
A Greedy Grammar-based Compression of DNA
Strings using Compressed Suffix Array

Thesis
submitted in partial fulfillment

of the requirement for the degree of
Master of Computer Science and Engineering

in
The Faculty of Engineering & Technology,

Jadavpur University
by

Name of the student : Subhabrata Dutta
Class Roll No. : 001410502019

University Registration No. : 107850 of 2009 - 10
Examination roll number : M4CSE1615

under the guidance of
Professor Shovonlal Kundu

Department of Computer Science & Engineering
Jadavpur University, Kolkata - 700 032

May 28, 2016

Certificate of Submission

I hereby recommend that the thesis, entitled as “A Greedy Grammar-
based Compression of DNA Strings using Compressed Suffix Array”,
is prepared by:

Name of the student : Subhabrata Dutta
Class Roll No. : 001410502019

University Registration Number : 107850 of 2009-10
Examination Roll Number : M4CSE1615

under my guidance and supervision, be accepted in partial fulfillment of the
requirements for the degree of Master of Technology in Computer Technology
from the Department of Computer Science & Engineering under the Jadavpur
University.

Signature of thesis supervisor :
Name : Professor Shovonlal Kundu

Department : Computer Science & Engineering
Jadavpur University

Countersigned by,

Signature of head of the department :
Name : Professor Debesh Kumar Das

Department : Computer Science & Engineering
Jadavpur University

Signature of Dean :
Name : Professor Sivaji Bandyopadhyay

: Faculty Council of Engineering & Technology
Jadavpur University

Faculty of Engineering & Technology

Jadavpur University

Kolkata - 700 032

Certificate of approval

(Only in case the thesis is approved)

The thesis at instance is hereby approved as a creditable study of an Engi-
neering subject carried out and presented in a manner satisfactory to warrant its
acceptance as a prerequisite to the degree for which it has been submitted. It is
understood that by this approval the undersigned does not necessarily endorse
or approve any statement made, opinion expressed or conclusion drawn therein,
but approve this thesis for the purpose for which it is submitted.

Signature of the Examiner Signature of the Supervisor

4

Contents

1 Introduction 11
1.1 Data Compression Techniques . 11

1.1.1 Why compress data . 11
1.1.2 Two methods of compression: Lossless and Lossy 11
1.1.3 Online vs. Offline models of Data Compression 12
1.1.4 Entropy Encoding . 12
1.1.5 Burrows-Wheeler Transform 13

1.2 Context Free Grammar . 14
1.3 DNA sequence and Protenes . 15
1.4 Suffix Tree and Suffix Array . 16
1.5 Least Common Prefix array . 20

1.5.1 LCP-interval . 20
1.6 Compressed Suffix Array . 21
1.7 Thesis Organization . 23

2 Grammar-based Compression 25
2.1 Definition . 25
2.2 Development . 25
2.3 Some Issues related to Grammar-based Compression 26

2.3.1 Smallest Grammar Problem 26
2.3.2 Straight-line grammar . 27

2.4 Some well known Grammar-based Compression methods 27
2.4.1 The Sequential Algorithm 27
2.4.2 The Bisection Algorithm 28
2.4.3 LZ78 . 28

3 Algorithm DC3 31
3.1 Basic Idea . 31
3.2 Algorithm . 31
3.3 Time Complexity . 33

4 Compressed Suffix Array Construction 35
4.1 Basic Idea . 35
4.2 Algorithm to compute Ψ . 35

5

4.3 Algorithm to construct a sampled SA 36
4.4 Time Complexity . 38

5 LCP computation from Ψ-function 39
5.1 Algorithm . 39
5.2 Time complexity . 40

6 Construction of a Greedy Grammar 43
6.1 Basic Idea . 43

6.1.1 Repeat: Overlapping and Non-overlapping 43
6.1.2 Longest repeated vs. Maximum repeated 44

6.2 Algorithm . 45
6.2.1 Data Structures . 45
6.2.2 Generating Rules . 45
6.2.3 Generating grammar from rules 47

6.3 Time Complexity . 52

7 Experimental Results 53

8 Disscussion and Scope of Improvement 59
8.1 Achieving smaller space complexity 59
8.2 Choice of substring to substitute 60
8.3 Segment-wise grammar generation 60
8.4 Going towards hieararchy . 61

9 Conclusion 63

List of Figures

1.1 Burrows-Wheeler transformation of string MISSISSIPPI$ 14
1.2 Image showing an Eucaryotic cell, its neuclear structure, chro-

matenes and the DNA base pair structure(image courtsey: http://ww2.val-
dosta.edu/;https://pmgbiology.files.wordpress.com/) 17

1.3 Suffix tree of the string “acatgtgaca$” 18
1.4 lcp-interval tree of the string acatgtgaca$ 21

4.1 Computation of SA[9] of the string “acagtcacagtttttacagt$” using
compressed suffix array along with sampled suffix entries; each
hop is done from i to Ψ(i) . 37

5.1 Showing the hops made from each suffix to its next one, using
compressed suffix array; green arrows showing the path of hops
for SA[2], while the red one showing the same for SA[3]; black
arrows points from index to the respective compressed suffix array
entry . 40

6.1 All the overlapping and non-overlapping repeatitions of ”aca” in
”acacatgacagacacacat” . 43

6.2 Black strips showing the longest repeated ”acac” and red strips
showing maximum repeated ”ac” in ”acacatgacagacacacat” along
with the rules after substitution. Colored region shows repeati-
tion in substituted text . 44

6.3 1st rule generation by the algorithm with j = 3 and i = 4 on
string cagacaggcagtccagctc . 49

6.4 2nd rule generation by the algorithm with j = 3 and i = 8 on
string cagacaggcagtccagctc . 50

6.5 3rd rule generation by the algorithm with j = 2 and i = 11 on
string cagacaggcagtccagctc . 51

7.1 Graph showing compression ratio achieved vs. input size(in KB) 54
7.2 Graph showing execution time vs length of longest repeating sub-

string; Two outliers are also shown 55

7

8 LIST OF FIGURES

7.3 Graph showing different execution times for a single input file of
size 302KB for different values of j 56

7.4 Graph showing generated grammar size for a single file of size
302KB for different values of j 57

List of Tables

1.1 Suffix and LCP array of ”acatgtgaca$” 20
1.2 Suffix array and Compressed Suffix Array of “acatgtgaca$” 22

7.1 Input size, execution time, generated grammar size and no. of
rules generated for different input data sets 53

9

10 LIST OF TABLES

Chapter 1

Introduction

1.1 Data Compression Techniques

1.1.1 Why compress data

Data compression refers to reducing the amount of space needed to
store a piece of data. Although computer storage is relatively cheep,
as the amount of data keeps increasing rapidly the cost of storage is
a factor. However, the most important reason for compressing data
is that more and more we share data. The Web and its underlying
networks have limitations on bandwidth that define the maximum
number of bits or bytes that can be transmitted from one place to
another in a fixed amount of time.

1.1.2 Two methods of compression: Lossless and Lossy

Compression can be either lossy or lossless. Lossless compression
reduces bits by identifying and eliminating statistical redundancy.
No information is lost in lossless compression. Lossy compression
reduces bits by identifying unnecessary information and removing
it.

Lossless compression techniques, as their name implies, involve
no loss of information. If data have been losslessly compressed, the
original data can be recovered exactly from the compressed data af-
ter a compress/expand cycle. Lossless compression is generally used
for so-called “discrete” data, such as database records, spreadsheets,
word-processing files, and even some kinds of image and video in-
formation. Text compression is a significant area for lossless com-

11

12 CHAPTER 1. INTRODUCTION

pression. It is very important that the reconstruction is identical to
the text original, as very small differences can result in statements
with very different meanings. Furthermore, if data of any kind are
to be processed or “enhanced” later to yield more information, it is
important that the integrity be preserved. For example, suppose we
compressed a radiological image in a lossy fashion, and the differ-
ence between the reconstruction Y and the original X was visually
undetectable. If this image was later enhanced, the previously un-
detectable differences may cause the appearance of anomalies that
could potentially mislead the radiologist.

Lossy compression works very differently. These algorithms sim-
ply eliminate “unnecessary” bits of information, tailoring the file so
that it is smaller. This type of compression is used a lot for reducing
the file size of bitmap pictures, which tend to be fairly bulky.

1.1.3 Online vs. Offline models of Data Compression

A data compression method is called online or off-line depending on
whether the whole input data is fed to the algorithm for once or the
input comes as a symbol or block stream and the compressor have to
decide actin depending on the next input. Offline methods usually
have the access to a wholistic knowledge about the dta, and that
accounts for the huge space complexity they have to deal with. In
case of online compressors, working space becomes less a issue than
the complex decision making process for each input block/symbol
on the fly, without having prior knowledge of the context.

