilation, Erosion, Opening and Closing 

Apart from these four basic operations, different hybrid operations can be performed 

upon the signal by performing the basic operations in different possible sequences. 

Hence, several different hybrid morphological filters can be implemented. Some of these 

hybrid operation are: Hit-or-miss transform, Top hat transform, Morphological Median 

Filters, Open-closing Maximal and Close-opening Minimal, Generalized Multi-

resolution Morphological Gradient, Multi Resolution Morphological Opening Closing, 

Multi-resolution Morphological Gradient (MMG), Series MMG etc. [65] 

The MM based filters are known for their very low calculation burden because basic 

operations involve additions and multiplications. Another advantage of is that 

morphological operations can fill up missing information in a signal [60]. However, there 

is an issue with the morphological filters when real time streams of data form a digitized 

signal are processed. As already mentioned, morphological operations act upon the 

signals like filters. Generally during real time processing, data from the digitized signal 

are passed through the filter window continuously. But until the window gets filled up, 

morphological filters will not be able to yield any output. Therefore some time delay is 

introduced at the start of the processing during filling up of the window. The filter delay 

introduced by morphological operations, while processing a real time data, is proportional 

to the size of the corresponding SE [65]. Hence tuning of length of the SE is very 

important. A small length of SE decreases the computational burden but will not filter out 

the noise and the lower order harmonics will become prominent. On the other hand, if too 

large a length is chosen then noise in the signal will be reduced but the consequent filter 

delay will introduce lag in the output signal. Thus, an optimal length of SE needs to be 

obtained for a particular application by trial and error method [65]. 

Property Dilation Erosion Opening Closing 

Extensiveness 

(Resultant signal after operation is a proper 

subset of original signal) 

Extensive Anti-

extensive 

Anti-

extensive 

Extensive 

Increasingness 

(Non-empty subsets of signal remain 

unchanged after operation) 

Increasing Increasing Increasing Increasing 

Duality Dual of 

Erosion 

Dual of 

Dilation 

Dual of 

Closing 

Dual of 

Opening 

Idempotency 

(Signal remains unchanged if operation is 

performed more than once) 

Non-

idempotent 

Non-

idempotent 

Idempotent Idempotent 
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3.3 FEATURE EXTRACTION FROM MORPHOLOGICALLY 

TRANSFORMED OPTICAL PD SIGNALS 

In the present work, MM has been employed to transform and denoise the optical PD 

signals obtained through optical sensors and subsequently significant statistical features 

have been extracted from the transformed optical PD signals. During the PD data 

acquisition, the analog optical signals emanated from optical PD source were captured 

after digitizing with the help of a digitizer. Hence, the recorded optical PD signals are to 

be considered as multilevel discrete signals.  

It has been already mentioned in Chapter 2 that most of the captured optical PD signals 

are sparse in nature due to sporadic charge flow through cylindrical void during the time 

span of data capture. Features extracted from such sparse signals may not be consistent 

and may yield very low numeric values. As morphological operations can fill up missing 

data in a signal, it will be advantageous to employ such operations for filling up of sparse 

domain of the recorded optical PD signals. Due to this reason, the recorded data pertaining 

to optical PD signals have been transformed with morphological operations, Dilation and 

Erosion. As the captured PD signals are multilevel discrete signals, Dilation and Erosion 

operations as given in equations (3.8) and (3.11) are applicable in this case. The choice 

of Structuring Element (SE) is crucial for probing the features from the signals. In the 

present work, a discrete structuring element, ]1,1,1[)( mb  was chosen. This SE gives 

satisfactory results as far as the saliency of the extracted features is concerned. 

 Nine important statistical features have been extracted from the morphologically 

transformed optical PD signals. The nine features are Skewness of dilated signal, 

Skewness of eroded signal, Kurtosis of dilated signal, Kurtosis of eroded signal, 

Equivalent width of dilated signal, Centroid of dilated signal, Mean Square Width 

of dilated signal, Average or Mean of dilated signal and Average of eroded signal 

respectively. All the features and their corresponding mathematical expressions have 

been listed in Table 3.3. In these nine features, )(nD  and )(nE are dilation and erosion 

of the obtained optical PD signals respectively, while µ and σ are the Mean and Standard 

Deviation of the same signal respectively. Note that apart from these features, some other 

features could also have been extracted by performing more complex operations on the 

signals, such as Opening and Closing. But it has been seen that these nine features are 

sufficient to classify the optical PD type and location with excellent accuracy.  
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Table 3.3 Different statistical features extracted from morphologically transformed optical PD signals 
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Figure 3.5 Effect of Dilation and Erosion upon a sample PD signal by the chosen SE                                           

(a) original signal (b) dilated signal (c) eroded signal 

Figure 3.5 depicts the effects of Dilation and Erosion by the chosen SE upon a sample 

optical PD signal. Clearly it can be seen from this figure that Dilation has filled up the 

domain of the signal whereas Erosion has diminished variations from amplitude. 

 

 

 

There are five data sets, each set consisting of five data from five sensors, corresponding 

to each SPD and DPD event. These data sets were captured with an interval of 1 hour. 

Some of the extracted features from morphologically transformed optical PD data have 

been presented in Table 3.4. In that table, the five sensors have been represented as S1, 

S2, S3, S4 and S5. Now consider, for example, Single Optical PD event 1A i.e. when 

optical PD source has been placed at 1A location of virtual cubic region and five sensors 

capture optical signals simultaneously. The nine extracted features for the signals 

captured by each of the five optical sensors have been put in first five rows respectively. 

This procedure is followed for rest of the SPD and DPD events. Hence there will be five 

set of nine features for each event pertaining to signals captured by five sensors. In Table 

3.4, notations of the optical events have been provided based on the scheme shown in 

Table 2.1. These extracted features will be further classified by classification techniques 

to ascertain the type and location of optical PD source. The classification of features has 

been discussed in the subsequent chapters. 

(a) 

(b) (c) 
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Table 3.4 Extracted features from morphologically transformed optical PD signals 

 

 

Sensor 

no. 

SPD 

Event 

Extracted features for single optical PD events 

F1 F2 F3 F4 F5 F6 F7 F8 F9 

OS1 1A 3.55 35.31 25.82 1248.00 1608800 1246.49 1439.97 1.03 -0.99 

OS2 1A -28.29 33.79 940.33 1175.33 2856226 1251.49 1444.39 1.00 -0.99 

OS3 1A -31.91 35.08 1094.09 1237.28 2931388 1251.19 1444.16 1.00 -0.99 

OS4 1A -29.30 34.58 981.28 1213.35 2845782 1251.19 1444.17 1.00 -0.99 

OS5 1A -25.58 33.99 825.69 1185.37 2860528 1250.95 1443.93 1.00 -0.99 
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OS1 9C -20.09 35.31 627.39 1248.00 2624835 1250.89 1444.00 1.00 -0.99 

OS2 9C -16.20 32.19 481.66 1099.05 2627452 1250.18 1443.32 1.00 -0.99 

OS3 9C 3.15 8.45 24.65 112.45 1662812 1251.89 1443.86 1.04 -0.98 

OS4 9C 2.83 12.62 19.32 247.91 1636869 1249.55 1442.78 1.04 -0.99 

OS5 9C -9.97 28.75 288.09 936.47 2541650 1250.24 1443.52 1.00 -0.99 

Sensor 

no. 

DPD 

Event 

Extracted features for double optical PD events 

F1 F2 F3 F4 F5 F6 F7 F8 F9 

OS1 1A_1C -20.77 35.31 650.98 1248.00 1619121 1246.20 1439.78 1.00 -0.99 

OS2 1A_1C -16.79 32.36 501.41 1106.84 2664961 1251.35 1444.24 1.00 -0.99 

OS3 1A_1C 3.00 8.78 24.31 122.73 1632155 1252.31 1445.84 1.03 -0.98 

OS4 1A_1C -25.02 32.98 802.64 1137.75 2852459 1250.93 1443.94 1.00 -0.99 

OS5 1A_1C -18.53 30.75 553.44 1032.56 2801675 1250.53 1443.64 1.00 -0.99 
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OS1 9C_7C -21.46 35.24 668.44 1244.34 2771578 1250.62 1443.75 1.00 -0.99 

OS2 9C_7C 2.86 16.24 54.26 365.25 1864573 1257.48 1449.03 1.01 -0.99 

OS3 9C_7C 2.55 6.92 18.65 79.31 1642037 1253.31 1445.60 1.05 -0.98 

OS4 9C_7C 1.83 16.96 24.96 420.97 1910036 1249.98 1443.14 1.03 -0.99 

OS5 9C_7C -9.94 30.77 274.50 1039.94 2617502 1249.46 1442.93 1.01 -0.99 
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CHAPTER 4.  

FEATURE CLASSIFICATION BY ROUGH SET THOERY AND 

SPARSE REPRESENTATION CLASSIFIER 

4.1 INTRODUCTION 

The statistical features extracted from morphologically transformed optical PD signals 

have been separately classified employing two different classification techniques – 

Rough Set Theory and Sparse Representation Classification. The working principles of 

these classification techniques have been discussed in this chapter. 

4.1.1 CLASSIFICATION PROBLEM 

Classification is a part of Supervised Machine Learning technique and is defined as the 

process of categorizing different observations or instances into different classes. Here the 

term ‘observation’ is a generic term that can signify a large number of phenomena such 

as outcome of any experiment, property of any object, occurrence of any event or incident 

etc. Observations can be qualitative (i.e. in terms of shape, colour, texture, taste, 

existence, perceptibility etc.) as well as quantitative (comprising numerical values). They 

are the input arguments to the classification problem.  

In a classification problem, correctly identified observations or instances are available 

in priori alongwith their category memberships (i.e. which observations belong to which 

classes) and based on the currently available knowledge about these observations, some 

decisions are to be taken or forecasts are to be made. Category memberships are 

implemented by membership functions which perform a predictive mapping from the 

available observations to the set of classes i.e. they assign the classes to the observations.  

Classes can be easily assigned to a large set of observations by extracting suitable 

features from these observations. Hence, preprocessing a set of observations through 

feature extraction is desirable before actual classification is performed. Same set of 

observations can yield different features for different membership functions.  

Membership functions are most commonly implemented by mathematical or multi-

level logical functions. Choice of membership function is largely dependent on type of 

observations available and the relevant problem in hand.  
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The decision rule for class assignment can be simply put in the form of lower given 

proposition.  

For an observation, IF Feature1 = ‘a’ and Feature2 = ‘b’ and so on … THEN this 

observation belongs to class ‘X’. 

Hence in the context of classification, features are the salient characteristics of the 

observations that make a class of observations different from the other one. A subset of 

features would have similar set of values for different observations if these observations 

belong to same class. In case of objects belonging to a different class, that subset of 

features would have different set of values. 

The set of available observations alongwith their feature vectors and assigned classes 

is known as the training data set. The classes are predictively assigned by the chosen 

membership functions. Training data set enables the formulation of a set of ‘IF-THEN’ 

decision rules pertaining to different classes, like the one indicated in the previously 

shown proposition.  

Given an observation of unknown class, the aim is to classify it by extracting the same 

set of features as the training data set and finding out the decision rule that the feature 

vector complies with. This decision rule will further help in identifying the class, which 

the observation belongs to. 

Unclassified observations are said to form the testing data set, which is used to validate 

the predictions warranted by the training data set. Not all observations of the testing data 

set can be suitably classified. Classification accuracy is defined as the number of 

observations or instances successfully categorized, expressed as percentage of total 

number of observations or instances. Thus, 

100
.

.


ncesinstaornsobservatioofnoTotal

classifiedlysuccessfulncesinstaornsobservatioofNo
AccuracytionClassificaPercentage

An algorithm that implements the classification is known as the classifier. Classifier 

algorithms formulate the decision rules from already available information and can be 

repeatedly employed for making decisions or predictions based on new information 

available. Percentage classification accuracy is the main index for performance 

evaluation of such classifier algorithms.  
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4.2 ROUGH SET THEORY 

Rough Set Theory (RST) is one of the most important and powerful mathematical tools 

for classification. It was first proposed by computer scientist Zdzislaw Pawlak in 1982 

[70]. RST is specially suited for applications where the objects to be classified are 

imprecise and superfluous. Decision rules for class assignment cannot be formulated if 

input data contains imprecision. RST enables the formulation of decision rules by 

removing the imprecisions present in the input data [70 - 75].  

RST has been formulated from conventional set theory considering the notion of 

vagueness. In conventional set theory, an element can fully belong to a set (or have total 

participation in a relation), or it does not (i.e. does not have any participation in any 

relation). Thus every element precisely belongs to a set and every set is uniquely 

described by its elements. Hence, all the set boundaries are considered to be infinitely 

thin. Such a notion of a set is termed as ‘crisp’ or precise. All the elements in crisp sets 

and the relevant set universe are characterised by unambiguous and precise information.  

But the concept of crispness led to several antinomies or contradictions which could 

not be eradicated by theoretical knowledge of classical set theory. One way of avoiding 

these contradictions is to impose restrictions upon the elements which can or cannot form 

a set. The restrictions are warranted by properly selected axioms which determine how 

elements can belong to a set. This notion led to the formulation of Axiomatic set theory.  

The other way of avoiding contradictions is to introduce the concept of vagueness [70]. 

