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1. Introduction 
 

 
Building natural summaries automatically from text document(s) has remained a tough 

challenge for a long time. The need for such systems is growing due to the large amount of 

data available at our disposal as well as the redundancy present in those data. Text 

summarization effectively curtails all the redundancy from text document(s) and presents the 

user with an informative output. Radev, Hovy and McKeown (2002) define a summary as a 

text that is produced from one or more texts that contain a significant portion of the 

information in the original text, and that is no longer than half of the original text(s). There 

are many techniques devised so far which can generate summaries from a given document. 

The two most popular methods among summarization lie in extraction and abstraction. 

However in our work here, we opt to take a middle ground between them and use a 

compression based algorithm which will incorporate features from both extractive and 

abstractive summarization techniques. Many text-to-text generation procedures (e.g., Jing 

(2000), Clark and Lapata (2008)) involving sentence compression and abstraction operate on 

relatively short input file ranging from one sentence to a few paragraphs. We have come a 

long way from summarizing a few lines to large document(s). In the next sections we will 

discuss briefly the basics of summarization and provide detailed instances how the domain of 

summarization have progressed from basic feature extractive methods to advanced phrase 

merging and sentence fusion As we delve into the thesis all the major aspects and relevant 

techniques of summarization will be described in details. 

 

 

1.1 Automatic Text Summarization 
 
Text Summarization is the process of obtaining the most important and salient information 

from a given document(s) to produce an abridged version of the original document(s). It must 

be done so in a manner that the resultant summary must be syntactically and semantically 

coherent while at the same time being devoid of redundant and useless information. 

Important kinds of summaries that are the focus of current research include outlines of 

document, abstracts on scientific articles, headlines of news articles, snippets of web page, 

and answers to complex questions constructed by summarizing multiple documents. The task 

of text summarization can be achieved using a wide range of approaches, from domain-

specific template-based methods relying on information extraction (White et al., 2001) to 

fully abstractive text-to-text generation, an approach that holds great expectations but that is 

still at an early stage (Genest and Lapalme, 2012). Neto et al. (2002) incorporated machine 

learning algorithms for feature extraction to perform summarization tasks. Another machine 

learning based approach was taken by Kan and McKeown (2002) where they induced 

preference among content planning using annotated corpus for training. Some techniques also 

consider the relation between sentences or the discourse structure by using synonyms of the 

words or anaphora resolution (Mani and Bloedorn, 1997). However our work focuses more 

on a compression based summarization technique. Somewhere between the two extremes of 

extraction and abstraction lies another approach which consists in modifying the source text 

sentences in order to create alternative sentences that are either shorter, or that combine 

information found in different sentences. Shortening sentences is known as sentence 

compression, and has been successfully used to improve extractive systems (Gillick and 

Favre, 2009). By compressing sentences, via temporal clauses removal or deletion of 
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unnecessary phrases, more sentences, and hopefully more information, can be added to the 

summary (Knight and Marcu, 2002; Galley and McKeown, 2007). Combining different 

sentences to create a more informative sentence is known as sentence fusion. Fusing 

sentences allows creating a new sentence that regroups information spread across different 

source sentences, and can improve in many ways a summary (e.g. reducing redundancy while 

improving coherence and information coverage). One way to fuse sentences is to use their 

dependency parse trees and align their branches before generating a new sentence from the 

fused parse tree, a process known as linearization. However, creating a sentence from the 

fusion of the parse trees is difficult and often leads to ungrammatical sentences (Filippova 

and Strube, 2008). Barzilay and McKeown (2005) whose work is seminal in the field of 

summarization were among the first to introduce a competitive multi-document 

summarization system based on sentence fusion technique where they merged phrases based 

on content relevancy. After clustering related sentences into themes, they fuse the 

dependency parse trees of sentences in each cluster and generate sentences, ultimately 

selecting the best fusion via scoring against a language model. Some researchers like Knight 

and Marcu (2000) used statistical approaches for the tree modification where they considered 

sentence reduction a translation process using a noisy channel model. Another method for 

sentence fusion that does not rely on external resources has been introduced by (Filippova, 