1.1.4 Entropy Encoding

Consider a discrete, finite alphabet random variable X with alpha-
bet Σ = {α0, α1, · · · , αn−1}.
Let p(x) denote the probability of x ∈ X. Then the information
associated with event X = x is given by,

h(x) = − log p(x)
and the information content associated with X is

H(X) = −
∑

x∈Σ p(x) log p(x)
This definition of information and entropy associated with logical
entities was given by Shannon[27]. When data is compressed, the
goal is to reduce redundancy, leaving only the informational content.
Since the length of a codeword for message a(i) must be sufficient

1.1. DATA COMPRESSION TECHNIQUES 13

to carry the information content of a(i), entropy imposes a lower
bound on the number of bits required for the coded message. The
total number of bits must be at least as large as the product of H
and the length of the source ensemble. Since the value of H is gen-
erally not an integer, variable length codewords must be used if the
lower bound is to be achieved. A code is asymptotically optimal if
it has the property that for a given probability distribution, the ra-
tio of average codeword length to entropy approaches 1 as entropy
tends to infinity. That is, asymptotic optimality guarantees that
average codeword length approaches the theoretical minimum (en-
tropy represents information content, which imposes a lower bound
on codeword length).

1.1.5 Burrows-Wheeler Transform

A very promising development in the field of lossless data compres-
sion is the Burrows-Wheeler Compression Algorithm (BWCA), in-
troduced in 1994 by Michael Burrows and David Wheeler[4]. The
algorithm received considerable attention since of its Lempel-Ziv
like execution speed and its compression performance close to state-
of-the-art PPM algorithms. It is based on a permutation of the
input sequence - the Burrows-Wheeler Transformation (BWT), also
called Block Sorting -, which groups symbols with a similar context
close together. In the original version, this permutation was fol-
lowed by a move to front (MTF) transformation and a final entropy
coding (EC) stage. Later versions used different algorithms which
come after the Burrows-Wheeler transform, since the stages after
the Burrows-Wheeler transform have a significant influence on the
compression rate too.
BWT works as follows:
Input: String[n];
Output: bwt(String)

1. Create a n× n array M;

2. M[0][] → String[n];

3. For i ∈ [0 · · ·n− 2], rotate M[i][] and store it in M[i+ 1][]

4. Sort all M[i][] lexicographically

5. bwt(String) → M[][n− 1]

14 CHAPTER 1. INTRODUCTION

M

I

S

S

I

S

S

I

P

P

I

$

M I S S I S S I P P I $

I S S I S S I P P I $ M

S S I S S I P P I $ M I

S I S S I P P I $ M I S

I S S I P P I $ M I S S

S S I P P I $ M I S S I

S I P P I $ M I S S I S

I P P I $ M I S S I S S

P P I $ M I S S I S S I

P I $ M I S S I S S I P

I $ M I S S I S S I P P

$ M I S S I S S I P I I

$ M I S S I S S I P I I

I $ M I S S I S S I P P

I P P I $ M I S S I S S

I S S I P P I $ M I S S

I S S I S S I P P I $ M

M I S S I S S I P P I $

P I $ M I S S I S S I P

P P I $ M I S S I S S I

S I P P I $ M I S S I S

S I S S I P P I $ M I S

S S I P P I $ M I S S I

S S I S S I P P I $ M I

Figure 1.1: Burrows-Wheeler transformation of string MISSISSIPPI$

1.2 Context Free Grammar

A context-free grammar G is defined by the 4-tuple:[28]
G = {V,Σ, R, S} where

1.3. DNA SEQUENCE AND PROTENES 15

1. V is a finite set; each element v ∈ V is called a non-terminal
character or a variable. Each variable represents a different
type of phrase or clause in the sentence. Variables are also
sometimes called syntactic categories. Each variable defines a
sub-language of the language defined by G.

2. Σ is a finite set of terminals, disjoint from V , which make up
the actual content of the sentence. The set of terminals is the
alphabet of the language defined by the grammar G.

3. R : V ⇒ (V ∪ Σ)∗ is a finite relation where the asterisk repre-
sents the Kleene star operation. The members of R are called
the rules or productions of the grammar.

4. S is the start variable (or start symbol), used to represent the
whole sentence (or program). It must be an element of V .

A context-free grammar provides a simple and mathematically pre-
cise mechanism for describing the methods by which phrases in some
natural language are built from smaller blocks, capturing the ”block
structure” of sentences in a natural way. Its simplicity makes the
formalism amenable to rigorous mathematical study. Important fea-
tures of natural language syntax such as agreement and reference are
not part of the context-free grammar, but the basic recursive struc-
ture of sentences, the way in which clauses nest inside other clauses,
and the way in which lists of adjectives and adverbs are swallowed
by nouns and verbs, is described exactly.

The formalism of context-free grammars was developed in the
mid-1950s by Noam Chomsky [7], and also their classification as a
special type of formal grammar (which he called phrase-structure
grammars).

1.3 DNA sequence and Protenes

DNA sequences are, as believed till date, the functional units of any
living organism. From the most primitive Virus to the most com-
plex Human beings, permutations of these four Nitrogen bases on
the anti-parallel polynucleotide strands control every single protene
synthesis for growth, reproduction and other organic functionalities.
DNA usually occurs as linear chromosomes in eukaryotes, and cir-
cular chromosomes in prokaryotes. The set of chromosomes in a cell

16 CHAPTER 1. INTRODUCTION

makes up its genome; the human genome has approximately 3 billion
base pairs of DNA arranged into 46 chromosomes. This encouraged
biologists from all over the world to start enumerating every possi-
ble DNA sequences of living humans. The Human Genome Project
(HGP) is an international scientific research project with the goal
of determining the sequence of chemical base pairs which make up
human DNA, and of identifying and mapping all of the genes of
the human genome from both a physical and functional standpoint.
Though motivated by a sheer deterministic approach to define every
functionality of a complex system by summing its basic units, this
endeavour is enormously helpful to reveal the long hidden mystries
of natural life-forms.

A DNA sequence is composed of nucleotides of four types: ade-
nine (abbreviated A), cytosine (C), guanine (G) and thymine (T).
For complete genomes, these texts can be very elongated. The hu-
man genome for example contains three billions characters over 23
pairs of chromosomes. It contains all the genetic substance of the
human beings. With escalating number of genome sequences being
made available, the difficulty of storing and using databases has to
be addressed. Powell et al show that compressibility is a fine di-
mension of relatedness among sequences and can be effectively used
in sequence alignment and evolutionary tree construction[25]. Con-
ventional text compression schemes are not competent when DNA
sequences are concerned. Since DNA sequence contain only 4 bases
A, G, T, C, each base can be represented by 2 bits. Though standard
compression tools like compress, gzip and bzip2 have more than 2
bits per base when compressing DNA data. Consequently, DNA
compression has become a challenge[5].

1.4 Suffix Tree and Suffix Array

Suffix trees [22][30] and suffix arrays [21] are probably the most
important data structures in stringology. A suffix tree is a trie
storing all the suffixes of a string in lexicographic order.

T is a string of length n, over an alphabet Σ. Let T = αβγ, for
some strings α, β and γ (α and γ could be empty). The string β is
called a substring of T , α is called a prefix of T , while γ is called
a suffix of T . The prefix α is called a proper prefix of T if α = T .
Similarly, the suffix γ is called a proper suffix of T if γ = T .

1.4. SUFFIX TREE AND SUFFIX ARRAY 17

Figure 1.2: Image showing an Eucaryotic cell, its neuclear structure, chro-
matenes and the DNA base pair structure(image courtsey: http://ww2.val-
dosta.edu/;https://pmgbiology.files.wordpress.com/)

18 CHAPTER 1. INTRODUCTION

For simplicity in constructing suffix trees, we usually ensure that
no suffix of the string is a proper prefix of another suffix. This can
be done by placing a sentinel symbol at the end of T such that
the sentinel does not appear anywhere else in T . In practice this is
often achieved by simply appending a $ to T , such that $ /∈ Σ. This
constraint implies that each suffix of T will have its own unique
leaf node in the suffix tree of T , since any two suffixes of T will
eventually follow separate branches in the tree.

Given a string T of length n, its suffix tree T is a rooted tree
with n leaves, where the i-th leaf node corresponds to the i-th suffix
Ti of T . Except for the root node and the leaf nodes, every node
must have at least two descendant child nodes. Each edge in the
suffix tree represents a substring of T , and no two edges out of a
node start with the same character. For a given edge, the edge label
is simply the substring in T corresponding to the edge. We use li
to denote the i-th leaf node. Then, li corresponds to Ti , the i-th
suffix of T . For example, the suffix tree for the string “acatgtgaca$”
is shown in Figure 1.3.