Vagueness arises in case of elements which are imprecise, i.e. they cannot be fully 

classified into a set or cannot have full participation in a relation. Several different 

modifications to the classical set theory were suggested to incorporate vagueness present 

in a set of data. For example, Fuzzy Set Theory is an ingenious approach to handle 

imprecision present in input data by hypothesising that a set of data can belong to a class 

in a certain level or percentage [71].  

Rough Set Theory handles vagueness in a different way. In RST, the imprecision is 

represented as the boundary region of a set. As the knowledge about the universe and its 

elements are imprecise, with respect to a relation defined on the universe, if any element 

does not belong to a set or its complement then it belongs to the boundary region. Hence, 

boundary region of a set comprises of elements which neither belong to the set nor to its 

complement. When this boundary is non-empty, the set is ‘rough’. If the boundary is 

empty, then the set is ‘crisp’. Hence, RST generalises the classical set theory. 
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4.2.1 INFORMATION SYSTEM 

RST explicitly works upon input data presented in tabular form. This table is called the 

data table or decision table. In a decision table, each row represents an object or a case, 

each column represents an attribute and entries of the table represent attribute values. The 

attributes normally include condition attributes and decision attributes. Condition 

attributes denote some property or observation of the objects. Decision attributes denote 

the class of the objects which are determined based on those properties or observations. 

The decision table is called an Information System [35] [74]. It can be mathematically 

represented as, 

                                                          fVQUT ,,,                                               (4.1) 

Here, U is the finite set of all objects i.e. it represents the universe of objects, Q  is the 

set of attributes. If q  is an attribute variable then 
Qq

qVV


  denotes set of values accepted 

by q  i.e. the domain of q . Lastly, f  is the decision function that maps from )( QU   

matrix to V  and classifies every object to form the set of decision attributes.  

An example of a decision table has been presented in Table 4.1. This table shows 

information about a set of transformers which have been accepted or rejected based on 

two condition attributes - whether distortion in current and voltage waveforms during 

impulse test is within acceptable limit and whether partial discharge present in the 

transformer is within acceptable limit. Transformers are the objects here and whether the 

transformers are accepted or rejected is the decision attribute.  

Table 4.1 Example of a decision table containing imprecision 

Objects 

(Transformers) 

Condition attributes Decision attribute: 

Accept or reject the 

transformer Distortion in current 

and voltage waveforms 

within acceptable limit 

Partial discharge 

within acceptable limit 

T1 Yes Yes Accept 

T2 No No Reject 

T3 Yes No Accept 

T4 No No Reject 

T5 Yes Yes Accept 

T6 Yes No Reject 

From Table 4.1, simple decisions can be formulated such as - “If distortion in current and 

voltage waveforms during impulse test is within acceptable limit and partial discharge is 

within acceptable limit then transformer is accepted”. Decision rules can be formulated 

from each row of the table.  
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It can be observed form the information system of Table 4.1 that, objects T3 and T6 

have exactly same values for the condition attributes but their corresponding decision 

attributes are different. Transformer T3 has been accepted and but the other transformer 

T6 has been rejected. Hence, this decision table contains imprecise information.  

The decision rules formulated from any information system must conform two 

important properties [70][74]-  

 Consistency – Objects comprising exactly same values for all the attributes must 

belong same decision class. contain 

 Minimality – Decision rules are constructed from minimal set of attributes.  

For imprecise decision tables, it is very hard to ensure consistency and minimality of the 

formulated decision rules. In addition to that, if decision table comprises numerical values 

for any of the condition attributes, it is a normal practice to normalise those numerical 

values with respect to a well-defined base, such as with respect to maximum and 

minimum value in the range or mean and standard deviation of those numerical values.  

4.2.2 INDISCERNIBILITY RELATION 

In a data table, some objects may be characterised by exactly same set of values with 

respect to some set of attributes. These objects are called ‘indiscernible’ or 

indistinguishable with respect to those attributes [35]. Mathematically, if P  is a subset 

of attribute i.e. QP   then two objects i  and j  belonging to universal set U  are 

indiscernible with respect to set of attributes P  if,  

                                ),(),( qfqf ji   , Pq  and Uji  ,                             (4.2) 

The set of such indiscernible objects is called an elementary set. Elementary sets represent 

granules of knowledge about the universe. Based on different subset of attributes, 

different elementary sets can be formed.  

For a subset of attributes P , an equivalence relation defined on U is given by, 

                             )},(),(,|),{( qfqfPqUUI jijiP                       (4.3) 

PI  is called the P-indiscernibility relation and represents the knowledge that objects 

),( ji   are indiscernible or equivalent with respect to subset of attributes P . 

Equivalence relation PI  introduces partitions in the set of objects U  with respect to P , 

by forming all possible elementary sets corresponding to each of the different 

combination of values assumed by P . For each of the possible combinations, objects are 

grouped to form subsets and objects in same subset have exactly same combination of 
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attribute values. These elementary subset of objects are termed as ‘Information Granules’ 

and all the objects in a granule are considered indistinguishable [74].  

Concept of information granules can be simply illustrated by considering the 

information system of Table 4.1. Let, P = {Distortion in current and voltage waveforms 

within acceptable limit} and the value assumed by P  can be either ‘Yes’ or ‘No’. Clearly, 

objects T1, T3, T5 and T6 are indiscernible with respect to P  and can be grouped together 

to form an elementary set, because all these objects have attribute value ‘Yes’. In similar 

way, objects T2 and T4 are indiscernible with respect to P  and can be grouped together 

to form another elementary set, as both these objects have attribute value ‘No’. Hence, 

considering all possible combination of values for P , two elementary sets can be formed. 

Therefore, the equivalence relation PI  introduces two partitions in the set of all objects 

by distributing the objects into two elementary sets.  

 

 

Similarly if we assume, P = {Partial discharge within acceptable limit} then, 

PI = {{T1, T5}, {T2, T3, T4, T6}} 

Any number of attributes can be selected to form the granules. Identification of 

information granules from an information system is the first step of towards reducing 

imprecision present in the decision table. 

4.2.3 SET APPROXIMATIONS 

After information granules are identified from an information system with respect to all 

the attributes, decision rules can be formulated to classify the objects. But due to lack of 

knowledge about the universe and imprecision in the data, not every granule can be 

‘crisply’ classified. Objects belonging to problematic granules are generally characterised 

by different values for decision attributes. Set approximation provides a way to delineate 

such problematic granules. 

Every rough set is characterised by two crisp sets, which are called the lower and upper 

approximations [70]. For any set A , AP  and AP  are called the P-lower and P-upper 

approximation of A  with respect to set of attributes P  respectively. These 

approximations are defined as,  

                             P-lower approximation = })(|{ AIAAP P                        (4.4) 

                           P-upper approximation = })(|{   AIAAP P                    (4.5) 
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The lower approximation of set A  with respect to P  comprises of all objects which are 

certainly classified as members of A , based on knowledge available in P . On the other 

hand, upper approximation of set A  is the set of objects which ‘possibly’ belong to A .  

The difference between upper approximation and lower approximation represents the 

P-boundary region of set A  and is given by, 

                                                         )()( APAPABP                                              (4.6) 

Boundary region consists of those objects which cannot be decisively classified as 

members of A  based on the information available in P . The rest of the universe is P-

outside region of A  and is given as, )( APU  . The set A  will be ‘Rough’ if and only if 

)(ABP  i.e. the boundary is non-empty, otherwise it is ‘Crisp’ [74] [75]. All the set 

approximations have been depicted in Figure 4.1. 

Again considering the information system of 

Table 4.1, let P = {Distortion in current and 

voltage waveforms within acceptable limit, 

Partial discharge within acceptable limit}.  

For this set of attributes, the information 

granules are,  

PI = {{T1, T5}, {T2, T4}, {T3, T6}} 

Let all the objects which belong to decision 

class ‘Accept’ are to be determined. It is evident that elementary set {T1, T5} 

unambiguously belongs to this decision class. Therefore, these objects construct the P-

lower approximation. Among rest of the granules, elementary set {T3, T6} is a 

problematic granule because both the objects have same values for set of attributes P  but 

have different decision attributes. Hence these objects cannot be classified crisply and 

belongs to boundary with respect to set of attributes

P .  The objects {{T1, T5}, {T3, T6}} together 

construct the P-upper approximation. Lastly, both 

the objects in the elementary set {T3, T6} have 

decision ‘Reject’. Hence these objects precisely 

belong to the P-outside region. All the formulated 

set approximations have been depicted in Figure 

4.2. 

Figure 4.2 Set approximations for information 

system of Table 4.1 

Figure 4.1 Different set approximations 
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Hence, the Rough Set Theory provides a way to diminish imprecision by identifying 

objects which certainly belong to or do not belong to a decision class and delineating the 

objects which belong to the boundary region. 

4.2.4 DISCRETIZATION 

After information granules are constructed from a decision table, individual objects can 

be classified into representative classes and objects which cannot be properly classified 

can be demarcated with the help of set approximations. But for a table of very large size, 

this is too crude a method because chance of classifying a new object (with set of its 

attributes matching one of the rows of decision table) will be very low. This is particularly 

true for information systems which have numerical attributes [35] [74].  

The largeness of the decision table is comprehensively given by the Cardinality operator 

applied to any set A , )(Acard . Hence for a decision table with very large number of 

attributes, )( qVcard  is very high for some Qq . Cardinality simply means ‘number of 

elements of a set or participating in a relation’. High cardinality of decision table can be 

reduced employing a special technique called the ‘Discretization’.  

Discretization is the process of inducing some partition in the decision table for 

obtaining higher classification efficiency. These partitions are inducted by generating cuts 

in the domain of q and individual values for attributes are replaced with class-values i.e. 

the data within a range are given a particular class which decreases the cardinality [35].  

 Discretization can be illustrated using a simple information system as shown in Table 

4.2. This decision table comprises of six objects and one condition attribute which 

assumes numerical values.  

Suppose that we have additional information about a new 

object that it belongs to one of the object classes in Table 

4.2. If that new object is to be classified using the decision 

rules formulated from that table, then numerical value 

pertaining to its condition attribute should match with 

numerical value of one of the condition attributes. But due 

to imprecision, it may so happen that the numerical value pertaining to condition attribute 

of that new object does not completely match with any of the values in Table 4.2. In order 

to allow for that tolerance, each attribute is assumed to belong within a range and each 

range is assigned with a class. Any new object which has condition attribute within a 

range belongs to the corresponding class.  

Table 4.2 A simple decision table  

Object Condition 

attribute 

X1 0.18 

X2 0.04 

X3 0.36 

X4 0.34 

X5 0.09 

X6 0.26 
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(b) (a) 

 As shown in Table 4.3(a), different ranges of the numeric values have been assigned 

with different class values, e.g. all numeric values within range (0 – 0.05) are assigned 

class 0, values within range (0.05 – 0.15) are assigned class 1 and so on. Information 

system of Table 4.2 is discretized by replacing all the numerical values corresponding to 

condition attributes with respective class values. The discretized decision table has been 

shown in Table 4.3(b). Suppose that the new object has condition attribute 0.1. It should 

not belong to any of the object class if exact matching was mandated. But now the domain 

of condition attribute has been differentiated into five classes and this object belongs to 

class 1. Hence, new object is in the same class as object X2. 

 

 

 

 

 

Clearly, this process decreases cardinality because instead of infinite number of possible 

values between maximum and minimum value in the range, the range is now reduced to 

only 5 possible values. In this way, numeric values pertaining to all the attributes can be 

discretized. Generation of optimum cuts in the domain of a numerical condition attribute 

and identification of ranges is a difficult task. Several popular discretization algorithms 

are available for this purpose. 

4.2.5 REDUCTS AND CORES 

As already discussed, identification of equivalence classes reduces imprecision present 

in the data table because one element of equivalence class represents the entire class. But 

there may be superfluous information present in the decision table which cannot be 

removed by identification of indiscernibility relations. The redundancy in the data table 

can be removed by identifying the attributes which are minimally sufficient to classify 

each object of the data table [74]. Other redundant attributes are to be dispensed with, as 

their removal does not hamper the indiscernibility of the objects. 

For a subset of attributes P , any attribute Pq , is dispensable if and only if its removal 

does not disturb the corresponding indiscernibility relation PI . Mathematically it can be 

denoted as, }{qPP II  . Otherwise the attribute will be indispensable.  

Object Condition 

attribute 

X1 2 

X2 0 

X3 4 

X4 3 

X5 1 

X6 3 

Range of numeric 

value 

Class 

value 

0 - 0.05 0 

0.05 - 0.15 1 

0.15 - 0.25 2 

0.25 - 0.35 3 

0.35 - 0.45 4 

Table 4.3 (a) Assigned classes to different ranges (b) Discretized form of Table 4.2 
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If all the elements of P  are indispensable, then P  is called independent set of attributes. 

This minimally sufficient subset of attributes is called the ‘Reduct’ and is denoted as

)(PRED . 