2010). Her approach consists in using a word graph of the sentences to be fused, and 

choosing a path in the graph that keeps the common information while providing a new 

sentence. This work was later extended by (Boudin and Morin, 2013) to generate more 

informative sentences by re-ranking fusion candidates according to the keyphrases they 

contain. Other sentence compression techniques used to incorporate grammatical 

compression and syntactic modifications include work by Galley and McKeown (2007) who 

used lexicalized markov grammar for sentence compression. Their method relies on a head-

driven markovization of SCFG compression rules. Cheung and Penn (2014) created 

summaries combining dependency subtrees using distributional semantics. They use a novel 

sentence enhancement technique which extends sentence fusion by combining subtrees of 

many.  A recent work by Bing et al. (2015) works purely on a syntactic front by merging 

important phrases of maximum salience. They first calculate phrase salience score by 

extracting the NPs and VPs from the parse tree and assigning a score to them. This is 

followed by compatibility relation check using resolution rules (Lee at al., 2013). Then the 

phrase-based content optimization is done using some statistical means. Sentence fusion and 

abstraction is a difficult task in itself, and its feasibility has been questioned (Daume III and 

Marcu, 2004), however, its promising results make it an interesting domain despite the 

difficulties to evaluate it intrinsically (Thadani and McKeown, 2013). 

 

 

1.2 Different Types of Summarization 
 

1.2.1 Single Document versus Multi Document Summarization 

 

One of the basic distinguishing parameter among different types of summarization is based 

upon the input texts. The summary can be generated from a single input document as well as 

multiple input documents. Single document summarization is mostly used for generating 

simple headline outputs, outlines of a text or snippet generation. For multi-document 

summarization, the primary objective is to condense all the text available in the documents 

and to generate a summary that encompasses the relevant information present in all the 
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documents. This is mostly used for summarizing related news article or web content 

pertaining to similar topics. 

 

1.2.2 Extractive versus Abstractive Summarization 

 

The most widely used distinguishing feature is the manner in which the summarization 

process is implemented. An extractive summarizer works on the selection and verbatim 

inclusion of “material” from the source document(s) in the summary; the “material” usually 

being sentences, paragraphs or even phrases. Extraction based text summarization extracts 

relevant objects from the given input document(s), without modifying the objects themselves; 

it merely copies the information deemed most important by the system to the summary. On 

the other hand, abstraction based summarization does not rely on simple extraction to 

generate summary; instead it does so by forming new sentences intuitively from the given 

document(s).It involves the identification of the most salient concepts prevalent in the source 

document(s), the fusion and the appropriate presentation of those instances. 

 

1.2.3 Query Independent versus Query Dependent Summarization 

 

A generic summarization is one which does not consider a particular user or information 

while generating summaries. The summary simply produces information in a domain non-

specific manner. Such summarization is called query independent summarization since there 

is no external query or domain specific knowledge provided for the summary to focus on. On 

the other hand, query specific systems try to create a summary of the information found in the 

document(s), which is relevant to a user query. In a sense, we can say that the query-oriented 

summarization systems are user-focused; adapting each time to the explicitly expressed needs 

of the users 

 

 

1.2.4 Text versus Multimedia Summarization 

 

The medium used to represent the content of the input document(s) can be used as a 

parameter as well. Thus, we can have text, or multimedia (e.g. image, speech, and video apart 

from textual content) summarization. The most studied case is, of course, text summarization. 

However, there are also summarization systems that deal, for example, with the 

summarization of broadcast news and of diagrams. 

 

 

1.3 A Basic Architectural Overview 

The practices of automatic summarization vary widely across many dimensions, including 

source length, summary length, style, source, topic, language, and structure. Most typical are 

summaries of a single news document down to a headline or short summary, or of a 

collection of news documents down to a headline or short summary. A few researchers have 

focused on other aspects of summarization, including single sentence (Knight and Marcu, 

2002), paragraph or short document (Daume III and Marcu, 2002), query-focused (Mittal and 

Berger, 2000), or speech (Hori and Furui, 2003). The primary research challenge in 

developing an efficient summarization technique lies in two areas: identification of the 

fragments conveying relevant information and combination of the fragments into a sentence. 
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The techniques relevant to, and the challenges faced in each of these tasks can be quite 

different. Nevertheless, they all rely on one critical assumption: there exists a notion of 

(relative) importance between pieces of information in a document (or utterance), regardless 

of whether we can detect this or not. The broad operations required for this task are briefly 

classified below 

 

 

1.3.1 Preprocessing 

 

First, a system takes a set of related texts as input and preprocesses them. The preprocessing 

step includes tokenization, Part-Of-Speech (POS) tagging, removal of stopwords and 

stemming. This preprocessing step allows us to obtain a more accurate representation of the 

information included in each sentence, and makes similarity measurement more efficient. 

Finally, select the best subset of sentences, based on the number of concepts each sentence 

holds, and finding the optimal combination of sentences that maximize informativity while 

minimizing redundancy. 