Figure 1.3: Suffix tree of the string “acatgtgaca$”

1.4. SUFFIX TREE AND SUFFIX ARRAY 19

Given the string T = T [1...n]$, of length n, but with the end
of string symbol appended to give a sequence with a total length
n+1, the suffix tree of the resulting string T$ will have the following
properties:

1. Exactly n+ 1 leaf nodes;

2. At most n internal (or branching) nodes (the root node is con-
sidered an internal node);

3. Every distinct substring of T is encoded exactly once in the
suffix tree. Each distinct substring is spelled out exactly once
by traveling from the root node to some node u, such that L(u)
is the required substring.

4. No two edges out of a given node in the suffix tree start with
the same symbol.

5. Every internal node has at least two outgoing edges.

Time complexity to build a suffix tree from an input size n is
O(n) and O(P) time to report a single occurence of a single pattern
of length P. Major disadnantage of suffix trees is their high space
usage, which can be O(n|Σ|) for the fastest application, which is
very much high for large files. To deal with this problem, the suffix
array was invented. A suffix array SA is a lexicogaphically sorted
array of al the suffixes of the input string. Suffix array for input
string T = acatgtgaca$ is SA = [10, 9, 7, 0, 2, 8, 1, 6, 4, 5, 3]. Entries
of suffix array can be found by a simple pre-order traversal of the
suffix tree. Given a suffix tree, thus building of suffix array requires
O(n) worst case time. Although the suffix tree can be constructed
in O(n) time, it was a long unsolved open problem whether a suffix
array can be built from scratch in linear time untill 2003 [17][14].

20 CHAPTER 1. INTRODUCTION

i T[i..n] Sorted Suffix SA[i] lcp[i]
0 acatgtgaca$ $ 10 0
1 catgtgaca$ a$ 9 0
2 atgtgaca$ aca$ 7 1
3 tgtgaca$ acatgtgaca$ 0 3
4 gtgaca$ atgtgaca$ 2 1
5 tgaca$ ca$ 8 0
6 gaca$ catgtgaca$ 1 2
7 aca$ gaca$ 6 0
8 ca$ gtgaca$ 4 1
9 a$ tgaca$ 5 0
10 $ tgtgaca$ 3 2

Table 1.1: Suffix and LCP array of ”acatgtgaca$”

1.5 Least Common Prefix array

To report the occurence of a certain substring using suffix array, one
need to compute the “least common prefix” of all the suffixes. The
LCP array L = [L0, L1, · · · , Li, · · · , Ln], where Li is the lcp-value of
the i-th suffix which is the length of the longest common prefix of
SA[i] and SA[i− 1]. The lcp-value of SA[0] is set to zero.

In Table 1.1, lcp value of SA[3] = 3, because SA[2] = aca$
and SA[3] = acatgtgaca$ both have “aca” as their longest common
prefix. Given the lcp array, one can easly find the lcp between any
two non-consecutive suffixes. The lcp between suffixes SA[i] and
SA[j] where j > i and j− i > 1 is min{lcp[i+1], lcp[i+2], .., lcp[j]}.

1.5.1 LCP-interval

The concept of lcp-interval was given by Abouelhoda et. al.[1]. This
is simply an interval of indices with same lcp. Figure 1.4 shows the
lcp interval tree of the string “acatgtgaca$”. Each node of the tree
contains an interval [sp, ep] along with lcp-value l where the follow-
ing conditions are met,

1. lcp[sp] < l,

2. lcp[k] ≤ l for all k with sp+ 1 ≤ k ≤ ep ,

3. lcp[k] = l for at least one k with ep+ 1 ≤ k ≤ ep ,

1.6. COMPRESSED SUFFIX ARRAY 21

4. lcp[ep+ 1] < l

One can see the resemblence between the suffix and the lcp in-
terval tree. In fact each node in an lcp interval tree corresponds to
an internal node in a suffix tree.

 i 0 1 2 3 4 5 6 7 8 9 10

 SA[i] 10 9 7 0 2 8 1 6 4 5 3

 LCP[i] 0 0 1 3 1 0 2 0 1 0 2

0-[0-10]

Figure 1.4: lcp-interval tree of the string acatgtgaca$

1.6 Compressed Suffix Array

Although suffix arrays were designed to get rid of the complex struc-
ture and functionalities of suffix trees, they still need space much
bigger. To handle this problem, two succint representation of suffix
array were proposed, one by Grossi and Vitter [13], and other one
by Sadakane[18]. Both of these algorithms use a same feature, com-
pressibility of Ψ-function, which is defined as
Ψ(i) = SA−1[SA[i] + 1], where SA−1[x] = y when SA[y] = x;

To say simply, Ψ(i) returns the index of the suffix that is next to
SA[i] in input text T.

22 CHAPTER 1. INTRODUCTION

i SA[i] Ψ(i)
0 10
1 9 0
2 7 5
3 0 6
4 2 10
5 8 1
6 1 4
7 6 2
8 4 9
9 5 7
10 3 8

Table 1.2: Suffix array and Compressed Suffix Array of “acatgtgaca$”

In the given example in Table 1.2., the Ψ(2) = SA−1[SA[2]+1] =
SA−1[8] = 6. Clearly we can see that SA[Ψ(2)] is “gaca$”, suffix
next to SA[2] = “agaca$”.

Compressibility of this Ψ-function emerges from a certain prop-
erty of this function, which can be observed from the example in
hand. The array representing Ψ-values of a string is piecewise
sorted. To be more specific, suffixes with same leading character
have Ψ-values in sorted. According to the definition of suffix arrays,
SA[i] is lexicographically lower than SA[i+1]. If SA[i] and SA[i+1]
has same leading character, say SAi[0], then the suffix next to SA[i],
which is {SAi[1]SAi[2]SAi[3] · · · } must be lexicographically lower
than {SAi+1[1]SAi+1[2]SAi+1[3] · · · }, the suffix next to SA[i + 1],
and thus have index smaller than that. This piecewise sortedness of
Ψ-values helps to store it using far lesser than the O(n logn) bits,
otherwise necessary to store an array of n-integers. One can use
Elias-Fano encoding to store this array into O(n) bits.

Since the year 2000, two families of compressed suffix arrays
(CSAs) emerged [23]. One family, simply called CSAs used the de-
fined compressibility property of Ψ-functions; and simulated the ba-
sic SA procedure for pattern searching, achieving the same O(m logn)
counting time of basic SAs. A second family, called FM-indexes
[9][11][10] built on the Burrows-Wheeler transform of T and on a
new concept called backward-search, which allowed O(|P | logΣ) and
even O(|P |) time to count for occurences of a pattern P .

1.7. THESIS ORGANIZATION 23

1.7 Thesis Organization

In Chapter 1, we discussed the different aspects of data compres-
sion, self-indexing data structures and related notions upon which
this thesis is based on. Next in Chapter 2, the concept of Grammar-
based compression is elaborated along with the explanation of some
well known algorithms. The algorithm DC3 for a linear-time con-
struction of suffix array is discussed in Chapter 3. From this con-
structed suffix array, the procedure of constructing a succint repre-
sentation is elaborated in Chapter 4. Next, we proceed to compute
the lcp information of suffices from the compressed suffix array gen-
erated previously, in Chapter 5. In Chapter 6, a greedy algorithm to
report non-overlapping substrings of a DNA sequence is proposed,
using which a Context Free Grammar is generated. Chapter 7 in-
cludes the findings of running this algorithm over different data sets
and results are compared with using different parameters. Chapter
8 discusses the variations that can be used for varying user needs
and further improvements that can be done.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Grammar-based
Compression

2.1 Definition

Grammar-based compression methods are a class of lossless univer-
sal data compression algorithm which generate a context free gram-
mar G for a given input string T such that, when production rules of
G are applied in order, T and only T is constructed. Grammar-based
codes are universal in the sense that they can achieve asymptotically
the entropy rate of any stationary, ergodic source with a finite al-
phabet [16].