Let R  be another subset of attributes such that QR   and has equivalence relation RI  

in U . Now if, utilizing the knowledge described by PI , some of the objects can be 

classified into R-elementary set obtained from RI  then that set of classifiable objects are 

called the P-positive region of R  and is denoted as,  

                                                        
RIA

P APRPOS


)( .                                             (4.7) 

Note that right hand side of equation (4.6) signifies union of all objects which are 

characterized by 
RI  and belongs to P-lower approximation of set A  (hence they are 

certainly classified). Any attribute, Pq  will be called R-dispensable in P  if 

)()( }{ RPOSRPOS qPP   i.e. its removal does not perturb the classification into R-

elementary set. Otherwise it will be termed as R-indispensable in P . Similar arguments 

follow for independent attributes. Finally, for a subset of attributes S  which is R-

independent in P  and )()( RPOSRPOS SP  , subset S  will be called the Reduct of P . 

In order to construct the Reduct from a decision table, first equivalence classes are 

identified by defining the indiscernibility relations with respect to set of attributes. Now 

if it is seen that, some condition attributes assume exactly same values for a particular 

decision class, then these condition attributes can be considered as superfluous. 

Therefore, these redundant attributes can be dispensed with and considered as ‘don’t 

cares’. Construction of Reducts is dependent on the subset of attributes chosen and for 

different subsets, Reducts will be different [35].  

Another important quantity is ‘Core’ which removes imprecision present in a single 

decision class. Core signifies the set of relations occurring in every Reduct. Cores are 

obtained from Reducts by intersecting the Reducts corresponding to a single decision 

class i.e. )()( PREDPCORE  . Condition attributes within a Reduct, which assume 

different values corresponding to a single decision class, provide vague information about 

that decision class. Such attribute values are removed by set intersection while forming 

the Cores. Construction of Reducts and Cores after identification of equivalence classes 

effectively removes imprecision and redundancy from the information system. Once 

Cores are formed, decision rules can be easily formulated.  
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Figure 4.3 Flowchart showing different steps for construction of decision rules from an initial raw data 

through RST and dimensionality reduction 

4.2.6 FORMULATION OF DECISION RULES AND CLASSIFICATION OF NEW 

OBJECTS 

Formulation of decision rules implies identification of relations that exist within attributes 

after removal of imprecision and representing them in ‘IF…THEN’ format [74]. It can 

be simply depicted as, 

If for an object, ((Attribute1 = a) and (Attribute2 = b) and …) Then the object belongs 

to decision class X. 

Any new object belongs to a certain decision class if it is characterised by exactly same 

set of attribute values for corresponding to that decision class.  

It has been already discussed that, in a classification problem, different observations 

and their class memberships are available in the form of training data set. Classes are 

generally assigned to observations by extracting suitable features from these 

observations. Hence in the context of classification by RST, the training data set is 

considered as an information system, the observations are considered as objects and 

different extracted features are considered as attributes. The training data set is made free 

from imprecisions by identification of equivalence classes, formation of set 

approximations, discretization and lastly construction of Reducts and Cores. Decision 

rules are formulated from the Cores. Based on these decision rules, the observations in 

the testing data set will be classified. 

Different steps employed for construction of decision rules from an initial raw data 

through dimensionality reduction and RST have been shown in Figure 4.3. 
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4.3 SPARSE REPRESENTATION CLASSIFICATION 

Sparse representation classification is a relatively new classification technique. It is a part 

of specialised mathematical methodology called the Parsimony which is defined as the 

principle of solving a problem with least amount of resources [76] [77].  

Any matrix or vector will be called sparse if most of its elements are zero. Sparse 

representation aims to characterise a system employing such sparse matrices or vectors. 

Fundamentally, sparse representation deals with the methodology of finding approximate 

sparse solutions to a linear system of equations.  

A system of linear equations is a collection of several linear algebraic equations 

involving same set of variables. Unique solution to such a system exists if number of 

equation is exactly equal to number of unknown. But in many situations, it is often 

required to find solution of a system where number of equations is less than the number 

of unknown variables. Such systems have infinite number of solutions possible and are 

generally termed as underdetermined systems.  

Among the infinite number of possible solutions, the optimum choice would be to 

obtain the sparse solutions i.e. solutions with few non-zero elements [78]. Sparse 

solutions facilitate representation of the underlying physical system with few number of 

candidate variables. Finding sparse solution of a system provides several practical 

benefits because such representation will require very low resources to describe the 

physical system. However finding the sparse solutions to an underdetermined system is 

generally very difficult and is performed by employing specialised optimization 

techniques [81] [88]. 

Sparse representation has wide variety of applications is many fields. It is most 

commonly employed for recovery and reconstruction of signals [87]. In such applications, 

the signals to be reconstructed are represented as sparse linear combinations of 

elementary signals called the atoms. Another class of reconstruction problem is 

characterised by imperfect and noisy signals which are not exactly sparse. Candes et al. 

showed that such systems can also be determined by sparse representation with suitable 

modifications allowing for noise [79] [80].  

The concept of sparse representation of signals by linear combination of atoms can be 

applied to classification problem where the test samples are expressed as sparse linear 

combination of training samples [88]. With the help of the linear combinations, the test 

samples will be classified. 
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4.3.1 MATHEMATICAL NORM 

Concept of the mathematical norm of a vector or a matrix is very important in the context 

of sparse representation. Mathematically, Norm is the representative of size of the 

relevant vector or matrix. The PL -norm of a vector x  is defined as the
thp root of the 

summation of all the elements of x , with each of the element raised to
thp  power. Thus,

PL -norm is mathematically given as, 

                                                               

p
n

i

p

ip
x

/1

1









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

x                                             (4.8) 

where, ix  is the thi  element of the vector x  and total number of elements in x  is n . In 

general, x is a complex vector having all the elements as complex numbers. If all ordered 

n -tuples of complex numbers form a complex n -dimensional vector space nC  then, 

nCx . Note that in equation (4.8) the modulus of each complex element gives their 

respective absolute values. In case the elements are real numbers, the modulus of each 

element will give their respective numeric values. Hence, the norm is a function that 

assigns strictly positive size or length to a vector in a vector space.  

Given a non-empty complex vector space V , a norm on V is a function or mapping 

from V to the set of real numbers,  , i.e. V: . Here nCV  and if V is a finite 

dimensional set then it is termed as Hilbert Space. The n -dimensional real vector space

nR , formed by all vectors with n  real numbers as components, is also a proper subset of 

nC . Hence the norm function is inclusive of nR . For two vectors Vgf , and 1Cc , 

the norm function strictly satisfies following properties, 

(i.) 0)(  ff  for 0f  and 00   

(ii.) Absolute Scalability : ff  cc  

(iii.) Triangle Inequality or Subadditivity : gfgf   

Norm of a matrix is a natural extension of the concepts of a vector norm. For an nm  

matrix A , the PL -norm is defined as, 
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Clearly, like the vector norm, the PL -norm of matrix A is the
thp root of the summation 

of all the elements of A , with each of the element raised to
thp power.  
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In equation 4.9, A is a complex matrix and the corresponding complex matrix space is 

nmC  . For a matrix having all real elements, the complex matrix space reduces to real 

matrix space nmR  . Lastly, due to presence of modulus in the expression of norm in 

equation (4.9), the norm function is again given as, V:  where nmCV  . Matrix 

norm satisfies all the properties of vector norm including scalability and subadditivity.  

4.3.1.1 L1, L2 AND L0-NORM 

For different integer values of p  different norms are obtained. Among these norms 1L , 

2L  and 0L -norm are very important and are most extensively used.  

 the 1L -norm is obtained by putting 1p  in equation (4.10) and is given by, 
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Hence the 1L -norm is basically the summation of absolute values of all the elements 

of vector x . The 1L -norm of a matrix has similar definition. This norm is called the 

Manhattan norm or Taxicab norm and is widely used in various fields.  

 The 2L -norm is obtained by putting 2p  in the equation (4.11). This norm is the 

most popular of all norms and is used in almost every field. Mathematically this norm 

is given by, 
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This norm denotes the square root of summation of each element squared and is 

generally termed as the Euclidean norm. This norm is a standard quantity for 

measuring the difference between two vectors. The Euclidean distance between two 

points in space is basically the 2L -norm computed for the difference of the position 

vectors of these two points.  

 The value 0p  gives a special type of norm called the 0L -norm and is of great 

importance in the context of sparse representation and classification. The meaning of 

equation (4.12) becomes vague if 0p . Instead, the 0L -norm of vector x  is defined 

as,  

                                                        0|#
0

 ixix                                          (4.12) 

Clearly it denotes the total number of non-zero elements in a vector and is 

representative of the cardinality.  The 0L -norm of a matrix can be defined similarly.                        
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4.3.2 SOLUTION TO UNDERDETERMINED SYSTEMS - THE MINIMISATION 

PROBLEMS 

A linear system of m  equations in n  unknown variables nxxx ,,, 21   is given by, 
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These equations can be represented in the form, 
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or can be represented in more compact matrix form, 

                                                         yAx                                                            (4.13c) 

where,  Tnxxx 21x  is the solution vector in n -dimensional real space nR , 

 Tmyyy 21y  is a given vector in m -dimensional real space mR  and 
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A  is the coefficient matrix. The system of linear equations (4.13) 

will be underdetermined if nm   and overdetermined if nm  . We consider only 

underdetermined case where the solutions are not unique and infinite number of possible 

solutions exist. In many practical situations, it is often required that a unique solution for 

such an underdetermined system is to be found out. Generally in those cases, the best 

possible solution or optimum solution is sought [78]. 

The problem of finding best possible solution to an underdetermined system should be 

considered as an optimisation problem. Optimisation is referred to as the method of 

finding best possible or optimum solution of a problem. The main objective of an 

optimisation problem is to maximize or minimize a specific function, called the objective 

function, with respect to a set of constraints. The minimisation problem is the class of 

optimisation problem in which the objective function is exclusively minimised. 

Conventionally, the difficulty of finding an optimum solution is resolved by selecting 

the solution which has the lowest 2L -norm. Thus, the optimum solution x̂  is given by, 

                                            
2

minˆ xx   subject to yAx                                      (4.14)                                 
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The optimisation problem of equation (4.14) is known as the 2L -minimisation problem 

and can be easily solved by finding pseudoinverse of A  or by Lagrangian multiplier 

method [88]. As 2L -minimisation finds the solution which has least summation of square, 

it is also known as Least Square Optimisation. Although it is easy to compute the solution 

for this optimisation problem, the solution is not unique one. Moreover, the solution is 

not informative and is generally dense with large non-zero elements. Hence memory 

requirements will be high and convergence of algorithms will be slow [88].  

Instead of finding the solution which has the least summation of square, a more realistic 

and practical approach will be to find the sparsest solution i.e. the solution which involves 

least number of non-zero elements [78]. As, 0L -norm of any vector denotes the total 

number of non-zero elements in that vector, finding the sparsest solution of 

underdetermined linear system of equation (4.13) implies finding the solution which has 

lowest 0L -norm. Hence, the problem formulation now changes to as follows, 

                                              
0

minˆ xx   subject to yAx                                    (4.15) 

The problem of finding the optimum solution by minimising the 0L -norm is termed as 

the 0L -minimisation problem. The sparsest solution will represent the corresponding 

underdetermined system with fewest candidate variables which are not known in priori. 

Hence, representation of any linear system by the sparsest solution provides very crucial 

practical advantages such as low memory requirement and faster execution of algorithm.  

But unfortunately, finding the sparsest solution to the combinational optimisation 

problem of equation (4.15) is very complex and almost impossible to solve. In terms of 

computational complexity, 0L -minimisation problem is generally categorised as Non-

deterministic Polynomial-time hard or NP hard problem [84]. This problem can be solved 

sub-optimally by employing iterative methods such as matching pursuits. Alternatively, 

the 0L -minimisation problem can be approximated as an 1L -minimisation problem, under 

the condition that optimum solution x̂  is sufficiently sparse. This alternative approach 

was proposed by David Donoho in 2006 [78]. 

In 1L -minimisation problem, the 0L -norm of equation (4.15) is replaced with 1L -norm. 

Therefore, the formulation of 1L -minimisation problem is given by, 

                                                 
1

minˆ xx   subject to yAx                                    (4.16) 

Hence, now the solution which has the lowest 1L -norm (i.e. least absolute sum) is 
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computed. Solution to the 1L -minimisation problem of equation (4.16) can be found out 

by employing the Convex optimization algorithms such as linear programming or 

non‑ linear programming. Convex optimisation is a special type of minimisation 

technique in which convex functions are minimized over convex sets and if local 

minimum exists within a convex set then it is the global minimum and is unique. It is 

similar to the LASSO method in machine learning and statistics [82] [83]. 

4.3.3 SPARSE LINEAR REPRESENTATION OF SIGNALS 

Sparse linear representation of a signal is a relatively new technique in signal processing 

and classification. Sparse representation provides a way to represent or reconstruct a 

signal using fewest possible samples. The Nyquist-Shannon sampling theorem in digital 

signal processing provides a sufficient condition for sampling rate that ensures perfect 

reconstruction of a bandlimited signal by discrete sequence of equidistant samples 

without any loss of information due to sampling. This sampling rate is known as Nyquist 

rate. Any continuous bandlimited signal should be sampled at a rate higher than the 

Nyquist rate, otherwise there will be imperfections in the reconstructed signal known as 

aliasing. In sparse representation, the aim is to reconstruct and compress a signal using 

lower sampling rates than that mandated by Nyquist-Shannon theorem [86].  

In sparse representation, a signal is represented as the linear combination of elementary 

signals known as the atoms, which are the primary information available for 

reconstruction. The dictionary is said to be made up of atoms such that the total number 

of atoms available for reconstruction is more than sufficient and hence the dictionary is 

‘overcomplete’ [88].   