 

 

1.3.2 Content Selection 

 

This is the initial stage of a text summarizer. Here we choose what information from the input 

document(s) are relevant and should be used for generating the summary. While sentence 

compression and sentence fusion offer richer variations of sentences to include in a summary, 

one still needs to choose which sentences should be added. Optimally we must choose the 

sentences having the maximum informativeness while keeping a low redundancy. Content 

selection can be either supervised or unsupervised. In supervised content selection, domain 

specific parameters are fed to the system to train it to identify features relevant to the query 

provided by the user. In contrast, the unsupervised content selection generally incorporates 

statistical and mathematical tools such as TF-IDF scores, log-likelihood ratio, Jaccard scores 

or any other widely available similarity scores to identify the most informative features from 

the input document(s). As shown in the fig 1.1, content selection comprises many crucial sub 

stage such as sentence fragmentation, sentence extraction etc. 

 

 
 

Figure 1.1: Generic Summarization Architecture 

 

 

1.3.3 Sentence Clustering 

 

The sentence clustering step allows us to regroup similar sentences in order to generate 

alternative sentences obtained by fusing sentences that belong to the same cluster. It 
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correlates with the sentence ordering stage in fig 1.1. This is a crucial step as if we can’t find 

enough clusters, we won’t be able to generate any fused sentences, and if we are too broad 

during clustering we may try to fuse dissimilar sentences, thus resulting in incoherent fused 

sentences. To circumvent the risk of clustering together too many sentences, one can use 

Hierarchical Agglomerative Clustering with a complete-linkage strategy. This method 

proceeds incrementally, starting with each sentence considered as a cluster, and merging the 

two most similar clusters after each step. The complete-linkage strategy defines the similarity 

between two clusters as the lowest similarity score between two items of the clusters. 

Clusters may be small, but are highly coherent as each sentence they contain must be similar 

to every other sentence in the same cluster. A similarity threshold is set to stop the clustering 

process. If no cluster pair is found with a similarity above the threshold, the process stops, 

and the clusters are frozen. A similarity score of 0 is given when the two sentences do not 

have any words in common, as our sentence fusion module requires at least one word in 

common to operate.  

 

 

1.3.4 Sentence Fusion 

 

The most challenging aspect of the process is to meaningfully combine and prune the 

clustered output also maintaining syntactic and semantic integrity to form a grammatically 

coherent sentence structure. This step is not necessary in extractive summary as in extraction 

based summaries only extracted instances of sentences are placed together to form a 

summary. Sentence fusion is an intuitive process which can be implemented through various 

semantic, syntactic and statistical mechanisms. We discuss the various methods to do so in 

the upcoming sections. The fig 1.2 gives us a rudimentary idea about how sentence fusion 

takes place. 

 

 
 

Figure 1.2: Sentence Fusion System Workflow 

 

 

1.3.5 Sentence Realization 

 

The final stage of summarization is generation. When the summary content has been created 

through abstracting and/or information extraction, the final output summary is generated 

using techniques of natural language generation, such as text planning, sentence planning, 

and sentence realization. Some of the common occurrences in this stage include removal of 

non-essential phrases, phrase merging, sentence fusion, sentence pruning etc. 
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2. Extractive Summarization 
 

Content selection is the most important aspect of extraction based summaries. This is because 

the extracted contents are the final pieces with which the summary will be generated and 

unlike abstraction, there is no other room for improvement other than an optimal content 

selection. Numerous approaches for identifying important content for automatic text 

summarization have been developed to date. Topic representation approaches first derive an 

intermediate representation of the text that captures the topics discussed in the input. Based 

on these representations of topics, sentences in the input document are scored for importance. 

In contrast, in indicator representation approaches, the text is represented by a diverse set of 

possible indicators of importance which do not aim at discovering topicality. These indicators 

are combined, very often using machine learning techniques, to score the importance of each 

sentence. Finally, a summary is produced by selecting sentences in a greedy approach, 

choosing the sentences that will go in the summary one by one or globally optimizing the 

selection, choosing the best set of sentences to form a summary. In order to better understand 

the operation of summarization systems and to emphasize the design choices system 

developers need to make, we distinguish three relatively independent tasks performed by 

virtually all summarizers: creating an intermediate representation of the input which captures 

only the key aspects of the text, scoring sentences based on that representation and selecting a 

summary consisting of several sentences. 