Example: the following grammar G represents the string T =
acatgtgaca$

R0 ⇒ R1R2R2R1

R1 ⇒ aca

R2 ⇒ tg

2.2 Development

Grammar-based data compression was first proposed explicitly by
Kieffer and Yang [15] and Nevill- Manning [24], but is closely related
to some earlier ”macro-based” schemes proposed by Storer [29]. Sev-
eral grammar-based compression algorithms have been proposed. A
large detailed can be found in [20]. Nevill-Manning [24] devised

25

26 CHAPTER 2. GRAMMAR-BASED COMPRESSION

the SEQUITUR algorithm which incrementally builds a grammar
in a single pass through the input string. This procedure was subse-
quently improved by Kiefer and Yang [15] to what we refer to here as
the SEQUENTIAL algorithm. The same authors employed a com-
pletely different approach to generating a compact grammar for a
given string in their BISECTION algorithm. This procedure parti-
tions the input into halves, then quarters, then eighths, etc. and cre-
ates a nonterminal in the grammar for each distinct substring gen-
erated in this way. Bisection was subsequently generalized to MPM
[16] in order to exploit multi-way and incomplete partitioning. De
Marcken [8] presented a complex multipass algorithm that empha-
sizes avoiding local minima. Apostolico and Lonardi [2] proposed
a greedy algorithm n which rules are added in a steepest-descent
fashion. Finally, even though it predates the idea of grammar-based
compression, the output of the well-known LZ-78 algorithm [31]. In
2003, Rytter proposed a new class of grammar called AVL-grammar
[26], a straightforward extension of the classical AVL-tree. This al-
gorithm achieves mathcalO(n logΣ) time complexity and O(logn)
ratio approximation of minimal grammar-based compression of a
given string of length n over an alphabet Σ. Charikkar et al pro-
posed α-balanced grammar, an O(log(n/g∗)) approximation algo-
rithm, where g∗ is the size of the smallest grammar [6].

2.3 Some Issues related to Grammar-based Com-
pression

2.3.1 Smallest Grammar Problem

In data compression and the theory of formal languages, the smallest
grammar problem is the problem of finding the smallest context-free
grammar that generates a given string of characters. The size of a
grammar is defined by some authors as the number of symbols on
the right side of the production rules [20].

Lehman [20] showed that the smallest grammar problem is NP-
Hard, using a reduction from a restricted form of vertex cover based
closely on an argument by Storer [29]. They also posed that it is
impossible to achieve an approximation ratio less than 8569

8568
in poly-

nomial time unless P=NP.

2.4. SOME WELL KNOWN GRAMMAR-BASED COMPRESSION METHODS27

2.3.2 Straight-line grammar

A straight-line grammar is a formal grammar that generates exactly
one string. Consequently, it does not branch (every non-terminal
has only one associated production rule) nor loop (if non-terminal A
appears in a derivation of B, then B does not appear in a derivation
of A).

A context-free grammar G is an SLG if:

1. for every non-terminal N , there is at most one production rule
that has N as its left-hand side, and

2. the graph G =< V,E >, defined by V being the set of non-
terminals and (A,B) ∈ E whenever B appears at the right-
hand side of a production rule for A, is acyclic.

An SLG in Chomsky normal form is equivalent to a straight-line
program.

2.4 Some well known Grammar-based Compres-
sion methods

2.4.1 The Sequential Algorithm

Nevill-Manning and Witten introduced the SEQUITUR grammar
compression algorithm in [24]. Kieffer and Yang [15] subsequently
offered an improved algorithm, which is reffered as Sequential. This
works as follows:

Begin with an empty grammar, and make a single left-to-right
pass through the input string. At each step, find the longest prefix
of the unprocessed portion of the input that matches the expan-
sion of a secondary nonterminal, and append that nontermnal to
the start rule. Otherwise, if no prefix matches the expansion of a
secondary nonterminal, append the first terminal in the unprocessed
portion to the start rule. In either case, if the last pair of symbols
in the start rule already occurs at some non-overlapping position in
the grammar, then replace both occurrences by a new nonterminal
whose definition is that pair. Finally, if some nonterminal is used
only once after this substitution, then replace it by its de nition,
and delete the corresponding rule.

28 CHAPTER 2. GRAMMAR-BASED COMPRESSION

For example, consider the input string T = agaacaaaataaaaaaaa.
We start with an empty start rule and go on adding characters as
terminals till a non-overlapping repeatition is found. For the first
six passes, no rules are added. At S → agaaca, the next character is
a. Then a rule substitution is made with R1 → aa. So the grammar
becomes,

S → agR1cR1aataaaaaaaa

R1 → aa

For the next passes, every aa is consumed as R1 till the start rule
becomes S → agR1cR1R1tR1R1aaaa. Algorithm finds a repeat of
R1R1 and adds a new rule R2 → R1R1. Eventually it generates the
grammar

S → agR1cR2tR2R2

R2 → R1R1

R1 → aa

2.4.2 The Bisection Algorithm

Kiefer and Yang introduced the BISECTION algorithm [15]. this
procedure works on an input string T as follows.

Select the largest integer k such that |T | > 2k. Partition T into
two substrings with lengths 2k and |T |−2k. Repeat this partitioning
process recursively on each substring of length greater than one.
Create a nonterminal for every distinct string of length greater than
one generated during this process. Each such nonterminal can then
be de ned by a rule with exactly two symbols on the right.

2.4.3 LZ78

The well-known LZ78 [14] algorithm can be regarded as a grammar-
based compressor. The procedure works as follows. Begin with an
empty grammar. Make a single left-to-right pass through the in-
put string. At each step, nd the shortest pre x of the unprocessed
portion that is not the expansion of a secondary nonterminal. This
prefix is either a single terminal a or else expressible as Xa where X
is an existing nonterminal and a is a terminal. Define a new nonter-
minal, either Y → a or Y → Xa, and append this new nonterminal
to the end of the start rule.

2.4. SOME WELL KNOWN GRAMMAR-BASED COMPRESSION METHODS29

For example, on input aabababbabababbabbbbb, the grammar gen-
erated by LZ78 is

S → X1X2X3X4X5X6X7X8X9

X1 → a

X2 → X1b

X3 → X2a

X4 → b

X5 → X4a

X6 → X5b

X7 → X2b

X8 → X7b

X9 → X4b

30 CHAPTER 2. GRAMMAR-BASED COMPRESSION

Chapter 3

Algorithm DC3

3.1 Basic Idea

As stated before, a linear time construction of suffix arrays without
using suffix trees was a long unsolved open problem, though both
the construction of a suffix tree from a given input and construction
of suffix array by traversing a suffix tree were O(n)-time algorithms.
The basic problem was that no known comparison-based sorting can
sort in a linear time. This shortcoming of comparison-based sorting
was excellently overcome in the Difference Cover Modulo-3[14]. DC3
uses Divide-and-Conquire approach. It partitions the suffix array
into two sets, one with suffix entry divisible by zero, and the other
one with the triplets constructed by suffix values 1mod3 and 2mod3.
Then these two sets are sorted in linear time using radix sort. Sorted
partitions are merged in linear time to construct the final suffix
array.

Along with suffix construction, an array charCount[] is also con-
structed which holds the number of occurence of each character in
the string. As this is a DNA string, charCount[] is has 4 cells.

3.2 Algorithm

Input string T [0, n]= “acatgtgaca$” is used to ilustrate DC3. The
desired output is SA[0, n] = {10, 9, 7, 0, 2, 8, 1, 6, 4, 5, 3}.Input string
is converted into integer array using lexicographic ordering.

For example, the given string T becomes [1, 2, 1, 4, 3, 4, 3, 1, 2, 1, 0, 0, 0].
Ending two 0’s are added make the total length divisible by 3.

31

32 CHAPTER 3. ALGORITHM DC3

step 1: Construct a sample
For k = 0, 1, 2, define

Bk = {i ∈ [0, n]|imod3 = k}
Let C = B1∪B2 be the set of sample positions and SC the set of
sample suffixes.

step 2: Sort sample suffixes
For k = 1, 2, construct the strings

Rk = [tktk+1tk+2][tk+3tk+4tk+5] · · · [tmaxBk
tmaxBk+1tmaxBk+2]

whose characters are triplets [tktk+1tk+2]. In this example,

R1 = {[214][343][121][000]}
R2 = {[143][431][210]}

Let R = R1 � R2 be the concatenation of R1 and R2. For this
example,

R = {[214][343][121][000][143][431][210]}

To sort sample suffixes, first radix sort R and then rename each
entry of R by their rank to generate new array R′. For our example,

R′ = {5, 6, 2, 1, 3, 7, 4}

If all the entries of R′ are not distinct, then DC3 is used recur-
sively to sort R′; else, the order in R′ gives the order of suffixes.
In our example, entries of R′ are all distinct, therefore we can con-
struct the suffix array with suffixes at 1-mod3 and 2-mod3 positions,

SA12 = {10, 7, 2, 8, 1, 4, 5}

Once the sample suffixes are sorted, assign a rank to each suffix.
For i ∈ C, let rank(Si) denote the rank of Si in the sample set SC

. Additionally, define rank(Sn+1) = rank(Sn+2) = 0. For i ∈ B0,
rank(Si) is undefined.

rank = {⊥, 5, 3,⊥, 6, 7,⊥, 2, 4,⊥, 1, 0, 0, 0}

3.3. TIME COMPLEXITY 33

step 3: Sort non-sample suffixes
Represent each nonsample suffix Si ∈ SB0 with the pair (ti, rank(Si+1)).
Note that rank(Si+1) is always defined for i ∈ B0. Clearly we have,
for all i, j ∈ B0,

Si ≤ Sj ⇔ (ti, rank(Si+1)) ≤ (tj, rank(Sj+1))

The pairs (ti, rank(Si+1)) are then radix sorted.In our example, or-
der of the non-sample suffixes become

S9 < S0 < S6 < S3

step 4: Merge
The two sorted sets of suffixes are merged using a standard comparison-
based merging. To compare suffix Si ∈ SC with Sj ∈ SB0 , two cases
are distinguished,

i ∈ B1 : Si ≤ Sj ↔ (ti, rank(Si+1)) ≤ (tj, rank(Sj+1))

i ∈ B2 : Si ≤ Sj ↔ (ti, ti+1, rank(Si+2)) ≤ (tj, tj+1, rank(Sj+2))

3.3 Time Complexity

Whole DC3 algorithm can be simplified as recursively dividing input
into lengths one-third and two-third, sorting them and then merge
two sorted strings.