Let us define the problem mathematically. Suppose that an M -dimensional signal ψ , 

having components M ,,, 21   along M  different dimensions, is to be reconstructed 

using elementary signals or atoms, having same dimensions as the signal. Also, let us 

assume that there are N  number of atoms. If jα


 denotes 
thj  atom and ij  denotes thi  

component of 
thj  atom, then the components of the atoms can be arranged in the columns 

of a matrix D , as shown below. 
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2 N1 αααD                          (4.17) 

where, T

Mjjj ][ 21  

jα , Mi ,,2,1   and Nj ,,2,1  . 
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The matrix D  is called the dictionary. Every component of signal ψ  should be 

represented as linear combination of respective components of all the atoms. Therefore, 

thi component of signal ψ  would be represented as, 

                                           iNNiii   2211                                      (4.18) 

where, N ,,, 21   are the scalar coefficients to be determined and Mi ,,2,1  . 

Putting all possible values of i , every component of ψ  can be represented as linear 

combination of respective components of atoms. If representations of all the components 

are gathered together, then a system of linear equations is obtained, as shown below. 
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                             (4.19a) 

               Or vectorially, N21 αααψ





N  21                                          (4.19b) 

The linear representation of signal ψ  by system of linear equations (4.19a) can be 

alternatively denoted by the equivalent matrix equation, 

                                                              Dβψ                                                       (4.20) 

where,  TN 21β                    

Vector β  is made up of scalar coefficients that linearly encode the components of atoms 

into reconstruction of respective components of signal ψ  and is called the coding vector. 

All the components of vector β  simultaneously satisfy the system of equations (4.19a). 

Therefore, the unknown scalar coefficients can be determined by solving equation (4.19) 

or (4.20). 

Now, suppose that there are P  number of such M -dimensional signals P21 ψψψ





,,,

which are to be reconstructed from the same N  number of M -dimensional atoms. Let, 

kψ


denote thk  signal and ik  denote thi  component of thk  signal. The components of the 

signals can be arranged columnwise to form the matrix Ψ . 
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][ P21 ψψψΨ                   (4.21) 

where, T

Mkkk ][ 21  


kψ  and Pk ,,2,1  . 
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If alike components of the signals are represented as linear combinations of alike 

components of atoms, then like the previous case, a system of linear equations will be 

obtained. Therefore, similar to vectorial representation of equation (4.19b), the thk signal 

will be given by,  

                                               N21k αααψ





Nkkk   21                                (4.22) 

Considering all possible values of k , system of linear equations corresponding to linear 

representation of all the signals can be compactly denoted by the matrix equation, 

                                                             DΒΨ                                                       (4.23) 

Here, matrix D  is the dictionary as before. The matrix ][ 21 PβββΒ





  represents 

the coding matrix whose columns are individual coding vectors. The 
thk  coding vector is 

given by,  TNkkk  


21kβ . Clearly, for reconstruction of P  number of 

signals, equal number of coding vectors will be required. Each coding vector is uniquely 

associated with the respective signal. For instance, coding vector 1β


 is uniquely 

associated with signal 1ψ


 and so on. Note that for the compatibility, the dimensions of 

the signals to be reconstructed and the atoms must be same. As matrix equation (4.23) 

essentially denotes a set of linear equations, similar to equation (4.19b), the solution to 

this equation will be the matrix Β . 

Clearly, if the number of atoms available is much greater than dimension of signals to 

be reconstructed i.e. MN  , then systems corresponding to equations (4.19) or (4.23) 

will be highly underdetermined. Hence, infinite number of solutions to these equations 

are possible and accordingly infinite number of linear combinations are possible. But 

among infinite possibilities, the sparsest solution is selected, such that the signals are 

represented by most minimum subset of atoms. Hence for equation (4.19), the optimum 

solution β̂  will be the solution which has the lowest 0L -norm. The associated 0L -

minimisation problem can be formulated as, 

                                             
0

minˆ ββ   subject to ψDβ                                    (4.24) 

But as solving this optimisation problem is NP hard, the problem is approximated as an

1L -minimisation problem as given below. 

                                              
1

minˆ ββ   subject to ψDβ                                    (4.25) 

Optimum solution to equation (4.23) can be similarly obtained. The technique of 

acquiring and reconstructing a signal by solving an underdetermined system of linear 

equations is commonly known as Compressive Sampling or Compressed Sensing [86].  
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In the context of signal processing, signal reconstruction and discrimination both are 

equally important. Difference between these two techniques have been widely reported 

and investigated in literature. Signal reconstruction methods aim to formulate a 

representation that can get rid of signal corruptions, such as noise, missing data etc., and 

effectively tries to recover every possible information from the corrupted signal through 

reconstruction. On the other hand, signal discrimination methods generally classify 

different signals into different classes assuming that the signals are ideal i.e. devoid of 

noise or missing data. Such assumptions seems unrealistic because in reality signals can 

be corrupted i.e. there can be noise in the signal or signal may contain missing data. This 

calls for formulation of new methodology that can combine advantages of both 

reconstruction and discrimination methods. The classification techniques that can 

reconstruct and discriminate corrupted signals are generally known as Robust 

Classification [87].  

Sparse representation is very well suited for robust classification because of its inherent 

theoretical structure. A small dense noise can be incorporated in the problem formulation 

by changing the basic equation (4.19) into following form, 

                                                             Dβψ                                                     (4.26) 

Here  denotes the white Gaussian noise. However, sparse representation may not always 

perform optimally to accomplish all three objectives - sparsity, reconstruction and 

discrimination [87]. Hence, tradeoff exists among these objectives, which can be adjusted 

by introducing a suitable weighing factor in the problem formulation. If parameter   

denotes the tradeoff factor, then the 1L -minimisation problem for reconstruction and 

discrimination of corrupted signals can be given as, 

                                    
1

minˆ ββ   subject to  
1

2

2
βψDβ                            (4.27) 

4.3.4 CLASSIFICATION BASED ON SPARSE REPRESENTATION 

The concept of reconstructing a signal from sparsely populated vectors made up of atoms 

can be extended to classification problem. As already discussed, in a classification 

problem, observations and class memberships are available as the training data set. 

Observations in the training data set are termed as the training samples. Now in the 

classification through sparse representation, the basic assumption is that that the test 

samples can be represented as linear combination of training samples i.e. test samples lie 

in the linear subspace of training samples [88]. The aim will be to find out the sparsest 

linear combination. 
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4.3.4.1 TEST SAMPLES REPRESENTED AS SPARSE LINEAR COMBINATION OF 

TRAINING SAMPLES 

Let us assume that in a training data set there are N  numbers of classes and K  number 

of M -dimensional training samples in each class. Also assume that there are P  number 

of M -dimensional test samples in the corresponding testing data set.  

The training samples are arranged in the columns of matrix Train. This matrix is 

analogous to the dictionary for signal reconstruction. If, jrT


 denotes training samples 

corresponding to thj  class and 
jipTr  denotes 

thi  component of 
thp  training sample 

belonging to thj  class, then the matrix Train will be given by,  

      ]rTrTrT[Train N21
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jrT      (4.28) 

Mi ,,2,1  , Nj ,,2,1   and Kp ,,2,1   

Similarly, the test samples are arranged in the columns of matrix Test. If, keT


 denotes 

thk  test sample and ikTe  denotes 
thi  component of 

thk  test sample then,  
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][ P21 eTeTeTTest             (4.29) 

where, T

Mkkk TeTeTe ][ 21 


keT and Pk ,,2,1  . 

Now the aim in the classification through sparse representation is to represent a test 

sample as the linear combination of training samples. Therefore, thp  test sample will 

belong to thj  class if its 
thi component is characterised by linear combination of 

thi  

components of all the training samples which belong to the same class. 

                                     
jKijiKjijijijiik TrTrTrTe   2211                         (4.30) 

The scalar coefficients 
jKijiji  ,,, 21  are associated with training samples belonging 

to the thj class only. All the components of all the test samples in Test can be similarly 

represented. But class memberships of the test samples are initially unknown. Hence, test 

samples should be characterised by all the training samples from all the classes in the 

training data set. 
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If all the components of all the test samples are linearly represented then, similar to 

formulation of equation (4.19a), a system of linear equations will be obtained which can 

be comprehensively denoted by the lower given matrix equation. 

                                                         STrainTest                                                (4.31) 

The matrix S  is called the Sparsity matrix and each row of this matrix is a coefficient 

vector made up of scalar coefficients. Sparsity matrix and the scalar coefficients can be 

obtained by solving equation (4.31). If number of training samples available is much more 

than the number of test samples to be classified, then the system of linear equations 

denoted by equation (4.31) will be highly underdetermined. In that case, the sparsest 

solution Ŝ  will be obtained by 0L -minimisation or alternatively 1L -minimisation if the 

solution is sparse enough [81]. Recall that the sparsest solution comprises fewest non-

zero elements. Ideally, the sparsest solution should be given by, 
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Thus in Ŝ , entries of coefficient vector should be zero except those associated with a 

certain object class [88]. This is because test samples of a certain class lie in the linear 

subspace of only those training samples which belong to same class.  

4.3.4.2 RESIDUAL BASED CLASSIFICATION OF TEST SAMPLES 

The fact that the test samples of a certain class are exclusively characterised by the 

training samples of same class, can be utilised to classify new test samples. Given a new 

test sample Te  belonging to a certain class, first the sparsest sparsity matrix Ŝ  is 

computed from equation (4.31) by 1L -minimisation. Ideally, the non-zero entries in the 

Ŝ  will be associated with a single object class and test sample Te  can be easily assigned 

to that class. However, as the 0L -minimisation problem has been approximated as an 1L

-minimisation problem, there can be small non-zero elements present in the rows of Ŝ  

which will jeopardise this method [88].  

To get rid of this problem, let us define a function j  which identifies the coefficients 

in Ŝ  associated with the thj  class. Utilizing only the coefficients associated with thj  

class the given test sample Te  can be approximated as,  

                                                       )ˆ(
~

STraineT j j                                            (4.33) 
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Corresponding to every class, the estimate jeT
~

 is computed. Next the differences 

between the test sample Te  and the estimates jeT
~

 are obtained by calculating the 

residuals, 

                                     
22

)ˆ(
~

)( STrainTeeTTeTe j jjres                     (4.34) 

The test sample belongs to thj  class if residual corresponding to that class given by 

equation (4.34) is minimum. The complete classification procedure by sparse 

representation has been summarised in the following algorithm. 

Algorithm: Sparse Representation-based Classification 

1. Input: Matrix pertaining to training data set, ]rTrTrT[Train N21





 , 

testing data set ][ P21 eTeTeTTest





  (optional error tolerance 0  and 

trade off factor  ). Mark all training samples with suitable labels. 

2. Normalize columns of Train to obtain unit 2L -norm. 

3. Solve 1L -minimisation problem: 

1
minˆ SS   subject to TestSTrain   

(Or alternatively,  

1
minˆ SS   subject to  

1

2

2
TestTestSTrain ) 

4. Compute the residual for every test sample: 

2
)ˆ()( STraineTeT kk jjres 


  for Nj ,,2,1   and Pk ,,2,1  . 

5. Identify and assign the classes to test samples by finding minimum value of 

residuals, )( keT


jres  corresponding to all the classes. 
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CHAPTER 5.  

TIME OF ARRIVAL AND LEVEL OF AMPLITUDE BASED 

CLASSIFICATION OF ACOUSTIC PD SIGNALS 

5.1 INTRODUCTION 

In the present work, the locations of the acoustic PD source inside PDSS box have been 

identified based on two parameters, one is sequence of arrival of PD generated acoustic 

waves at different acoustic sensors mounted on the outside walls of the PDSS box and 

another is levels of peak amplitudes of the captured acoustic signals by those sensors. The 

theoretical background behind the identification method based on these parameters has 

been discussed in this chapter.  

5.2 TIME OF ARRIVAL AND PROPAGATION DELAY 

It has been discussed in Chapter 2 that the acoustic PD source, employed in the present 

work, has different assembly than its optical counterpart. The acoustic PD source 

comprises point-plane electrode system and an acrylic disc sandwiched between the 

electrodes, as shown in Figure 2.3 of Chapter 2. Moreover, for acoustic PD data 

acquisition, the PDSS box has been filled with transformer oil. Therefore, when potential 

applied to the HV electrode of acoustic PD source is sufficiently high, the electric stress 

at the vicinity of interface between top electrode and acrylic disc becomes very high. The 

oil present at the vicinity of that interface partially breaks down due to this high electric 

stress and subsequently rapid energy release takes place from that interface. This energy 

travels in the form of elastic wave through the oil in all directions. These transient elastic 

waves are generally called the acoustic emissions. The group of oscillations constituting 

an acoustic signal is called an acoustic emission burst.  