 

 

2.1 Intermediate Representation 
 

Even the simplest systems derive some intermediate representation of the text they have to 

summarize and identify important content based on this representation. Topic representation 

approaches convert the text to an intermediate representation interpreted as the topic(s) 

discussed in the text. Some of the most popular summarization methods rely on topic 

representations and this class of approaches exhibits an impressive variation in sophistication 

and representation power. They include frequency, TF-IDF and topic word approaches in 

which the topic representation consists of a simple table of words and their corresponding 

weights, with more highly weighted words being more indicative of the topic; lexical chain 

approaches in which a thesaurus such as WordNet is used to find topics or concepts of 

semantically related words and then give weight to the concepts; latent semantic analysis in 

which patterns of word co-occurrence are identified and roughly construed as topics, as well 

as weights for each pattern; full blown Bayesian topic models in which the input is 

represented as a mixture of topics and each topic is given as a table of word probabilities 

(weights) for that topic. Indicator representation approaches represent each sentence in the 

input as a list of indicators of importance such as sentence length, location in the document, 

presence of certain phrases, etc. In graph models, such as LexRank (Radev and Gurkan, 

2004), the entire document is represented as a network of inter-related sentences. 

 

 

2.2 Score Sentences 
 

Once an intermediate representation has been derived, each sentence is assigned a score 

which indicates its importance. For topic representation approaches, the score is commonly 

related to how well a sentence expresses some of the most important topics in the document 
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or to what extent it combines information about different topics. For the majority of indicator 

representation methods, the weight of each sentence is determined by combining the evidence 

from the different indicators, most commonly by using machine learning techniques to 

discover indicator weights. In LexRank, the weight of each sentence is derived by applying 

stochastic techniques to the graph representation of the text. 

 

 

2.3 Extractive Summarization Methods 
 

1. Term Frequency-Inverse Document Frequency (TF-IDF) method 

2. Cluster based method 

3. Graph theoretic approach 

4. Machine Learning approach 

5. Latent Semantic Analysis 

6. Neural Network approach 

7. Query based extraction 

 

 

2.3.1 TF-IDF Method 

 

Bag-of-words model is built at sentence level, with the usual weighted term-frequency and 

inverse sentence frequency paradigm, where sentence-frequency is the number of sentences 

in the document that contain that term. These sentence vectors are then scored by similarity to 

the query and the highest scoring sentences are picked to be part of the summary. This is a 

direct adaptation of Information Retrieval paradigm to summarization. Summarization is 

query-specific, but can be adapted to be generic. It is a numerical statistic which reflects how 

important a word is in a given document. The TF-IDF value increases proportionally to the 

number of times a word appears in the document. This method mainly works in the weighted 

term-frequency and inverse sentence frequency paradigm .where sentence-frequency is the 

number of sentences in the document that contain that term. These sentence vectors are then 

scored by similarity to the query and the highest scoring sentences are picked to be part of the 

summary. Summarization is query-specific. The hypothesis assumed by this approach is that 

if there are ‘‘more specific words’’ in a given sentence, then the sentence is relatively more 

important. The target words are usually nouns. This method performs a comparison between 

the term frequency (tf) in a document -in this case each sentence is treated as a document and 

the document frequency (df), which means the number of times that the word occurs along all 

documents. The weighing exploits counts from a background corpus, which is a large 

collection of documents, normally from the same genre as the document that is to be 

summarized; the background corpus serves as indication of how often a word may be 

expected to appear in an arbitrary text. The only additional information besides the term 

frequency c(w) that we need in order to compute the weight of a word w which appears c(w) 

times in the input for summarization is the number of documents, d(w), in a background 

corpus of D documents that contain the word. This allows us to compute the inverse 

document frequency: 

 

TF × IDF =  c(w). log (
D

d(w)
) 
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In many cases c(w) is divided by the maximum number of occurrences of any word in the 

document, which normalizes for document length. Descriptive topic words are those that 

appear often in a document, but are not very common in other documents. Words that appear 

in most documents will have an IDF close to zero. The TF*IDF weights of words are good 

indicators of importance, and they are easy and fast to compute.  