Sorting the sampled saffixes require time O(n), as radix sort is
being used here on integer array each with three digits. Merging two
sorted sub-arrays require linear time too. Thus the time complexity
of this phase, i.e., construction of suffix array using DC3 algorithm
uses O(n) time.

34 CHAPTER 3. ALGORITHM DC3

Chapter 4

Compressed Suffix Array
Construction

4.1 Basic Idea

After DC3 constructing the suffix array from the input string, we
need to construct a succint representation of this suffix array; for
which Ψ(i) for each suffix SA[i] need to be evaluated. Given the
definition of Ψ(i), what we have to do is to find the position of the
suffix SA[i] + 1 for each suffix SA[i]. But searching the whole suffix
array for each suffix to compute Ψ(i), using O(n2) does not look
like a good approach. So we have to device an algorithm that will
search the next suffix for each suffix in sub-linear time.

Also, we have to device a way to compute any SA[i] back from
Ψ(i) in sublinear cost. For that, a sampled version of the original
SA is stored. The basic idea behind such sampling was discussed by
Navarro and Gog [12]; a simpler modification has been used here.

4.2 Algorithm to compute Ψ

From the partial sortedness property of Ψ-function, we must note
that for any suffix SA[i], SA[i]+ 1 can be found within the position
range specified by the 2nd character in the suffix, thereby shortening
the area to be searched by an order equal to alphabet size.

Further, to search for a key in an array in sublinear time, binary
search can be used. But binary search can be done only when keys
are in sorted order. So a radix sort is used.

35

36 CHAPTER 4. COMPRESSED SUFFIX ARRAY CONSTRUCTION

Combining these two features, we get the final algorithm to com-
pute Ψ(i) for each SA[i] as follows,

step 1:
Partition the SA into character-groups using charCount[] con-

structed in the previous phase. Each group now contains the suffixes
starting with same character.

step 2:
Radix Sort each of the groups, with key to sort being the SA

entry.

step 3:
For every i ∈ [1, 2, .., n], search for SA[i]+1 in the group marked

by character T[i+1] using binary search. Store the index of the
searched key as the i-th entry to the compressed suffix array.

4.3 Algorithm to construct a sampled SA

From the definition of Ψ(i),

SA[Ψ(i)] = SA[i] + 1

⇒ SA[i] = SA[Ψ(i)]− 1

= SA[Ψ 2(i)]− 2

= SA[Ψ 3(i)]− 3

= SA[Ψ j(i)]− j

That is, given the suffix array entry of position i, we need to
make j hops to find the suffix at position Ψ−j(i). Using these phe-
nomenon, we can store the SA entries after equal hops, say h, so
that it would take a maximum h hops to calculate each SA[i] back
from the compressed suffix array. To know which positions of the
orginal suffix array are sampled, we store a bit vector of length equal
to suffix array, and set each bit for which the corresponding SA[i]
is stored in the sampled suffix array. For later usage, the position
corresponding to suffix entry 0, that is, first character of the string,
is sampled and stored as inZero. The maximum hop is allowed to
be logn.

4.3. ALGORITHM TO CONSTRUCT A SAMPLED SA 37

Input: compressedSuffixArray[n], SuffixArray[n]
Output sampledBitVector[n]
hop ←0;
while(!sampledBitVector[i]){
i ←compresssedSuffixArray[i];
hop++;
} if(hop>=maxHop)
set sampledBitVector[i];

Algorithm to compute sampling bit vector

An array sampleSA of length equal to total no. of bits set in BitVec-
tor is created to store the sampled suffix values. Suffix SA[i] is stored
in sampleSA[j] where j is the rank of i in BitVector. This definition
of rank of an entry in a bit vector is one used conventionally, i.e.,

rank(i, B) = total no. of bits set in vector B before i

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B[i] 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1

Sampled SA {20 17 5 19 18 11}

SA[i] 20 15 0 6 17 2 8 5 16 1 7 19 4 10 14 18 3 9 13 12 11

(i) 8 9 10 15 16 17 3 4 5 6 0 7 20 1 11 12 13 14 18 19

Figure 4.1: Computation of SA[9] of the string “acagtcacagtttttacagt$” using
compressed suffix array along with sampled suffix entries; each hop is done from
i to Ψ(i)

38 CHAPTER 4. COMPRESSED SUFFIX ARRAY CONSTRUCTION

4.4 Time Complexity

In algorithm discussed in Section 3.2, each radix sort uses a total
no. of passes equal to the no. of digits of maximum entry in a
character group, which is O(logn). So the time taken to compute
the compressed suffix array is O(n logn).

To compute sampleSA, each iteration of the for-loop executes
a maximum of maxHop iterations of the while-loop. As maxHop
= O(logn), the time complexity of algorithm given in 3.3 becomes
O(nlogn).

To return any suffix SA[i] using these data structures, a constant
time access to sampleSA is preceeded by a O(logn) access to the
compressed suffix array.

Chapter 5

LCP computation from
Ψ-function

5.1 Algorithm

With the compressed suffix array at hand, we now proceed to com-
pute the lcp values of each suffix SA[i] using Ψ(i). Remembering
the definition of Ψ(i), the Ψ-value of suffix SA[i] points to the index
of SA[i] + 1 in SA. Also, all these Ψ(i) values are in a sorted order
for each character c of the alphabet. This means, given the Ψ(i)
for SA[i] starting with character T [i], we can tell exactly what is
T [i+ 1].

From the example shown in Figure 5.1 , SA[2] and SA[3] both
beongs to the set of suffices starting with character “a”, which can
be checked from the array charCount[]. We do every hop by setting
the next indices to the previous one’s Ψ-value. Here, after the first
hop, we land at indices Ψ(2) = 5 and Ψ(3) = 6, both being in the
sorted suffix-set starting with character “c”. This means both these
suffixes have same 2nd character as well as 1st, so we continue with
our next hop. This procedure goes on repeatitively untill the two
indices found belongs to different character-group.

The algorithm to find lcp-value of the i-th suffix is given below:

39

40 CHAPTER 5. LCP COMPUTATION FROM Ψ-FUNCTION

Figure 5.1: Showing the hops made from each suffix to its next one, using
compressed suffix array; green arrows showing the path of hops for SA[2], while
the red one showing the same for SA[3]; black arrows points from index to the
respective compressed suffix array entry

Input:compressedSuffixArray[n], characterCount[4];
Output:Lcp[i];
hop ← 0;
index ← i;
nextIndex ←i + 1;
while(index and nextIndex belong to same character group){
index ← compressedSuffixArray[index];
nextIndex ←compressedSuffixArray[nextIndex];
hop ←hop + 1;
}
return hop;

5.2 Time complexity

For each i ∈ [1, 2, .., n],the given algorithm repeates upto hop times,
which is, the lcp value of suffix SA[i]. Therefore, the time complexity
for input size n becomes O(nl), where l is the maximum lcp value
possible. Worst case scenario occurs when the string is a continuous
repeat of the same character, i.e., “aaaaaa...”.In that case,

lcp[i] = n− i;

5.2. TIME COMPLEXITY 41

which means, total hops performed = n+(n−1)+(n−2)+....+2+1 =
n2,
and the complexity becomes O(n2).
But in practical DNA sequences, this is impossible that a whole
string is just a continuous repeat of the same nitrogen base. More-
over, it is rare to find a repeated sequence of a single base as a
substring of length > 50. Thus in most cases we can expect this
algorithm to work in linear time.