As per the IEEE Standard C57.127-2007 [15], the frequency of acoustic waves 

generated due to Partial Discharge lies in the range 20 kHz to 500 kHz.  In addition to 

that, the generated acoustic waves normally have large bandwidth (Typically more than 

1 MHz). The acoustic sensors employed for detection of acoustic signals from PD source 

should be sensitive to that aforementioned range of frequency and preferably should be 

an ultrasonic piezoelectric transducer. In the present work, such type of acoustic sensors 

have been used. 
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5.2.1 TYPES OF ACOUSTIC EMISSIONS AND CRITICAL ANGLE 

For the given assembly of acoustic PD source and the steel made PDSS box, the acoustic 

emissions from the PD source give rise to two types of elastic waves: 

 Longitudinal Wave or Pressure Wave – This type of elastic wave travels 

through the medium by creating alternate compression and rarefaction in the 

direction of propagation. Pressure waves exist both in transformer oil and wall of 

the PDSS box. 

 Transverse Wave or Shear Wave – It is a kind of shock wave which is generated 

when the acoustic wave emanated from PD source directly impinges at normal 

incidence upon the box wall and creates vibrations inside the wall perpendicular 

to the propagation direction of the direct wave. Shear waves only exist in the box 

wall and not inside the oil because propagation of this type of wave requires 

acoustically solid material. 

Another important quantity related to wave propagation and refraction is the critical 

angle. While travelling, if a wave reaches a boundary between two media having different 

refractive indices then the wave is partially refracted at the boundary surface and partially 

reflected. Due to refraction, the direction of wave travel inside the second medium 

changes depending on the refractive indices of two media. If the velocity of the wave is 

more (or refractive index is more) in the second medium than that was in the first medium 

then path of the wave bends towards the boundary. Critical angle is defined as the largest 

incidence angle that a wave can make with the normal to the boundary at the point of 

incidence while travelling from one medium to another medium such that the refracted 

wave in the other medium travels exactly parallel to the boundary. If the angle of 

incidence is more than the critical angle then the wave undergoes total internal reflection 

instead of refraction.  

This critical angle is very important in the 

context of acoustic wave propagation 

inside the PDSS box and subsequent 

capture by acoustic sensors. The acoustic 

emissions that are generated from the 

acoustic PD source placed inside the box 

travel in all directions through oil to reach 

the walls of the box. Whether the acoustic 

waves get refracted into the walls or get Figure 5.1 Critical Angle and Total Internal Reflection 

inside the PDSS box 
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reflected from the walls will depend upon the angle of incidence of the acoustic wave 

upon the inside wall. This angle of incidence primarily depends upon the position of 

acoustic PD source inside the PDSS box. 

In the present scheme, the acoustic sensors have been placed at outside walls of the 

PDSS box. These sensors will be able to capture the acoustic signals only when the 

acoustic emissions from the PD source alight upon the inside wall of the PDSS box and 

penetrate the wall by refraction. Clearly, this can only happen if angle of incidence of the 

acoustic emissions is less than the critical angle. Otherwise the generated acoustic waves 

will unnecessarily get reflected multiple times inside the box which may diminish the 

amplitudes and increase the time of travel. This phenomenon has been schematically 

depicted in Figure 5.1. Therefore, the acoustic PD source should be placed such that the 

angle of incidence on the inside walls for every possible direction of acoustic emissions 

do not exceed the critical angle. As both the parameters, amplitude and time of travel, are 

important for identification of the location of the acoustic PD source inside the PDSS 

box, the placement of acoustic PD source inside the box becomes a crucial issue. 

5.2.2 CHOICE FOR PLACEMENT OF ACOUSTIC SENSORS 

Whether the acoustic sensors will be mounted on the inside or outside of the wall is a 

judicious issue. Sensors may be mounted on any side of the wall with advantages and 

disadvantages corresponding to each type of placement.  

 Outside Mounting - Mounting the sensors outside the walls has various 

advantages. The positions of sensors can be reconfigured as necessary to get 

clearer acoustic signals. Moreover, the assembly of sensors can be moved from 

one equipment to another equipment or can be retrofitted to an existing 

equipment. However main disadvantage of externally mounted sensors is that 

they are more susceptible to noise. 

 Inside Mounting - Inside mounting of sensor has advantages that the acoustic 

signals captured by the sensors will have higher amplitudes facilitating clearer 

measurement. The acoustic signals will be less noisy and signal-to-noise ratio will 

be high. Also problems associated with critical angle will no longer be present. 

However once installed, the sensors cannot be moved to get clearer signals. Also 

the system is not easy to replace and cannot be fitted to another equipment. 

Clearly, external mounting of sensors has more advantages than internal mounting and it 

is general practice to mount the sensors outside the wall. Due to this reason in the present 

scheme, the acoustic sensors have been placed at outside walls of the PDSS box. 
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5.2.3 ACOUSTIC WAVE PROPAGATION 

Propagation of acoustic waves inside the PDSS box and through the walls of the box is a 

complex phenomenon. It has been assumed in the present analysis that the acoustic wave 

travel at constant speeds inside the oil and inside the wall. Also the pressure and shear 

waves generated due to acoustic emissions have been assumed to be ideal.  

The phenomenon of wave propagation inside and in the walls the PDSS box has been 

schematically illustrated in Figure 5.2. When the acoustic PD source is placed at the 

location shown in Figure 5.2 and PD is initiated, the acoustic waves are generated which 

travel in all directions through oil.  

First, let us consider the acoustic waves from the PD location which reach the walls 

directly through oil. If angles of incidence of the direct waves upon a particular inside 

wall is less than critical angle, then the direct waves penetrate into that walls by refraction 

and reach the sensors mounted at other side of that wall. As acoustic emissions travel 

relatively slow, all the sensors do not experience simultaneous arrival of direct acoustic 

waves from the PD location. The distance travelled by the acoustic wave through the oil 

is dependent upon the speed of acoustic wave in the oil. The distance travelled can be 

simply given by, 

Distance travelled by acoustic wave = Speed of the acoustic wave × Time of travel 

The sensors which are at same distance from PD location, the direct acoustic wave travels 

to them in equal time. On the other hand, for the sensors which are at different distances 

the arrival time will be different. In Figure 5.2, the walls which are closest to the PD 

location, experiences earliest arrival of acoustic emissions. The acoustic sensors mounted 

on the closest walls will pick up the signals first. For other distant walls the arrival times 

are inversely proportional to their distance from the PD location.  

Figure 5.2 Wave propagation in PDSS box due to acoustic PD source 
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Therefore depending upon the distance from the PD location, every sensor is associated 

with unique time of arrival of direct acoustic waves from a particular location. If location 

of acoustic PD source is changed, the arrival times are changed accordingly. The 

propagation delay of direct acoustic waves experienced by different sensors is an 

indication about the distance of these sensors from the PD location. Speed of acoustic 

waves in transformer oil is assumed to be 1413 m/s when measured at 20 OC [15].  

Now let us turn attention to another type of propagation phenomenon. Upon reaching 

the closest wall, the acoustic emissions give rise to shear waves that travel through the 

walls only. Alongwith the direct acoustic waves travelling through oil, these shear waves 

also reach other sensors. Therefore, there are two paths of the acoustic waves through 

which they can reach the sensors from the PD locations. One is directly through the oil 

and one is through the walls. Speed of acoustic waves is more in the steel than in the 

transformer oil. Therefore the shear waves through the walls travel faster than the direct 

waves travelling through oil and may arrive at sensors before the direct wave do.  

Typical nature of one acoustic emission burst from a PD source and recorded by an 

acoustic sensor has been shown in Figure 5.3. The sharp rise in amplitude up to positive 

peak marks the time instant when the direct acoustic wave arrives and impinges on the 

wall where the sensor is placed within the critical angle for pressure waves. This time 

instant associated with the positive peak is very important parameter to ascertain the 

distance of the sensor from the PD source. 

After the occurrence of the positive peak, the wave undergoes damping due to energy 

loss and the amplitude gradually decreases through several cycles of oscillation. Ideally 

the amplitude should decay to very low value after several such cycles. But due to arrival 

of shear waves through the walls, the amplitude rises up again to reach another peak and 

subsequently decays down from that peak through damped oscillations.  

Figure 5.3 Example of one acoustic emission burst 
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Several such secondary peaks can occur due to a number shear wave arriving at 

different times. If sufficiently strong shear wave arrives a sensor before the direct wave, 

then two distinct positive peaks having comparable amplitudes may occur. In those cases 

it will be very hard to ascertain which peak has been created by which type of wave.  

As the direct waves travel through oil, they undergo energy dissipation due to 

absorption in the oil. The peak value of direct wave, recorded by a sensor, is inversely 

proportional to average energy dissipation in oil during the travel of direct wave through 

the oil. Therefore, the less time direct wave spends within oil, the less will be energy 

dissipation and more will be the peak amplitude. In similar way, shear waves also undergo 

energy dissipation during their travel through steel walls. However, shear waves travel 

more path than the direct waves and consequently the shear waves experience more 

energy dissipation. Therefore, the peaks generated by shear waves are generally of low 

amplitude than those generated by direct waves.  

In addition to these two types of waves, there may be additional acoustic waves due to 

primary and secondary reflection within the PDSS box. But amplitudes of these reflected 

waves are of very low value and can be considered negligible.  

In practical situations, the oil may contain contaminations. Moreover, effects of 

temperature and humidity may be present. In such situations, transformer oil generally 

behaves as an anisotropic medium. Acoustic wave propagation through such anisotropic 

medium are not ideal because velocity of the wave in different directions may be 

different. Also roughness present in wall surface may induce microlevel reflection and 

refractions. The sum effect of these phenomena will be to create high frequency noise 

superimposed in the waveform of acoustic emission. These noises distort the acoustic 

signal. 

5.2.4 IDENTIFICATION OF ACOUSTIC PD EVENTS BASED ON SEQUENCE OF 

ARRIVAL OF DIRECT WAVES 

The fact that every sensor is associated with a unique arrival time can be utilised to 

identify the locations of the acoustic PD source. The time instant of occurrence of peak 

in the signal captured by a sensor denotes the time of arrival of direct wave at that sensor. 

For a given location of acoustic PD source inside the PDSS box, five acoustic sensors 

placed on five walls of the box experience different arrival times. If sequences of arrival 

of direct waves are obtained for each location then this information can be utilised to 

identify any unknown location of the PD source.  
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The acoustic PD source was placed at one of the cubic sub-regions inside the PDSS 

box. For convenience the sub-regions and the placement of the sensors have been shown 

in Figure 5.4 and Figure 5.5 respectively. Now let us consider the sub-region ‘11’ in the 

middle of block 1.  

The waveforms of captured acoustic waves 

by five sensors when acoustic PD source is 

placed at ‘11’ have been shown in Figure 

5.6. From Figure 5.4 and Figure 5.5, it can 

be seen that this sub-region is closest to 

sensor AS1 which is placed outside the wall 

just in front of it. The sensor AS3 is farthest 

from this sub-region. The rest of the sensors 

AS2, AS4 and AS5 are equidistant from this 

sub-region. These sensors are farther from 

AS1 but are closer than AS3. Hence direct acoustic waves emanated from acoustic PD 

source will reach sensor AS1 first. Then the wave reaches simultaneously AS2, AS4 and 

AS5. Lastly the wave reaches sensor AS3. From Figure 5.6, this sequence of arrival can 

be readily ascertained by observing the time instants of occurrence of peaks. As direct 

wave reaches sensor AS1 earliest, the waveform of Figure 5.6(a) pertaining to signal 

captured by sensor AS1, shows earliest peak. In the waveforms of Figure 5.6(b), (d) and 

(e), pertaining to signals captured by sensors AS2, AS4 and AS5 respectively, the peaks 

occur at approximately same time but later than the waveform of Figure 5.6(a). 

Figure 5.4 Imaginary cubic sub-regions in three parallel square blocks 1, 2 and 3 for placing the acoustic 

PD source inside the PDSS box 

Figure 5.5 Placement of Acoustic Sensors in 

outside walls of PDSS Box 
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Figure 5.6 Acoustic signals captured by different 

sensors when acoustic PD source is placed at ‘11’ a) 

Sensor, AS1 (b) Sensor, AS2 (c) Sensor, AS3 (d) 

Sensor, AS4 (e) Sensor, AS5. 

 

 

Figure 5.7 Acoustic signals captured by different 

sensors when acoustic PD source is placed at ‘21’ a) 

Sensor, AS1 (b) Sensor, AS2 (c) Sensor, AS3 (d) 

Sensor, AS4 (e) Sensor, AS5. 
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This happens because sensors AS2, AS4 and AS6 are equidistant from location ‘11’ but 

are farther than the sensor AS1. In the waveform of Figure 5.6(c), pertaining to signal 

captured by sensor AS3, the peak occurs later than all the other waveforms. This is 

because direct wave arrives that sensor at last. 

This reasoning can be extended for every sub-region of Figure 5.4. For example, if we 

consider the sub-region ‘21’, it can be seen from Figure 5.4 that this sub-region is 

equidistant from all the sensors. Therefore acoustic emissions from this PD location reach 

each of the sensors simultaneously. This can be clearly comprehended from the 

waveforms of Figure 5.7 by looking at the time instants of occurrences of peaks in 

captured acoustic signals.  

The sequence of arrival of direct acoustic wave at five sensors corresponding to each 

PD location of Figure 5.4 can be considered as a qualitative feature uniquely associated 

with each location. The sequences of arrival associated with each location can be more 

systematically presented by utilising the notation scheme of Table 5.1. 

Table 5.1 Notations to identify sequence of arrival of direct waves 

Notation Interpretation 

I Sensor is closest to the relevant PD location  

II Sensor is at moderate distance from the PD location 

III Sensor is farthest from PD the location 

The sensors which are closest to PD location, direct wave arrives earliest at those sensors. 