 

 

2.3.2 Clustering Based Method 

 

In multi-document summarization of news, the input by definition consists of several articles, 

possibly from different sources, on the same topic. Across the different articles there will be 

sentences that contain similar information. Information that occurs in many of the input 

documents is likely important and worth selecting in a summary. Of course, verbatim 

repetition on the sentence level is not that common across sources. Rather, similar sentences 

can be clustered together. In summarization, cosine similarity is the standard used to measure 

the similarity between the vector representations of sentences. In this approach, clusters of 

similar sentences are treated as proxies for topics; clusters with many sentences represent 

important topic themes in the input. Selecting one representative sentence from each main 

cluster is one way to produce an extractive summary, while minimizing possible redundancy 

in the summary. The sentence clustering approach to multi-document summarization exploits 

repetition at the sentence level. The more sentences there are in a cluster, the more important 

the information in the cluster is considered. Documents are usually written such that they 

address different topics one after the other in an organized manner. They are normally broken 

up explicitly or implicitly into sections. This organization applies even to summaries of 

documents. It is intuitive to think that summaries should address different “themes” 

appearing in the documents. Some summarizers incorporate this aspect through clustering. If 

the document collection for which summary is being produced is of totally different topics, 

document clustering becomes almost essential to generate a meaningful summary. 

Documents are represented using term frequency-inverse document frequency (TF-IDF) of 

scores of words. Term frequency used in this context is the average number of occurrences 

(per document) over the cluster. IDF value is computed based on the entire corpus. The 

summarizer takes already clustered documents as input. Each cluster is considered a theme. 

The theme is represented by words with top ranking term frequency, inverse document 

frequency (TF-IDF) scores in that cluster. Sentence selection is based on similarity of the 

sentences to the theme of the cluster Ci .The next factor that is considered for sentence 

selection is the location of the sentence in the document (Li). In the context of newswire 

articles, the closer to the beginning a sentence appears, the higher its weight age for inclusion 

in summary. The last factor that increases the score of a sentence is its similarity to the first 

sentence in the document to which it belongs (Fi). The overall score (Si) of a sentence i is a 

weighted sum of the above three factors: 

 

 

Si = W1× Ci + W2 × Fi + W3 × Li + …. 

 

Where Si is the score of sentence Ci, Fi are the scores of the sentence i based on the similarity 

to theme of cluster and first sentence of the document it belongs to, respectively. Li is the 

score of the sentence based on its location in the document. W1, W2 and W3 are the weights 
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for linear combination of the three scores. The overall score (Si) of a sentence i is a weighted 

sum 

 

 

2.3.3 Graph Theoretic Approach 

 

In this technique, there is a node for every sentence. Two sentences are connected with an 

edge if the two sentences share some common words, in other words, their similarity is above 

some threshold. This representation gives two results. The partitions contained in the graph 

(that is those sub-graphs that are unconnected to the other sub graphs), form distinct topics 

covered in the documents. The second result by the graph-theoretic method is the 

identification of the important sentences in the document. The nodes with high cardinality 

(number of edges connected to that node), are the important sentences in the partition, and 

hence carry higher preference to be included in the summary. Vertices represent sentences 

and edges between sentences are assigned weights equal to the similarity between the two 

sentences. The method most often used to compute similarity is cosine similarity with 

TF*IDF weights for words. Sometimes, instead of assigning weights to edges, the 

connections between vertices can be determined in a binary fashion: the vertices are 

connected only if the similarity between the two sentences exceeds a predefined threshold. 

Sentences that are related to many other sentences are likely to be central and would have 

high weight for selection in the summary. When the weights of the edges are normalized to 

form a probability distribution so that the weight of all outgoing edges from a given vertex 

sum up to one, the graph becomes a Markov chain and the edge weights correspond to the 

probability of transitioning from one state to another. Standard algorithms for stochastic 

processes can be used to compute the probability of being in each vertex of the graph at time t 

while making consecutive transitions from one vertex to next. As more and more transitions 

are made, the probability of each vertex converges, giving the stationary distribution of the 

chain. The stationary distribution gives the probability of (being at) a given vertex and can be 

computed using iterative approximation. Vertices with higher probabilities correspond to 

more important sentences that should be included in the summary. Graph-based approaches 

have been shown to work well for both single document and multi-document summarization. 

The graph theoretic method may also be adapted easily for visualization of inter- and intra-

document similarity. 