42 CHAPTER 5. LCP COMPUTATION FROM Ψ-FUNCTION

Chapter 6

Construction of a Greedy
Grammar

6.1 Basic Idea

Having computed the compressed suffix array and the lcp array, we
now proceed to generate a context free grammar that will uniquely
expand to the input string. Our basic approach is the same as
[3]: start with the whole string as start rule and substitute each
non-overlapping repeating substring as a new rule to the grammar.
But the choice of which non-overlapping substring to substitute and
how this substring is reported is the basic problem.

 a c a c a t g a c a g a c a c a c a t

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 6.1: All the overlapping and non-overlapping repeatitions of ”aca” in
”acacatgacagacacacat”

6.1.1 Repeat: Overlapping and Non-overlapping

Let T [0..n] be a string with suffixes SA[i] and SA[j] having lcp(i, j) =
k. Clearly, the two substrings {T [i, i+1, .., i+ k− 1]} and {T [j, j+
1, .., j + k − 1]} are same. Here we find a repeat. If there are r
suffixes SA[i0], SA[i1], · · · , SA[ir−1] such that lcp(is, it) ≥ k for all

43

44 CHAPTER 6. CONSTRUCTION OF A GREEDY GRAMMAR

is, it ∈ [i0, ir−1] then the substring T [i0 · · · ik−1] has r repeated oc-
curences in T .

But not all repeats are non-overlapping. As we can see in Fig-
ure 6.1, “aca” has a total six occurences, but only four of them are
non-overlapping. To build a grammar, we are interested in non-
overlapping repeats only.

6.1.2 Longest repeated vs. Maximum repeated

In a given string, the substring which has maximum no. of repeats
may not be the same as the longest substring repeated. In most of
the case, the substring with maximum repeats is the shortest one.
Moreover, if we think in terms of total area covered by repeatition,
that can vary for different strings.

a c a c a t g a c a g a c a c a c a t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 R1

 R2

 after substituting

 R1

 R1 a t g c a g R1 a c a t

 after substituting

 R2

R2 R2 a t g R2 a g R2 R2 R2 a t

Figure 6.2: Black strips showing the longest repeated ”acac” and red strips
showing maximum repeated ”ac” in ”acacatgacagacacacat” along with the rules
after substitution. Colored region shows repeatition in substituted text

In Figure 6.2, area covered by “ac” is larger than that of “acac”.
Then the choice of which substring to substitute as a rule at this
stage becomes complex. At the first look it may seem the rule that
substitutes “ac” should precede over “acac” to achieve a smaller
grammar. But if we look closely, a different scenario appears. A rule
substitution for ”ac” leads to a start rule having repeatition, as can
be seen in Figure 6.2, which can be removed by only a hieararchial
grammar and that would increase the grammar size after all. Also,
the second approach faciliates faster pattern matching in grammar
compressed texts as patterns are more likely to be a substring of a
rule substituting longer substrings.

6.2. ALGORITHM 45

6.2 Algorithm

6.2.1 Data Structures

Three data structures are used in this algorithm,

substringList: This array of structures stores the lcp values of
suffices in order of their appearence in the input string, along with
their positions. Refer to Table 1.2 and Table 1.1, the array sub-
stringList for input string ”acatgtgaca” is
{[3,3,0],[6,2,0],[4,1,0],[10,2,0],[8,1,0],[9,0,0],[7,0,0],[2,1,0],[5,0,0],[1,0,0]}
where entries are [pos, lcp, tag].

ruleList: This array of structures stores each rule generated
along with the substring it replaces. Also the length of that sub-
string is stored.

rIndex: This array of integers marks the positions of the string
which each rule substitutes. It has same length as input string. If
rule i substitutes substring T [j, j+k-1], then rIndex[j] = i and all
other positions within that substring are set to -1. Positions not
replaced by any rule are marked with -2.

Apart from these three data structures, two bit vectors are used
to count for the positions replaced by the rules and to test overlap-
ping of two substrings.

6.2.2 Generating Rules

Rules are generated in longest first order. So we need to start from
the maximum lcp value maxLcp. substringList is traversed from the
start for each lcp value. This traversal is done only for lcp less than
half of total length, because any repeating substring longer than half
of input string is bound to be overlapping.
Set j = length of repeating substring to search;

Step 1: Identify non-overlapping repeat
As substringList stores the suffixes in order to their position in

text, given substringList[i], we search for the next suffix (in suffix
array order) in the j-neighbourhood of substringList[i]. A vari-
able offset is set to 0; If not found, we can say that the common
prefixes of substringList[i].pos and substringList[i].pos-1+offset are

46 CHAPTER 6. CONSTRUCTION OF A GREEDY GRAMMAR

non-overlapping; else we continue searching with incrementing offset
till lcp is less than j;

Example is shown using string ”acatgtgaca”. Here maxLcp = 3;
we start with j = 3 and i = 0;

SA[substringList[0].pos-1] = SA[3-1] = 7; as no entry in sub-
stringList in the 3-neighbourhood of substringList[0] has substringList[i].pos
= 2, suffices SA[0] and SA[7] have non-overlapping common prefix
of length 3, which is ”aca”. Now we check for the bit vector B2
marking substituted positions, which is currently all set to 0. So we
have two substitutions to do, at positions T [0] and T [7] of length 3.
Bit vector B2 is marked accordingly.

With the above step, substrings which appear at any two con-
secutive suffices in the suffix array are reported. But this is done
when we start at a position having suffix that is lexicographically
higher than some other existing suffix with lcp ≥j. That is, suffixes
are reported from right to left of the suffix array. If any suffix with
lcp ≥j resides to the right of the start point, it will not be reported
in this pass; and subsequently may not be reported ever. That is
why after checking all the suffixes on the left side of the start point
(i.e., by decreasing substringList[i].pos) we need to check those on
the right. This is simply done by incrementing pos and checking the
overlap as before.

Step 2: Insert rule
When a repeating substring is found, it can be a new substring

found or it can be another repeatition of an already substituted sub-
string. Rule substituting these substrings must be placed according
to these two conditions. We keep a variable rMax to store existing
no. of rules. Whenever a new rule is added, rMax is incremented.
Now, after finding a pair of non-overlapping repeating substrings
with start position pos1 and pos2, we check if either of rIndex[pos1]
or rIndex[pos1] have an existing rule (in that case, either of the en-
tries will be positive). If one of them have an existing rule marked,
rIndex[pos1](or, rIndex[pos1]) is marked with that rule. If no exist-
ing rule is found, we increment rMax by 1 and mark the positions
with this new rule.

These two steps are repeated while j is decremented, untill B2 is
full (which means all of the text has been substituted by substrings)

6.2. ALGORITHM 47

or j=1 (because we need substrings with atleast two characters).

6.2.3 Generating grammar from rules

After the previous phase is over, array rIndex is marked with all the
rules. Now we proceed to generate a grammar from rIndex.

Step 1: Initialize ruleList with rules
rMax gives the total no. of non-start rules; so first ruleList is

created with size rMax. Next, rIndex is scanned;
for each positive entry rIndex[i],

set ruleList[i].rule = rIndex[i];
set ruleList[i].ruleIndex = i;
set ruleList[i].strLen = no. of trailing -1’s in rIndex + 1;

Step 2: Sort ruleList and eliminate repeats
As stated in Step 1. of 5.2.2, Our algorithm reports suffixes with

common substring in a right-to-left fashion. All the occurences of
a substring is reported untill an already marked section is found.
But if there lies any occurence of that substring within the marked
area(inside some previously reported longer substring) which lies left
to the working position in suffix array, and some other occurence of
the same substring within some suffix residing left to the already
marked suffix, they are not reported. So these substrings appears
again in rIndex, but with different rule. To eliminate such repeating
rules, we need to sort the rules and identify repeats.

To sort ruleList, rules are groupped with same substring-length,
strLen. Each group is radix sorted. Next, a repeatings are elimi-
nated and a rank array indexRule is created to hold the ruleIndices
of the unsorted ruleList as follows:
for each i do {

set indexRule[ruleList[i].ruleIndex] = i;
increment rI;
if ruleList[i] and ruleList[i-1] contains same substring {
set ruleList[i].ruleIndex = ruleList[i-1].ruleIndex;
decrement rI;
}
ruleList[i].ruleIndex = rI;

}

48 CHAPTER 6. CONSTRUCTION OF A GREEDY GRAMMAR

Array indexRule at position i stores the position of ruleList which
needs to be accessed for a rule i in rIndex; that is, indexRule works
as a indirect index of ruleList.

Step 3: Generate final grammar
After having all the unique rules in ruleList, we proceed to gener-

ate the start rule. This is a straight forward single pass over rIndex;
for each i ∈[0,..,n]

if rIndex[i] is positive, set T [i] to the corresponding rule in ruleList,
using indexRule
if rIndex[i] is -1, discard T [i]
Now the string is converted to the start rule, with ruleList storing
the remaining rules.
The grammar generated for the string ”tatcgaaaggttgtccacattgggaag-
taacttgg” by the given algorithm is,

R0 ⇒ R4R5R2aggttgR5R3R3R1R2gR4acR1

R1 ⇒ ttgg
R2 ⇒ gaa
R3 ⇒ ta
R4 ⇒ tc

In Figures 6.3, 6.4 and 6.5, rule generation for a string “cagacaggc-
agtccagctc” is shown. Clearly we can see in Figure 6.4, after check-
ing if occurences of the substring “cag” in SA[10] and SA[9] are
overlapping or not, our algorithm proceeds to substitute these two
occurences with rule R2; but SA[9] has already been used for the
previous rule. So algorithm proceeds to check SA[8] and SA[7] and
finally substitutes “cag” in SA[7] along with SA[10]. We can see
that both SA[10] and SA[9] is being used in a rule for the first time;
so there is no way to check whether this substring has been used
before to generate rules. Thus we get two rules in the grammar
R1 → cag and R1 → cag both having same substring to substi-
tute. Thats why we need to sort and eliminate duplicate rules after
generating them.