Those sensors have been marked as ‘I’. The sensors which are at moderate distances from 

the PD location experience the next arrival. Therefore those sensors have been marked as 

‘II’. The sensors which are farthest and experience last arrival of direct wave are marked 

as ‘III’. Utilising this notation, sequences of arrival of direct wave at five sensors for all 

the PD events can be marked. The sequences of arrival for PD events ‘11’ and ‘21’ has 

been presented in Table 5.2 

Table 5.2 Sequence of arrival for PD events '11' and '21' 

PD Event AS1 AS2 AS3 AS4 AS5 

11 I II III II II 

21 I I I I I 

Identification of PD sub-regions based on unique time of arrival works excellently for 

single PD events i.e. when only one PD source is placed inside the PDSS box. But when 

double PD events are considered, the situation becomes quite complex.  
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Figure 5.8 Acoustic signals captured by 

different sensors when two acoustic PD sources 

are placed at ‘12’ and ‘14’ a) Sensor, AS1 (b) 

Sensor, AS2 (c) Sensor, AS3 (d) Sensor, AS4 (e) 

Sensor, AS5. 

 

 

When two PD sources are placed inside the PDSS box and made to discharge 

simultaneously, acoustic waves are generated from both the sources. The direct acoustic 

waves reach the sensors at different times which are at different distances from these 

sources. Therefore, the waves get unevenly mixed up by superposition during capture. In 

that mixed wave, the peaks cannot be marked clearly and there can be multiple peaks. 

But if it happens that a sensor is equidistant from both the locations, then it can be fairly 

assumed that acoustic waves reach that sensor simultaneously. The acoustic waves from 

two PD sources get superimposed in phase with each other. Therefore peaks of both the 

waves become concurrent so that the peak in the mixed wave can be identified.  

Let us take the example of double PD 

event ‘12_14’ i.e. two acoustic PD sources 

have been placed at ‘12’and ‘14’ and partial 

discharge is taking place simultaneously. 

The waveforms captured by five sensors 

have been depicted in Figure 5.8. It is 

evident from Figure 5.4 that both these sub-

regions are individually equidistant from 

sensors AS1 and AS3. AS1 is the closest 

sensor and AS3 is the farthest sensor.  

It can be seen in the waveforms of Figure 

5.8 (a) and (c), pertaining to signals captured 

by sensors AS1 and AS3, that the peaks can 

be easily marked. This happens because for 

each of these sensors, the direct acoustic 

waves from the PD locations reach 

simultaneously and get superimposed in 

phase. Therefore the peaks of individual 

direct waves are approximately concurrent. 

But for other sensors, the waveforms are of 

poor quality and peaks cannot be easily 

marked which is because the rest of the 

sensors are at different distances from these 

PD locations.  
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Hence for DPD event ‘12_14’, the sequences of arrival of direct wave can only be 

ascertained for sensors AS1 and AS3. For rest of the sensors sequence cannot be obtained. 

It may so happen that sequence pertaining to ‘12_14’ matches with any other DPD event. 

For example consider the DPD event ‘13_15’. Referring to Figure 5.4 and Figure 5.5, it 

can be seen that for this event also the sensors AS1 and AS3 are individually equidistant 

from locations of PD sources while rest of the sensors are at different distances. In terms 

of notation introduced in Table 5.1, the sequence of arrival for DPD events ‘12_14’ and 

‘13_15’ will be as given in Table 5.3. Note that for AS2, AS4 and AS5, the time of arrival 

cannot be evaluated and hence no sequence can be assigned. 

Table 5.3 Sequence arrival for PD events ‘12_14' and ‘13_15’ 

PD Event AS1 AS2 AS3 AS4 AS5 

12_14 I - III - - 

13_15 I - III - - 

Therefore DPD events ‘12_14’ and ‘13_15’ are indistinguishable with respect to 

sequence of arrival. Hence, information of the sequences of arrival is sufficient for 

identification of SPD events but is not sufficient for identification of DPD events. 

5.3 IDENTIFICATION OF ACOUSTIC PD EVENTS BASED ON PEAK 

AMPLITUDE LEVELS OF ACOUSTIC WAVES 

The other parameter that is associated with the acoustic PD waves is the peak amplitude 

of acoustic signals. It has been already discussed that the peak amplitude of direct acoustic 

wave vary inversely with respect to the distance between PD location and the sensor. If 

sensor is more distant from the PD location then, due to energy dissipation in transit, the 

peak amplitude of the direct wave decreases. Hence the peak amplitude in the signal 

captured by a sensor is also an indication of the distance of this sensor from the PD 

location. The sensors which are closest to PD location capture signals comprising highest 

peaks. For the sensors which are farthest the reverse happen. Rest of the intermediated 

sensors capture signals whose peak amplitude varies within these maximum and 

minimum value.  

For example, refer Figure 5.6. As sensor AS1 is closest to location ‘11’, the signal 

captured by AS1 has highest peak. Whereas, for signals captured by sensors S2, S4 and 

S5, the peak amplitudes are approximately same because these sensors are equidistant. 

But these peak amplitude are lower than that of the signal captured by AS1 because AS2, 

AS4 and AS5 are more distant than AS1. Lastly, the signal captured by AS3 has least 
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peak amplitude as it is farthest from the PD location ‘11’. Similarly, peak amplitudes in 

the signals of figure 5.7 are approximately of same value because all the sensors are 

equidistant from PD location ‘21’. In this way, by observing the relative differences in 

the peak values of signals captured by five sensors, every single PD location of Figure 

5.4 can be uniquely characterised.  

This reasoning can also be extended for DPD events. However, in DPD events there 

may be several local peaks of comparable amplitudes in the signals captured by some of 

the sensors. In those cases amplitude of the peak which has occurred earliest will only be 

considered. This is because that peak occurs due to arrival of direct wave from the PD 

source which is closest to that sensor. For example in Figure 5.8(d), pertaining to signal 

captured by sensor AS4, there are several local peaks which have comparable amplitudes. 

But the first peak corresponds to PD source placed at ‘12’ and amplitude of that peak will 

only be considered. 

  Therefore, peak amplitudes of acoustic signals, captured by five sensors for a SPD and 

DPD events is another unique numerical feature. Recall that for each PD event there are 

five data sets, each containing five data corresponding to five signals captured by five 

sensors. Peak values of all the signals captured by five sensors for all the PD events have 

been obtained.  

As we are more concerned with the relative difference between peak values of captured 

signals pertaining to each single event, the peak values of all the signals for each acoustic 

sensor have been normalised with respect to maximum and minimum values in the range. 

Normalised peak values of signals captured by acoustic sensors for some of the SPD and 

DPD events have been shown in Table 5.4. 
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 Table 5.4 Normalised peak values of signals captured by different acoustic sensors for SPD and DPD 

events 

  
 

SPD 

Event 

Normalised peak values of signals captured by different  

acoustic sensors 

AS1 AS2 AS3 AS4 AS5 

11 0.593 0.411 0.287 0.458 0.573 

11 0.991 0.502 0.364 0.373 0.540 

11 0.884 0.473 0.348 0.747 0.456 

11 0.837 0.551 0.360 0.525 0.474 

11 0.755 0.517 0.464 0.643 0.656 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

39 0.347 0.292 0.410 0.663 0.484 

39 0.471 0.389 0.735 0.439 0.495 

39 0.432 0.401 0.837 0.993 0.492 

39 0.307 0.412 0.633 0.650 0.581 

39 0.288 0.369 0.755 0.690 0.493 

 

DPD 

Event 

Normalised peak values of signals captured by different 

acoustic sensors 

AS1 AS2 AS3 AS4 AS5 

11_31 0.311 0.393 1.000 0.530 0.568 

11_31 0.418 0.489 0.672 0.630 0.759 

11_31 0.455 1.000 0.703 0.516 0.781 

11_31 0.464 0.820 0.448 0.596 0.566 

11_31 0.386 0.546 0.339 0.621 0.580 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

39_37 0.370 0.288 0.596 0.680 0.697 

39_37 0.381 0.593 0.855 0.372 0.670 

39_37 0.543 0.352 0.664 0.870 0.596 

39_37 0.522 0.796 0.779 1.000 0.472 

39_37 0.357 0.773 0.665 0.490 0.615 
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CHAPTER 6.  

RESULTS AND DISCUSSIONS 

6.1 INTRODUCTION 

The main objective of the present work is to identify the type and location of single and 

multiple PD sources inside PDSS box based on the optical and acoustic PD signals 

emanated from these sources. For that purpose an optical PD source and an acoustic PD 

source was constructed. These sources were separately placed inside the PDSS box. The 

signals pertaining to each type of source were captured through the optical or acoustic 

sensors placed at the walls of the box. The placement of source inside the box has been 

as termed as events. The optical PD events have been identified by employing 

classification techniques, whereas the acoustic PD events have been identified based on 

sequence of arrival and levels of peak amplitudes. Results pertaining to identification of 

both types of single and multiple PD sources using these proposed methods have been 

discussed in this chapter. 

6.2 IDENIFICATION OF OPTICAL PD EVENTS 

The optical PD signals obtained through optical sensors and have been transformed by 

applying morphological operations. After that, suitable statistical features have been 

extracted from transformed optical PD signals. These features have been classified by 

two different techniques – Rough Set Theory and Sparse Representation Classification. 

6.2.1 FEATURE CLASSIFICATION BY ROUGH SET THEORY 

To classify the extracted features with the help of Rough Set Theory, first the information 

system has been constructed. This information system comprises of statistical features 

which have been obtained after applying morphological operations to the captured PD 

signals pertaining to each of the optical PD events. The main objective is to formulate 

decision rules utilizing these extracted features. Suppose optical PD source has been 

placed at one of the imaginary grid positions shown in Figure 2.4 of Chapter 2, which is 

unknown, and optical signals radiated from the optical PD source have been captured by 

five optical sensors. Now these formulated decision rules will identify that unknown 

location by analysing the features of all the captured optical signals. The constructed 

information system has been presented in Table 6.1.  
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Table 6.1 Normalised decision table pertaining to optical SPD and DPD events 

It is evident from the constructed information system of Table 6.1 that, the objects are 

information related to optical PD sources at different positions i.e. the objects correspond 

with different types of optical PD events. The condition attributes are features which were 

extracted from morphologically transformed optical PD signals and decision attributes 

are type and location of the optical PD source.  

For each optical PD event, five data sets are available. Each data set contains five data 

pertaining to five signals captured by five sensors mounted on the walls of PDSS box. 

All the captured signals have been transformed by applying morphological operations, 

Objects Condition attributes Decision 

attributes: 

Type and 

location of 

optical PD 

source 

F11 F12 F13 F14 F15 F16 F17 F18 F19 …  F59 

1 0.988 1.000 0.023 1.000 0.549 0.993 0.995 0.974 0.000 … 0.055 1A 

2 0.988 1.000 0.024 1.000 0.548 0.993 0.995 0.974 0.000 … 0.054 1A 

3 0.989 1.000 0.024 1.000 0.549 0.993 0.994 0.974 0.000 … 0.055 1A 

4 0.959 0.366 0.027 0.209 0.565 0.995 0.997 0.973 0.419 … 0.000 2A 

5 0.959 0.367 0.028 0.210 0.560 0.995 0.997 0.973 0.418 … 0.000 2A 

6 0.957 0.381 0.029 0.225 0.565 0.995 0.997 0.972 0.404 … 0.000 2A 

. 

. 

. 

. 

. 

. 

 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… . 

. 

. 

. 

. 

. 

79 0.329 1.000 0.573 1.000 0.896 0.996 0.997 0.947 0.000 … 0.127 9C 

80 0.316 1.000 0.588 1.000 0.904 0.996 0.997 0.947 0.000 … 0.124 9C 

81 0.331 1.000 0.571 1.000 0.903 0.996 0.997 0.947 0.000 … 0.126 9C 

82 0.989 0.981 0.024 0.974 0.552 0.993 0.994 0.976 0.037 … 0.136 1A_1C 

83 0.988 0.980 0.023 0.973 0.550 0.993 0.994 0.976 0.038 … 0.138 1A_1C 

84 0.987 0.982 0.024 0.976 0.549 0.993 0.995 0.975 0.036 … 0.131 1A_1C 

. 

. 

. 

. 

. 

. 

 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… . 

. 

. 

. 

. 

. 

139 0.292 0.998 0.610 0.997 0.945 0.996 0.997 0.948 0.002 … 0.103 9C_7C 

140 0.283 0.998 0.621 0.997 0.949 0.996 0.997 0.948 0.002 … 0.100 9C_7C 

141 0.296 0.998 0.605 0.997 0.948 0.996 0.997 0.948 0.002 … 0.103 9C_7C 
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Dilation and Erosion, and nine features have been extracted from each of the transformed 

signals. As there are five signals in each data set corresponding to five sensors, there will 

be in total 45 features in a single data set. For better manipulation, every feature has been 

assigned with suitable notation. The extracted features have been represented by notation 

ijF  which denotes ‘
thj  feature of the transformed optical signal which has been captured 

by thi  optical sensor’, where 5,,2,1 i  and 9,,2,1 j . For example, 34F  denotes 

th4  feature (i.e. Kurtosis) of the transformed optical signal which has been captured by 

rd3  optical sensor OS3 and so on. (Refer Table 3.3 of Chapter 3) 

There are 27 single and 20 double optical PD events i.e. in total there are 47 optical PD 

events. Out of the five data sets corresponding to a single event, three data sets have been 

taken (60% of five data set) for construction of decision rules. As there are in total 47 

optical PD events and there are five data sets corresponding to each event, there must be 

235 (=47×5) objects. Out of these, 60% of the objects, i.e. 141 objects were used to 

develop the decision rules. Therefore, these 141 objects collectively construct the training 

data set. The rest 94 objects construct the testing data set. 