 

 

2.3.4 Machine Learning for Summarization 
 

In this method, the training dataset is used for reference and the summarization process is 

modeled as a classification problem: sentences are classified as summary sentences and non-

summary sentences based on the features that they possess. The classification probabilities 

are learnt statistically from the training data, using Bayes’ rule 

 

P(s∈ <S|F1, F2, ..., FN)=P(F1, F2, ..., FN|s∈ S) × P (s∈ S) / P (F1, F2,..., FN) 
 

Where s is a sentence from the document collection, F1, F2…FN are features used in 

classification. S is the summary to be generated and P (s∈ < S | F1, F2... FN) is the probability 

that sentence s will be chosen to form the summary given that it possesses features F1, 

F2…FN. In supervised methods for summarization, the task of selecting important sentences 

is represented as a binary classification problem, partitioning all sentences in the input into 
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summary and non-summary sentences. A corpus with human annotations of sentences that 

should be included in the summary is used to train a statistical classifier for the distinction, 

with each sentences represented as a list of potential indicators of importance. The likelihood 

of a sentence to belong to the summary class, or the confidence of the classifier that the 

sentence should be in the summary, is the score of the sentence. The chosen classifier plays 

the role of a sentence scoring function, taking as an input the intermediate representation of 

the sentence and outputting the score of the sentence. The most highly scoring sentences are 

selected to form the summary, possibly after skipping some because of high similarity to 

already chosen sentences. 

Machine learning approaches to summarization offer great freedom because the number of 

indicators of importance is practically endless. Any of the topic representation approaches 

discussed above can serve as the basis of indicators. Some common features include the 

position of the sentence in the document (first sentences of news are almost always 

informative), position in the paragraph (first and last sentences are often important), sentence 

length, similarity of the sentence with the document title or headings, weights of the words in 

a sentence determined by any topic representation approach, presence of named entities or 

cue phrases from a predetermined list, etc. Machine learning method has been applied for 

summarization. One important difference is whether the classifier assumes that the decision 

about inclusion in the summary is independently done for each sentence. This assumption is 

apparently not realistic, and methods that explicitly encode dependencies between sentences 

such as Hidden Markov Models and Conditional Random Fields outperform other learning 

methods. A problem inherent in the supervised learning paradigm is the necessity of labeled 

data on which classifiers can be trained. Asking annotators to select summary-worthy 

sentences is a reasonable solution but it is time consuming and even more importantly, 

annotator agreement is low and different people tend to choose different sentences when 

asked to construct an extractive summary of a text. Partly motivated by this issue and partly 

because of their interest in ultimately developing abstractive methods for summarization 

many researchers have instead worked with abstracts written by people (often professional 

writers). Researchers concentrated their efforts on developing methods for automatic 

alignment of the human abstracts and the input in order to provide labeled data of summary 

and non-summary sentences for machine learning. Some researchers have also proposed 

ways to leverage the information from manual evaluation of content selection in 

summarization in which multiple sentences can be marked as expressing the same fact that 

should be in the summary. Alternatively, one could compute similarity between sentences in 

human abstracts and those in the input in order to find very similar sentences, not necessarily 

doing full alignment. Another option for training a classifier is to employ a semi-supervised 

approach. In this paradigm, a small number of examples of summary and non-summary 

sentences are annotated by people. Then two classifiers are trained on that data, using 

different sets of features which are independent given the class or two different classification 

methods After that one of the classifiers is run on unannotated data, and its most confident 

predictions are added to the annotated examples to train the other classifier, repeating the 

process until some predefined halting condition is met. Several modifications to standard 

machine learning approaches are appropriate for summarization. In effect formulating 

summarization as a binary classification problem, which scores individual sentences, is not 

equivalent to finding the best summary, which consists of several sentences. In training a 

supervised model, the parameters may be optimized to lead to a summary that has the best 

score against a human model. For generic multi-document summarization of news, 

supervised methods have not been shown to outperform competitive unsupervised methods 

based on a single feature such as the presence of topic words and graph methods. Machine 

learning approaches have proved to be much more successful in single document or domain 
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or genre specific summarization, where classifiers can be trained to identify specific types of 

information. 

 

 

2.3.5 Latent Semantic Analysis 

 

Singular Value Decomposition (SVD) is a very powerful mathematical tool that can find 

principal orthogonal dimensions of multidimensional data. It gets this name LSA because 

SVD applied to document word matrices, group documents that are semantically related to 

each other, even when they do not share common words. Words that usually occur in related 

contexts are also related in the same singular space. This method can be applied to extract the 

topic-words and content-sentences from documents. The advantage of using LSA vectors for 

summarization rather than the word vectors is that conceptual (or semantic) relations as 

represented in human brain are automatically captured in the LSA, while using word vectors 

without the LSA transformation requires design of explicit methods to derive conceptual 

relations. Since SVD finds principal and mutually orthogonal dimensions of the sentence 

vectors, picking out a representative sentence from each of the dimensions ensures relevance 

to the document, and orthogonality ensures non-redundancy. It is to be noted that this 