6.2. ALGORITHM 49

i pos lcp tag

0 7 1 0

1 2 1 0

2 13 0 0

3 1 0 0

4 9 3 0

5 4 2 0

6 16 1 0

7 14 1 0

8 10 3 0

9 5 2 0

10 17 1 0

11 19 2 0

12 11 1 0

13 8 3 0

14 3 2 0

15 15 2 0

16 12 1 0

17 18 0 0

18 6 0 0

c a g a c a g g c a g t c c a g c t c

Figure 6.3: 1st rule generation by the algorithm with j = 3 and i = 4 on string
cagacaggcagtccagctc

50 CHAPTER 6. CONSTRUCTION OF A GREEDY GRAMMAR

i pos lcp tag

0 7 1 0

1 2 1 0

2 13 0 0

3 1 0 0

4 9 3 0

5 4 2 0

6 16 1 0

7 14 1 0

8 10 3 0

9 5 2 0

10 17 1 0

11 19 2 0

12 11 1 0

13 8 3 0

14 3 2 0

15 15 2 0

16 12 1 0

17 18 0 0

18 6 0 0

c a g a c a g g c a g t c c a g c t c

returnSuffix(10-1)

 = 4

overlap found!

returnSuffix(10-2)

 = 13

overlap found!

returnSuffix(10-3)

 = 0

Figure 6.4: 2nd rule generation by the algorithm with j = 3 and i = 8 on string
cagacaggcagtccagctc

6.2. ALGORITHM 51

i pos lcp tag

0 7 1 0

1 2 1 0

2 13 0 0

3 1 0 0

4 9 3 0

5 4 2 0

6 16 1 0

7 14 1 0

8 10 3 0

9 5 2 0

10 17 1 0

11 19 2 0

12 11 1 0

13 8 3 0

14 3 2 0

15 15 2 0

16 12 1 0

17 18 0 0

18 6 0 0

c a g a c a g g c a g t c c a g c t c

Figure 6.5: 3rd rule generation by the algorithm with j = 2 and i = 11 on string
cagacaggcagtccagctc

52 CHAPTER 6. CONSTRUCTION OF A GREEDY GRAMMAR

6.3 Time Complexity

Grammar generation is the costliest part of this algorithm in terms
of time. First of all, we have check for substrings of length from max-
imum lcp to 2. For each of these iterations, data structure subList[n]
is traveresed fully. To substitute a certain substring as rule, we need
to call the returnSuffix() function which takes O(logn) time to
compute SA[i] from Ψ(i) and sampledSA. All of this makes our
algorithm to use O(maxLcp∗n logn). Worst case appears when the
string is of type “aaaaaa..”, i.e., a repeated sequence of a single base.
Then maximum lcp becomes n, making the worst case complexity
O(n2 logn).

But as stated in Section 4.2, this case is almost impossible to hap-
pen in practical DNA sequences. So in most of the cases, O(maxLcp∗
n logn) is the running time.

Chapter 7

Experimental Results

The proposed algorithm is implemented in C and run in an IntelR
CoreTM i3-2100 3.10 GHz CPU with 1333MHz memory speed using
different DNA samples of yeast, rat and human from the Manzini
DNA corpus. The overall performance is shown below: Through

Input Size(KB) Execution time(s.) Grammar size(KB) No. of Rules
10 0.14 6.5 700
20 0.38 12.7 1288
30 0.83 19 1833
40 1.54 25 2367
50 2.52 31 2902
60 3.89 36 3422
120 23.54 71 5567
240 153.72 141 11443
302 155.89 178 14218
620 618.48 360 28166
730 1030.26 410 32776

Table 7.1: Input size, execution time, generated grammar size and no. of rules
generated for different input data sets

out the results shown in this chapter, size of grammar has been
set as total no. of symbols appearing at the right hand side of the
rules; though an estimate of total bits needed to encoded will give
the exact result, this coarse estimation used by Lehman[20] gives
nonethless a good approximation.

From table 7.1, a graph is plotted showing compression ratio vs.
input size in Figure 7.1.

In Figure 7.1, we can observe a steep rise in compression ratio

53

54 CHAPTER 7. EXPERIMENTAL RESULTS

1.763

1.748

1.733

1.718

1.703

1.688

1.673

1.658

1.643

1.628

1.613

1.598

1.583

1.568

1.553

1.538
 10 46 82 118 154 190 226 262 298 334 370 406 442 478 514 550 586 622 658 694

Figure 7.1: Graph showing compression ratio achieved vs. input size(in KB)

55

8.0

7.2

6.4

5.6

4.8

4.0

 10 20 30 40 50 60 70 80 90 100

Figure 7.2: Graph showing execution time vs length of longest repeating sub-
string; Two outliers are also shown

with input size 10KB to 60KB, and then a steady increment.
Next, in Figures 7.2, execution times for 9 different input files,

each of size 60KB is shown, plotted against lengths of respective
longest substrings.

Next two graphs are plotted using a single 302KB file. In Figure
7.3, different execution times for varying lengths of longest substring
to substitute bounded by the algorithm are shown. In Figure 7.4
size of the grammar generated for the respective cases are shown.

In Figures 7.3 and 7.4, we can observe the drammatic effects on
output if we bound our algorithm to choose a predefined longest sub-

56 CHAPTER 7. EXPERIMENTAL RESULTS

127.6

120.8

114

107.2

100.4

93.6

86.8

 12.7 22.4 32.1 41.8 51.5 61.2 70.9 80.6 90.3

Figure 7.3: Graph showing different execution times for a single input file of
size 302KB for different values of j

57

171890

165590

159290

152990

146690

140390

134090

127790

121490

115190

108890

102590

 96290

 89990

 83690

 77390

0 7.9 12.8 17.7 22.6 27.5 32 37.3 42.2 47.1 52 56.9 61.8 66 71.6 76.5 81.4 86.3 91.2 96.1

Figure 7.4: Graph showing generated grammar size for a single file of size 302KB
for different values of j

58 CHAPTER 7. EXPERIMENTAL RESULTS

string shorter than the actual longest repeating substring in input.
The variable which defines the length of the substring the algorithm
will look for was j (Section 5.2.2). In Figure 7.3 We can see exe-
cution time varying linearly with j = 3 to j = 10, which is obvious
from the algorithm. But then after j = 10 it settles to rise with a
very slow rate, though linear. This can be inferred from the fact
that most non-overlapping repeats are of length less than 10. This
effect is shown in the graph of Figure 7.4 also. Here we can see a
sharp fall in grammar size as we increase j, followed by a sharp rise
and then a steady, almost constant grammar size can be seen.

Chapter 8

Disscussion and Scope of
Improvement

From the algorithm analysis and experiment results observed, it
can be seen that the proposed algorithm achieves compression ratio
within 1.5 to 1.9, in the range of input data size used for exper-
iments. But both in terms of compression and time complexity,
SEQUITUR [24], RE-PAIR [19] or Bisection [16] supercedes. SE-
QUITUR generates a grammar of size 9KB with an input size 60KB
in linear time, which is way too smaller than this algorithm. Only in
terms of pattern searching in compressed data, our algorithm works
better than all of three, at least theoretically. But there are ofcourse
some fields of modification and variations that can be used in this
algorithm, some of them discussed here.

8.1 Achieving smaller space complexity

In our algorithm, we generated a suffix array using DC3 from input
string and then generated the compressed suffix array. Although
compressed suffix arrays were designed for a space usage O(n

log n
),

this approach uses O(n) working space due to the construction of
the uncompressed suffix array. This drawback can be overcome if
we construct a compressed suffix array directly from the input text.
In [18], an algorithm was proposed which constructs a compressed
suffix array by reading characters from the end of string, without
generating an intermediate suffix array. A certain variation of that
algorithm does so in O(n logn) time, using a Red-Black search tree

59

60 CHAPTER 8. DISSCUSSION AND SCOPE OF IMPROVEMENT

[18]. This, along with a succint representation of lcp-information
generated can be helpfull to achieve a lower space complexity.