In Table 6.1 for each event, normalised values of extracted features of signals captured 

by five sensors have been put in a single row. For example, normalised features 11F  to 

19F  correspond to signal captured by Sensor OS1, normalised features 21F to 29F  pertain 

to signal captured by Sensor OS2 and so on. Three data sets for each SPD and DPD event 

have been put in three consecutive rows (For example, first three rows of Table 6.1 are 

three sets of extracted and normalised features pertaining to SPD event ‘1A’ etc.). As 

there are, in total, 47 SLPD & DLPD sources and 45 attributes, in our case the size of 

corresponding )( QU   matrix will be (141×45). As all the conditional attributes are 

numerical type, each of the attributes has been individually normalized with respect to 

maximum value and minimum value in the range. Due to normalization, every attribute 

has numeric values confined within range 0 to 1. This is the benefit of normalization 

because all the numeric values are now properly referenced. 

As discussed in Chapter 4, different information granules can be formed by choosing 

different subset of attributes P . For example in Table 6.1, if P = {Type and Location of 

Source} then )}141,140,139(...,),6,5,4(),3,2,1{(PI .  

As all the attributes of the decision table are numerical, domain of each attribute has 

been individually discretized for increased flexibility.  
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Table 6.2 Discritized decision table showing reducts 

In the present work, the discretization has been performed by employing Maximum 

Discernible (MD) Heuristics. More details of MD heuristics can be found in [73] 

 In addition to identification to equivalence classes and discretization, the decision table 

has been further processed by removing dispensable attributes and forming the Reduct 

comprising of indispensable attributes. The discretized decision table with Reducts have 

been presented in Table 6.2.  

Object Condition attributes Decision 

Attributes: 

Type and 

location of 

source 

F11 F14 F19 F21 F22 F24 F34 F39 F42 F49 F51 

1 9 6 0 1 8 9 8 0 7 0 1 1A 

2 9 6 0 1 8 9 8 0 7 0 1 

3 9 6 0 1 8 9 8 0 7 0 1 

4 9 2 2 7 6 7 5 1 0 9 2 2A 

5 9 2 2 7 6 7 5 1 0 9 3 

6 9 2 2 7 6 7 6 1 0 9 2 

7 9 1 3 10 4 2 7 0 5 1 5 3A 

8 9 1 3 9 4 3 7 0 5 1 4 

9 9 1 3 9 4 2 7 0 5 1 5 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

79 3 6 0 4 7 9 1 5 2 6 6 9C 

80 3 6 0 4 7 9 1 5 2 6 6 

81 3 6 0 4 7 9 1 5 2 6 6 

82 9 6 0 3 7 8 1 5 7 1 3 1A_1C 

83 9 6 0 3 7 8 1 5 7 1 3 

84 9 6 0 3 7 9 1 5 7 1 3 

85 9 6 0 1 8 9 7 1 6 2 2 1A_2C 

86 9 6 0 1 8 9 7 1 5 2 2 

87 9 6 0 1 8 9 7 1 6 2 2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

139 3 6 0 10 3 3 1 7 3 5 6 9C_7C 

140 3 6 0 9 3 3 1 7 3 5 6 

141 3 6 0 10 3 3 1 7 3 5 6 
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Table 6.3 Truncated discretized data table for 

illustration 

 

 

Table 6.4 Reduced data table obtained from Table 6.3 

 

 

In Table 6.2, 11 indispensable attributes have been shown to from the Reduct while 

other superfluous attributes have been discarded. These attributes are 11F , 14F , 19F , 21F , 

22F , 24F , 34F , 39F , 42F , 49F  and 51F . 

From the Reducts, the Cores are to be formed. For illustration of construction of Cores, 

consider a portion of first six rows of discretized decision table, as shown in Table 6.3. If 

first three attributes constituting the subset },,{ 191411 FFFP   is considered, it is seen that 

attribute 11F  has the same value (= 9) corresponding to SPD events 1A, 2A, 3A and hence 

it is superfluous due to its omnipresence in all the objects. So this attribute can be 

dispensed with and considered as ‘don’t care’. Whereas attributes },{ 1914 FF  have 

different set of values for each of six objects. So these features can classify the objects in 

terms of type and location of source. 

 

 

 

 

 

 

 

 

Again referring to Table 6.3, if R = {Type and Location of Source} then, 

)}6,5,4(),3,2,1{(RI  and for },,{ 191411 FFFP  , )}6(...,),3(),2(),1{(PI . Now, 

)}6(...,),3(),2(),1{()( RPOSP  and, )()}6(...,),3(),2(),1{()(}}{{ 11
RPOSRPOS PFP  . 

 Therefore, attribute 11F  is R-dispensable in P . Similarly it can be shown that attributes 

14F  and 19F  are R-indispensable in P . The reduced decision table, obtained from Table 

6.3 after feature 11F  is eliminated, has been shown in Table 6.4.  

 

 

 

 

 

Object Condition 

attribute 

Decision 

attribute: 

Type and 

location of 

source 

F11 F14 F19 

1 9 6 0 1A 

2 9 6 0 1A 

3 9 6 0 1A 

4 9 2 2 2A 

5 9 2 2 2A 

6 9 2 2 2A 

Object Condition 

attribute 

Decision 

attribute: 

Type and 

location of 

source 

F11 F14 F19 

1 - 6 0 1A 

2 - 6 0 1A 

3 - 6 0 1A 

4 - 2 2 2A 

5 - 2 2 2A 

6 - 2 2 2A 
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Table 6.5. Finalised form of complete data table showing the Cores for SLPD and DLPD Events  

 

 

From this reduced data table, one can easily define the decision rules, such as- 

If F14 = 6 and F19 = 0, then type of PD source is 1A. 

If F14 = 2 and F19 = 2, then type of PD source is 2A and so on. 

Of course these decision rules are only demonstrative and for the complete decision table 

the rules will be different. In this case, intersection of Reducts for each decision class will 

lead to null set and Reducts will be identical to Cores. But this may not the case for the 

entire table. The Reducts for each decision class were already obtained in Table 6.2. The 

Core values are obtained by intersecting the Reducts corresponding to each decision class, 

i.e. each optical PD event. The finalised form of complete data table showing the Cores 

for all the optical SPD and DPD Events has been shown in Table 6.5. 

 

 

Object Condition attributes Decision 

attributes: 

Type and 

location of 

source 

F11 F14 F19 F21 F22 F24 F34 F39 F42 F49 F51 

1 9 6 0 1 8 9 8 0 7 0 1 1A 

2 9 6 0 1 8 9 8 0 7 0 1 

3 9 6 0 1 8 9 8 0 7 0 1 

4 9 2 2 7 6 7 - 1 0 9 - 2A 

5 9 2 2 7 6 7 - 1 0 9 - 

6 9 2 2 7 6 7 - 1 0 9 - 

7 9 1 3 - 4 - 7 0 5 1 - 3A 

8 9 1 3 - 4 - 7 0 5 1 - 

9 9 1 3 - 4 - 7 0 5 1 - 

. 

. 

. 

. 

. 

. 

. 

. 
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. 
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. 

. 
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. 

. 

. 

79 3 6 0 4 7 9 1 5 2 6 6 9C 

80 3 6 0 4 7 9 1 5 2 6 6 

81 3 6 0 4 7 9 1 5 2 6 6 

82 9 6 0 3 7 - 1 5 7 1 3 1A_1C 

83 9 6 0 3 7 - 1 5 7 1 3 

84 9 6 0 3 7 - 1 5 7 1 3 

85 9 6 0 1 8 9 7 1 - 2 2 1A_2C 

86 9 6 0 1 8 9 7 1 - 2 2 

87 9 6 0 1 8 9 7 1 - 2 2 

. 

. 

. 

. 

. 

. 
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. 

. 
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. 

. 

. 

139 3 6 0 - 3 3 1 7 3 5 6 9C_7C 

140 3 6 0 - 3 3 1 7 3 5 6 

141 3 6 0 - 3 3 1 7 3 5 6 
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For any particular decision class, the attributes which does not help in classification and 

are superfluous, those have been considered ‘don’t care’ and have been indicated as ‘-’. 

Take for example the three Reducts of decision class ‘2A’ in Table 6.2. The attributes 

34F  and 51F  have different values for this decision class and gives vague information 

about the optical PD event ‘2A’. The intersection of these Reducts results into 

dispensation of these attributes because these do not help in classifying PD optical PD 

event ‘2A’. So exempting these features the Core for decision class ‘2A’ is obtained. In 

this way, by further elimination of other dispensable attributes within Reducts of each 

decision class, all the Cores are obtained from which decision rules have been formulated. 

 The formulated decision rules are in ‘IF…THEN’ format, as discussed before. The 

formulated decision rules have been shown in Table 6.6. In these decision rules, the 

operator ‘˄’ denotes the logical AND operator. There are 94 data sets (40% of 235 data 

sets) used for testing the decision rules. The testing data sets have been normalised and 

discretized with respect to same references used in Table 6.2.  

Table 6.6 Decision rules obtained from Table 6.5 to identify the type and location of PD source 

Decision 

Rule 

No. 

Statement of the rule to identify the PD source 

IF THEN 

1 (F11  = 9 ˄ F14  = 6 ˄ F19  = 0 ˄ F21  = 1 ˄ F22  = 8 ˄ F24  = 9 ˄ F34  = 8 ˄ 

F39  = 0 ˄ F42  = 7 ˄ F49  = 0 ˄ F51 = 1) 
Type of source 

is 1A 

2 (F11  = 9 ˄ F14  = 2 ˄ F19  = 2 ˄ F21  = 7 ˄ F22  = 6 ˄ F24  = 7 ˄ F39  = 1 ˄ 

F42  = 0 ˄ F49  = 9) 
Type of source 

is 2A 

. 

. 

. 

. 

. 

. 

. 

. 

. 

27 (F11  = 3 ˄ F14  = 6 ˄ F19  = 0 ˄ F21  = 4 ˄ F22  = 7 ˄ F24  = 9 ˄ F34  = 1 ˄ 

F39  = 5 ˄ F42  = 2 ˄ F49  = 6 ˄ F51 = 6) 
Type of source 

is 9A 

28 (F11  = 9 ˄ F14  = 6 ˄ F19  = 0 ˄ F21  = 3˄ F22  = 7 ˄ F34  = 1 ˄ F39  = 5 ˄ 

F42  = 7 ˄ F49  = 1 ˄ F51 = 3) 
Type of source 

is 1A_1C 

. 

. 

. 

. 

. 

. 

. 

. 

. 

47 (F11  = 3 ˄ F14  = 6 ˄ F19  = 0 ˄ F22  = 3 ˄ F24  = 3 ˄ F34  = 1 ˄ F39  = 7 ˄ 

F42  = 3 ˄ F49  = 5 ˄ F51 = 6) 
Type of source 

is 9A_7C 

It has been observed that, the formulated decision rules have successfully identified 52 

out of 54 different SPD events and 36 out of 40 different DPD events. So the classification 

accuracies for identifying single location and double location PD sources are 

approximately 96% and 90% respectively. All these information have been summarized 

in Table 6.7. It should be noted that the classification accuracy explicitly depends on the 
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Structuring Element chosen while extracting features by Mathematical Morphology and 

the discretization algorithm to assign class values on attributes. If these are changed or 

recalibrated then the accuracy can be improved further. 

Table 6.7 Classification accuracies for identification of optical PD source by Rough Set Theory 

 

 

 

 

 

6.2.2 FEATURE CLASSIFICATION BY SPARSE REPRESENTATION CLASSIFIER 

Classification of features by sparse representation classifier algorithm requires a different 

approach. It has been discussed in Chapter 4 that, for classification through sparse 

representation, the test samples in the testing data set are to be represented as sparse linear 

combination of training samples. The training samples of all the classes are arranged in 

the columns of matrix Train. Similarly, the test samples are arranged in the columns of 

another matrix Test. If number of training samples is more than number of testing 

samples, then the sparse linear combination of training samples are obtained by finding 

the sparsest solution to the matrix equation (6.1). 

                                                           STrainTest                                                (6.1) 

The sparsest solution is approximately obtained by employing 1L -minimisation 

technique.  

Similar to the information system processed by RST, the constructed training data set 

comprises 60% of total optical PD events. There are five data sets for each of the optical 

PD event and each data set consists of five data pertaining to five signals captured by five 

sensors. Out of the five data sets, three data sets have been used for training. Additionally, 

there are 45 features related to a single data set (Nine extracted features from each of the 

five morphologically transformed optical PD signals). Three data sets, pertaining to a 

single optical PD event and comprising 45 features, have been arranged in three 

consecutive columns. In this way all the data sets have been arranged to form the training 

data set. The classes are the different optical PD events corresponding to the positions of 

optical source inside the PDSS box. Therefore, the training data set comprises of 47 

classes (corresponding to 27 optical SPD events and 20 optical DPD events) and 3 

training samples in each class. The training data set has been presented in the Table 6.8. 