property applies only to data that has principal dimensions inherently—however, LSA would 

probably work since most of the text data has such principal dimensions owing to the variety 

of topics it addresses. Building the topic representation starts by filling in an n by m matrix A: 

each row corresponds to a word from the input (n words) and each column corresponds to a 

sentence in the input (m sentences). Entry aij of the matrix corresponds to the weight of word 

i in sentence j. If the sentence does not contain the word, the weight is zero, otherwise the 

weight is equal to the TF*IDF weight of the word. Standard techniques for singular value 

decomposition (SVD) from linear algebra are applied to the matrix A, to represent it as the 

product of three matrices: A = UΣVT every matrix has a representation of this kind and many 

standard libraries provide a built-in implementation of the decomposition. Matrix U is a n by 

m matrix of real numbers. Each column can be interpreted as a topic, i.e. a specific 

combination of words from the input with the weight of each word in the topic given by the 

real number. Matrix Σ is diagonal m by m matrix. The single entry in row i of the matrix 

corresponds to the weight of the “topic”, which is the ith column of U. Topics with low 

weight can be ignored, by deleting the last k rows of U, the last k rows and columns of Σ and 

the last k rows of VT. This procedure is called dimensionality reduction. It corresponds to the 

thresholds employed in the centroid and topic words approaches, and topics with low weight 

are treated as noise. Matrix VT is a new representation of the sentences, one sentence per row, 

each of which is expressed not in terms of words that occur in the sentence but rather in terms 

of the topics given in U. The matrix D = ΣVT combines the topic weights and the sentence 

representation to indicate to what extent the sentence conveys the topic, with dij indicating the 

weight for topic i in sentence j. 

 

 

2.3.6 Neural Network Approach 

 

This method involves training the neural networks to learn the types of sentences that should 

be included in the summary. This is accomplished by training the network with sentences in 

several test paragraphs where each sentence is identified as to whether it should be included 

in the summary or not. This is done by a human reader. The neural network learns the 

patterns inherent in sentences that should be included in the summary and those that should 
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not be included. It uses three-layered feed forward neural network, which has been proven to 

be a universal function approximator. The first phase of the process involves training the 

neural networks to learn the types of sentences that should be included in the summary. This 

is accomplished by training the network with sentences in several test paragraphs where each 

sentence is identified as to whether it should be included in the summary or not. This is done 

by a human reader. The neural network learns the patterns inherent in sentences that should 

be included in the summary and those that should not be included. Once the network has 

learned the features that must exist in summary sentences, we need to discover the trends and 

relationships among the features that are inherent in the majority of sentences. This is 

accomplished by the feature fusion phase, which consists of two steps: 

 

1) Eliminating uncommon features 

2) Collapsing the effects of common features. 

 

The connections having very small weights after training can be pruned without affecting the 

performance of the network. As a result, any input or hidden layer neuron having no 

emanating connections can be safely removed from the network. In addition, any hidden 

layer neuron having no abutting connections can be removed. The hidden layer activation 

values for each hidden layer neuron are clustered utilizing an adaptive clustering technique. 

Each cluster is identified by its centroid and frequency. The activation value of each hidden 

layer neuron is replaced by the centroid of the cluster, which the activation value belongs to. 

This corresponds to collapsing the effects of common features. The combination of these two 

steps corresponds to generalizing the effects of features, as a whole, and providing control 

parameters for sentence ranking. 

 

 

2.3.7 Query Based Extractive Method 
 

In query based text summarization system, the sentences in a given document are scored 

based on the frequency counts of terms (words or phrases). The sentences containing the 

query phrases are given higher scores than the ones containing single query words. Then, the 

sentences with highest scores are incorporated into the output summary together with their 

structural context. Portions of text may be extracted from different sections or subsections. 

The resulting summary is the union of such extracts. The number of extracted sentences and 

the extent to which their context is displayed depends on the summary frame size which is 

fixed to the size of the screen that can be seen without scrolling. In the sentence extraction 

algorithm, whenever a sentence is selected for the inclusion in the summary, some of the 

headings in that context are also selected. The query based sentence extraction algorithm is as 

follows:  

 

1: Rank all the sentences according to their score. 

2: Add the main title of the document to the summary. 

3: Add the first level-1 heading to the summary. 

4: While (summary size limit not exceeded) 

5: Add the next highest scored sentence. 

6: Add the structural context of the sentence: (if any and not already included in the 

summary) 
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7: Add the highest level heading above the extracted text (call this heading h). 

8: Add the heading before h in the same level. 