8.2 Choice of substring to substitute

From the graphs in Figures 7.3 and 7.4, we can see that our greedy
approach of choosing the longest substring fast to substitute may be
right with substring length <10, but after that it have a worsening
effect. As we can see, most of the frequent substrings are of length
below 10. Substrings longer than 10 repeat very rarely. So with our
approach to start substituting the longest one first, we diminish the
possibility of a better compression as shorter substrings would sub-
stitute more occurences, without adding a longer rule and increasing
size of the grammar.

We can locate the range of the longest substrings with a sufficient
number of repeat from the lcp-interval table(Section 1.3) with a
rough approximation. Then rather than using the overall longest
substring, we can rank and select substrings those are longer and also
repeatitive. A metric for such a ranking cam be total area covered
by all the repeatitions of each substring along with a weightage upon
length of substring.

8.3 Segment-wise grammar generation

DNA strings are highly repeatitive and this repeatitive nature is
expressed all over the string. So, for a string of size 500KB, if
we choose substring of length, say 12, to have 100 occurences in
a segment of 30KB, it is likely to have more or less same no. of
occurences in any other segment of 30KB. Then we can use that
substring for the whole file without explicitly running the algorithm
over it. We may have to just check for non-overlapping occurences
and then substitute them by the rule already generated.

Originally our algorithm runs on the whole string and generates
a compressed suffix array, computes the lcp-information and then
proceeds to construct the grammar, last phase being the slowest. We
can skip that work by simply generating rules for a small segment
and use it all over the string. Ofcourse, this ‘small’ segment must be
large enough to reflect the string statistics of the large DNA string

8.4. GOING TOWARDS HIEARARCHY 61

in a miniature level.

8.4 Going towards hieararchy

Although we devised this algorithm to generate a two-level gram-
mar only, i.e., where each rule other than the start rule have no
non-terminal in right hand side, this algorithm can be modified
to generate multi-level grammars also. In that case, we may not
choose the longest substring first; rather we should go for substrings
covering largest area with all their occurences. This will result in
repeatitions in the start rule, which will be substituted by further
rules. With this modification, we will have to construct suffix array
and compressed suffix array using integer alphabet.

Although the motivation behind this two-level grammar genera-
tion algorithm was to faciliate faster search in grammar-compressed
text and if we modify it to be multi-level, this advantage will surely
decrease, stil there are chances of better performance as in this case,
we are not abandoning our approach of searching for long repeati-
tions; it is just being restricted to the number of occurence as a
parameter.

62 CHAPTER 8. DISSCUSSION AND SCOPE OF IMPROVEMENT

Chapter 9

Conclusion

After this study of grammar-based compressions and construction
of a new algorithm, we can conclude that this field has a vivid work
to do. In fact the question of smallest grammar is unclear in it-
self and givn the bound of approximation, there are lots of scope of
development. Also, use of suffix tree, suffix array as well as com-
pressed suffix array in grammar based compression is a totally new
approach. Further developments in efficient and succint representa-
tion of suffix data can prove to be helpful for this field. The basic
differences lying inside this approach is that a suffix tree gives a
wholistic view of the string statistics of a data better than any data
structure till date; therefore data compression with efficient search
of relevant data patterns in a compressed data is far suitable with
suffix tree (or its representatives such as suffix array, compressed
suffix array, enhanced suffix array etc.), at least theoreticaly.

63

64 CHAPTER 9. CONCLUSION

Bibliography

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohle-
busch. Replacing suffix trees with enhanced suffix arrays. Jour-
nal of Discrete Algorithms, 2(1):53–86, 2004.

[2] Alberto Apostolico and Stefano Lonardi. Some theory and prac-
tice of greedy off-line textual substitution. In Data Compression
Conference, 1998. DCC’98. Proceedings, pages 119–128. IEEE,
1998.

[3] Alberto Apostolico and Stefano Lonardi. Off-line compres-
sion by greedy textual substitution. Proceedings of the IEEE,
88(11):1733–1744, 2000.

[4] Michael Burrows and David Wheeler. A block-sorting lossless
data compression algorithm. In DIGITAL SRC RESEARCH
REPORT. Citeseer, 1994.

[5] Minh Duc Cao, Trevor I Dix, Lloyd Allison, and Chris Mears. A
simple statistical algorithm for biological sequence compression.
In Data Compression Conference, 2007. DCC’07, pages 43–52.
IEEE, 2007.

[6] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy,
Manoj Prabhakaran, April Rasala, Amit Sahai, et al. Ap-
proximating the smallest grammar: Kolmogorov complexity in
natural models. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 792–801. ACM, 2002.

[7] Noam Chomsky. On certain formal properties of grammars.
Information and control, 2(2):137–167, 1959.

[8] Carl De Marcken. The unsupervised acquisition of a lexicon
from continuous speech. arXiv preprint cmp-lg/9512002, 1995.

65

66 BIBLIOGRAPHY

[9] Paolo Ferragina and Giovanni Manzini. Opportunistic data
structures with applications. In Foundations of Computer Sci-
ence, 2000. Proceedings. 41st Annual Symposium on, pages
390–398. IEEE, 2000.

[10] Paolo Ferragina and Giovanni Manzini. Indexing compressed
text. Journal of the ACM (JACM), 52(4):552–581, 2005.

[11] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo
Navarro. Compressed representations of sequences and full-text
indexes. ACM Transactions on Algorithms (TALG), 3(2):20,
2007.

[12] Simon Gog and Gonzalo Navarro. Improved and extended locat-
ing functionality on compressed suffix arrays. In Experimental
Algorithms, pages 436–447. Springer, 2014.

[13] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix
arrays and suffix trees with applications to text indexing and
string matching. SIAM Journal on Computing, 35(2):378–407,
2005.

[14] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix
array construction. In Automata, Languages and Programming,
pages 943–955. Springer, 2003.

[15] John C Kieffer and En-Hui Yang. Grammar-based codes: a new
class of universal lossless source codes. Information Theory,
IEEE Transactions on, 46(3):737–754, 2000.

[16] John C Kieffer, En-Hui Yang, Gregory J Nelson, and Pamela
Cosman. Universal lossless compression via multilevel pat-
tern matching. Information Theory, IEEE Transactions on,
46(4):1227–1245, 2000.

[17] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo
Park. Linear-time construction of suffix arrays. In Combinato-
rial pattern matching, pages 186–199. Springer, 2003.

[18] Tak-Wah Lam, Kunihiko Sadakane, Wing-Kin Sung, and Siu-
Ming Yiu. A space and time efficient algorithm for construct-
ing compressed suffix arrays. In Computing and Combinatorics,
pages 401–410. Springer, 2002.

BIBLIOGRAPHY 67

[19] N Jesper Larsson and Alistair Moffat. Off-line dictionary-based
compression. Proceedings of the IEEE, 88(11):1722–1732, 2000.

[20] Eric Lehman and Abhi Shelat. Approximation algorithms for
grammar-based compression. In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms, pages
205–212. Society for Industrial and Applied Mathematics, 2002.

[21] Udi Manber and Gene Myers. Suffix arrays: a new method
for on-line string searches. siam Journal on Computing,
22(5):935–948, 1993.

[22] Edward M McCreight. A space-economical suffix tree construc-
tion algorithm. Journal of the ACM (JACM), 23(2):262–272,
1976.

[23] Gonzalo Navarro and Veli Mäkinen. Compressed full-text in-
dexes. ACM Computing Surveys (CSUR), 39(1):2, 2007.

[24] Craig G. Nevill-Manning and Ian H. Witten. Identifying hierar-
chical strcture in sequences: A linear-time algorithm. J. Artif.
Intell. Res.(JAIR), 7:67–82, 1997.

[25] David R Powell, Lloyd Allison, and Trevor I Dix. Modelling-
alignment for non-random sequences. In AI 2004: Advances in
Artificial Intelligence, pages 203–214. Springer, 2004.

[26] Wojciech Rytter. Application of lempel–ziv factorization to
the approximation of grammar-based compression. Theoreti-
cal Computer Science, 302(1):211–222, 2003.

[27] Claude Elwood Shannon. A mathematical theory of communi-
cation. ACM SIGMOBILE Mobile Computing and Communi-
cations Review, 5(1):3–55, 2001.

[28] Michael Sipser. Introduction to the Theory of Computation,
volume 2. Thomson Course Technology Boston, 2006.

[29] James Andrew Storer. Data compression: methods and com-
plexity issues. 1979.

[30] Peter Weiner. Linear pattern matching algorithms. In Switch-
ing and Automata Theory, 1973. SWAT’08. IEEE Conference
Record of 14th Annual Symposium on, pages 1–11. IEEE, 1973.

68 BIBLIOGRAPHY

[31] Jacob Ziv and Abraham Lempel. Compression of individual
sequences via variable-rate coding. Information Theory, IEEE
Transactions on, 24(5):530–536, 1978.