Total No. of single 

PD source 

No. of successful 

classification 

% Accuracy 

54 52 96 

Total No. of 

double PD Source 

No. of successful 

classification 

% Accuracy 

40 36 90 
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Table 7.8 Normalised training data set pertaining to sparse representation classification 

Dimensions 

of training 

samples 

Classes of training samples corresponding to optical SPD and optical DPD events 

1A 2A … 9C 1A_1C … 9C_7C 

F11 0.988 0.988 0.989 0.959 0.959 0.957 … 0.329 0.316 0.331 0.989 0.988 0.987 … 0.292 0.283 0.296 

F12 1 1 1 0.366 0.367 0.381 … 1 1 1 0.981 0.98 0.982 … 0.998 0.998 0.998 

F13 0.023 0.024 0.024 0.027 0.028 0.029 … 0.573 0.588 0.571 0.024 0.023 0.024 … 0.61 0.621 0.605 

F14 1 1 1 0.210 0.211 0.225 … 1 1 1 0.974 0.973 0.976 … 0.997 0.997 0.997 

F15 0.549 0.548 0.549 0.565 0.560 0.565 … 0.896 0.904 0.903 0.552 0.55 0.549 … 0.945 0.949 0.948 

F16 0.993 0.993 0.993 0.995 0.995 0.995 … 0.996 0.996 0.996 0.993 0.993 0.993 … 0.996 0.996 0.996 

F17 0.995 0.995 0.994 0.997 0.997 0.997 … 0.997 0.997 0.997 0.994 0.994 0.995 … 0.997 0.997 0.997 

F18 0.974 0.974 0.974 0.973 0.973 0.972 … 0.947 0.947 0.947 0.976 0.976 0.975 … 0.948 0.948 0.948 

F19 0 0 0 0.415 0.413 0.400 … 0 0 0 0.037 0.038 0.036 … 0.002 0.002 0.002 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… . 

. 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… . 

. 

. 

. 

. 

. 

. 

. 

. 

F55 0.997 0.993 0.995 0.848 0.836 0.850 … 0.885 0.890 0.889 0.976 0.972 0.974 … 0.912 0.904 0.909 

F56 0.997 0.997 0.997 0.997 0.997 0.997 … 0.996 0.996 0.996 0.996 0.996 0.996 … 0.995 0.995 0.995 

F57 0.998 0.998 0.998 0.998 0.998 0.998 … 0.997 0.997 0.997 0.997 0.997 0.997 … 0.997 0.997 0.997 

F58 0.943 0.943 0.943 0.942 0.942 0.942 … 0.948 0.947 0.947 0.946 0.947 0.946 … 0.950 0.950 0.950 

F59 0.055 0.054 0.055 0.000 0.000 0.000 … 0.127 0.124 0.126 0.136 0.138 0.131 … 0.103 0.1 0.103 
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In Table 6.8, each column comprises 45 features related to one optical PD event. Total 

number of training samples are 141 and dimensionality of each training sample is 45. In 

Table 6.8, the notation ijF  denotes ‘
thj  feature of the transformed optical signal which 

has been captured by thi  optical sensor’. As there are in total 235 optical PD events, there 

will be 94 test samples in the testing data set. The sparsest solution to Equation (6.1) has 

been obtained by solving the 1L -minimisation problem of equation (6.2). 

                            
1

minˆ SS   subject to TestSTrain                               (6.2)  

In the present work, the 1L -norm has been minimised by employing Primal-dual 

algorithm for linear programming.  

Unlike RST, the sparse representation classifier does not provide any decision rules. 

Instead it provides the sparsest solution Ŝ  to the Equation (6.1). Out of 94 test samples, 

any number of test samples can be arranged to form matrix Test. Sparsest solution Ŝ  will 

be different for different set of test samples. However, for calculation of classification 

accuracy, all the test samples were used.  

Classes of the test samples have been ascertained by identifying the non-zero elements 

in the columns of matrix Ŝ  and then evaluating the estimates by multiplying such 

columns with matrix Train. The difference between the estimates and test samples were 

evaluated by calculating the residuals. The test samples have been assigned classes if for 

a particular class the residual is minimum. 

It has been observed that, the sparse representation classifier algorithm has successfully 

identified ‘53’ out of ‘54’ different SPD events and ‘38’ out of ‘40’ different DPD events. 

So the classification accuracy for identifying single location and double location PD 

sources are approximately 98% and 95% respectively. All these information have been 

summarized in Table 6.9. Comparing with the classification accuracies provided by RST, 

as shown in Table 6.7, it can be inferred that sparse representation classifier provides 

better performance. 

Table 6.9 Classification accuracies for identification of optical PD source by sparse representation 

classification 

 

 

 

 

Total No. of single 

PD source 

No. of successful 

classification 

% Accuracy 

54 53 98 

Total No. of 

double PD Source 

No. of successful 

classification 

% Accuracy 

40 38 95 
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6.3 IDENTIFICATION OF ACOUSTIC PD EVENTS 

The acoustic PD events have been classified based on two parameters – sequence of 

arrival of direct waves at different sensors and levels of amplitudes of the acoustic signals 

captured by those sensors. A suitable notation scheme for identification of sequences of 

arrival has been introduced in Table 5.1. It has been again provided in Table 6.10 for 

convenience. 

Table 6.10 Notations to identify sequence of arrival of direct waves 

Notation Interpretation 

I Sensor is closest to the relevant PD location  

II Sensor is at moderate distance from the PD location 

III Sensor is farthest from PD the location 

Utilising this notation scheme, sequences of arrival for all the acoustic SPD and DPD 

events have been obtained. 

In addition to sequences of arrival, the peak amplitudes of the captured acoustic signals 

have also been obtained. It has been already discussed in chapter 6 that peak amplitudes 

of signals captured by five acoustic sensors are uniquely associated with each acoustic 

PD event. The values of peak amplitudes can be though as numerical features related to 

each acoustic PD event. The normalised peak amplitudes for all the acoustic PD events 

have been already shown in Table 5.4 of Chapter 4. 

Employing the concepts of Rough Set, all the numerical values pertaining to normalised 

peak amplitudes of all the captured acoustic signals have been discretized for increased 

flexibility. The ranges of numerical values and corresponding class values have been 

provided in Table 6.11. 

Table 6.11 Different ranges of numerical values pertaining to peak amplitudes and corresponding 

assigned classes 

Range of 

Numerical  

Value 

0 

to 

0.25 

0.25  

to  

0.35 

0.35  

to 

0.45 

0.45 

to 

0.55 

0.55 

to 

0.65 

0.65 

to 

0.75 

0.75 

to 

0.85 

0.85  

to 

0.95 

0.95  

to  

1.00 

Assigned 

Class 

0 1 2 3 4 5 6 7 8 

All the numerical values of Table 5.4 have been replaced with corresponding class 

values. The complete information about the sequences of arrival and levels of peak 

amplitudes corresponding to acoustic PD events have been provided in Table 6.12. 
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Table 6.12 Sequences of arrival and levels of peak amplitudes pertaining to different acoustic SPD and 

acoustic DPD events 

Acoustic SPD 

Events 

Sequences of arrival Levels of peak amplitudes 

AS1 AS2 AS3 AS4 AS5 AS1 AS2 AS3 AS4 AS5 

11 I II III II II 4 2 1 3 4 

12 I II II I II 3 1 1 4 2 

13 I I II II II 3 4 1 1 2 

14 I I II II I 3 3 1 2 5 

15 I II II I I 3 1 1 5 4 

16 I II III II III 3 4 1 2 2 

17 I I III III II 4 4 1 2 3 

18 I II III II I 4 2 1 3 6 

19 I III III I II 6 1 6 3 6 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

37 III I I III II 1 4 2 0 4 

38 III II I II I 1 2 5 2 4 

39 III III I I I 1 1 8 5 2 

Acoustic DPD 

Events 

Sequence of arrival Level of peak amplitude 

AS1 AS2 AS3 AS4 AS5 AS1 AS2 AS3 AS4 AS5 

11_31 - I - I I 1 2 8 3 4 

11_32 - - - - - 1 4 1 4 6 

11_37 - - - - - 4 8 1 3 4 

31_12 - - - - - 2 1 4 4 2 

31_17 - - - - - 8 3 1 1 3 

12_13 I - II - II 3 4 1 3 2 

12_14 I - II - - 5 4 2 1 4 

13_15 I - II - - 5 3 2 1 6 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

33_35 II - I - - 1 3 3 5 3 

35_34 II - I - - 1 1 4 4 5 

39_37 II - I - II 3 1 4 4 5 
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Similar to optical PD events, there are five data sets corresponding to each acoustic PD 

event. Out of those five data sets, three data sets have been utilised for construction of 

Table 6.12. However it has been observed that the sequences of arrival and levels of peak 

amplitudes are identical for all three data sets. Due to this reason, sequences of arrival 

and levels of peak amplitudes for only one set of data has been shown in Table 6.12. 

In order to identify an unknown acoustic PD event, first sequences of arrival of direct 

wave at different sensors and levels of amplitudes of the acoustic signals captured by 

those sensors are found out. If peaks in all the captured signals are easily distinguishable 

and are unique, then clearly the unknown event must be a single acoustic PD event. If 

peaks cannot be distinguished in some of the signals then PD event is most likely a DPD 

event. Then the numerical values are pertaining to peak amplitudes are assigned classes 

using the information given in Table 6.11. The unknown acoustic PD event can be easily 

identified by matching the sequences and levels with the rows of Table 6.12. 

Out of the five data sets, the rest two data set has be used to validate identification 

accuracy. It has been observed that using information given in Table 6.12, 25 out of 27 

acoustic SPD events and 17 out of 20 acoustic DPD events can be successfully identified 

in each of these sets. 
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CHAPTER 7.  

CONCLUSIONS 

7.1 CONCLUSIONS 

The present work is aimed at identification and localisation of single and multiple Partial 

Discharge sources based on optical and acoustic signals under simulated conditions. This 

work investigated the possibility of PD detection and measurement from outside of an 

emulated equipment enclosure by analysing the optical or acoustic signals captured by 

suitable sensors located at the inside and outside wall respectively.  

For that purpose, an optical PD source and an acoustic PD source were fabricated. 

Additionally, a steel-made cubical box, called the Partial Discharge Source Simulator or 

PDSS box, was constructed which emulates the equipment enclosure. For capture of either 

type of signals from these sources, optical and acoustic sensors were mounted on the walls 

of this box. Each type of PD sources were separately placed inside the box at different 

strategic locations and data corresponding to each type of PD signal for all the locations were 

recorded by suitable sensors. Recording of PD signals for all the locations inside the PDSS 

box was termed as PD data acquisition. The placement of PD sources at a given location 

inside the PDSS box were termed as PD events. For emulation of single PD phenomena, only 

one type of PD source was placed inside the PDSS box and this event was called Single PD 

(SPD) event. Similarly to emulate multiple PDs, two such same type of PD sources were 

placed at different locations inside the box and this event was named as Double PD (DPD) 

Event.. The recorded optical signals and acoustic signals were analysed separately. 

By analysing the recorded optical PD signals, it was observed that these signals are mostly 

sparse in nature. To fill up the sparse domains of the captured optical PD signals, these signals 

were transformed by employing Mathematical Morphology, a time domain based signals 

transformation tool. After that, suitable statistical features were extracted from the 

morphologically transformed optical PD signals. These extracted features were classified 

with two separate classification techniques – Rough Set Theory (RST) and Sparse 

Representation Classification. It has been observed that RST provides very good 

classification accuracy and can be considered as an effective tool for PD localisation.  
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The Sparse Representation performed better than the RST in terms of classification 

accuracy. Therefore Sparse Representation Classification can be considered as a better tool 

than RST. 

The locations of acoustic PD source inside the cubical box were identified by adopting 

a completely different approach. The locations were recognised based on two parameters, 

sequence of arrival of PD generated acoustic waves at different acoustic sensors mounted 

on outside walls of the cubical box and levels of peak amplitudes of the captured acoustic 

signals by those sensors. The results show that this combined methodology can 

effectively identify the locations of single as well as double PD sources with very good 

accuracy.  

7.2 FUTURE SCOPES 

There are many aspects of the present work which can be improved further. In the present 

scheme, for emulation of multiple PDs, only two PD sources were placed inside PDSS 

box. A more number of PD sources can be used simultaneously for obtaining better 

results. Moreover, retuning of corresponding Structuring Element of MM may further 

improve the classification accuracy.  

The optical method discussed in the present work is particularly useful for PD detection 

of power transformers, in which case the sensors will be mounted on the inside walls of 

the tank and they capture signals form PD sources occurring at the outskirts of the coils 

or assembly. For practical cases high sensitivity sensors are recommended because 

transformer oil may significantly decrease the intensity of optical signals emitted out by 

potential PD sources. The application of this method can be justified considering the 

higher classification accuracy and very low cost of the equipment involved.  

It has been reported by various researches that electrical PD signals are more efficient 

in detecting PD discharges as compared to both optical and acoustic signals. It remains 

to be seen, whether the developed classifier would work with desired accuracy in case of 

electrical PD signals or a new algorithm is needed to be developed. 
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