9: Add the heading after h in the same level. 

10: Repeat steps 7, 8 and 9 for the next highest level headings. 

11: End while 

 

An another query-specific summarization method views a document as a set of 

interconnected text fragments (passages) and focuses on keyword queries, since keyword 

search is the most popular information discovery method on documents, because of its power 

and ease of use. Firstly, at the preprocessing stage, it adds structure to every document, which 

can then be viewed as a labeled, weighted graph, called the document graph. Then, at query 

time, given a set of keywords, it performs keyword proximity search on the document graphs 

to discover how the keywords are associated in the document graphs. For each document its 

summary is the minimum spanning tree on the corresponding document graph that contains 

all the keywords. BAYESUM (Daume III and Marcu, 2006) is a model for sentence 

extraction in query-focused summarization. BAYESUM leverages the common case in which 

multiple documents are relevant to a single query. Using these documents as reinforcement 

for query terms, BAYESUM is not afflicted by the paucity of information in short queries. 

For a collection of D documents and Q queries, assume a D × Q binary matrix r, where rdq = 

1 iff document d is relevant to query q. In multi document summarization, rdq will be 1 

exactly when d is in the document set corresponding to query q. 

 

 

2.4 Selecting summary Sentences 
 

 

2.4.1 Greedy Approach 

 

Greedy approach for both generic and query focused summarization that has been widely 

adopted is Maximal Marginal Relevance (MMR). In this approach, summaries are created 

using greedy, sentence by sentence selection. At each selection step, the greedy algorithm is 

constrained to select the sentence that is maximally relevant to the user query (or has highest 

importance score when a query is not available) and minimally redundant with sentences 

already included in the summary. MMR measures relevance and novelty separately and then 

uses a linear combination of the two to produce a single score for the importance of a 

sentence in a given stage of the selection process. To quantify both properties of a sentence, 

we can use cosine similarity. For relevance, similarity is measured to the query, while for 

novelty; similarity is measured against sentences selected so far. The MMR approach was 

originally proposed for query-focused summarization in the context of information retrieval, 

but could easily be adapted for generic summarization, for example by using the entire input 

as a user. This greedy approach of sequential sentence selection might not be that effective 

for optimal content selection of the entire summary. One typical problematic scenario for 

greedy sentence selection is when a very long and highly relevant sentence happens to be 

evaluated as the most informative early on. Such a sentence may contain several pieces of 

relevant information, alongside some not so relevant facts which could be considered noise. 

Including such a sentence in the summary will help maximize content relevance at the time of 

selection, but at the cost of limiting the amount of space in the summary remaining for other 
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sentences. In such cases it is often more desirable to include several shorter sentences, which 

are individually less informative than the long one, but which taken together do not express 

any unnecessary information. 

 

 

2.4.2 Global Summary Selection 

 

Global optimization algorithms can be used to solve the new formulation of the 

summarization task, in which the best overall summary is selected. Given some constraints 

imposed on the summary, such as maximizing informativeness, minimizing repetition, and 

conforming to required summary length, the task would be to select the best summary. 

Finding an exact solution to this problem is NP-hard, but approximate solutions can be found 

using a dynamic programming algorithm. Exact solutions can be found quickly via search 

techniques when the sentence scoring function is local, computable only from the given 

sentence. Even in global optimization methods, informativeness is still defined and measured 

using features well-explored in the sentence selection literature. These include word 

frequency and position in the document, TF*IDF), similarity with the input, and concept 

frequency. Global optimization approaches to content selection have been shown to 

outperform greedy selection algorithms in several evaluations using news data as input, and 

have proved to be especially effective for extractive summarization of meetings. The 

performance of the approximate algorithm based on dynamic programming was lower, but 

comparable to that of the exact solutions. In terms of running time, the greedy algorithm is 

very efficient, almost constant in the size of the input. The approximate algorithm scales 

linearly with the size of the input and is thus indeed practical to use. The running time for the 

exact algorithm grows steeply with the size of the input and is unlikely to be useful in 

practice. 
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3. Summarization Using Sentence Fusion 
 

Sentence fusion is one of the vital stages in abstractive summarization. We will discuss how 

different techniques exploit various sentence fusion methods to obtain their summaries. Our 

thesis work in particular relates to methods of sentence compression, sentence fusion, 

abstraction so it is necessary to understand how’s and what’s involved in these procedures. 

One should keep in mind that the work for the betterment of this process in ongoing and no 

one particular method is foolproof and the quest for more accurate results is still on. The 

methodologies describes below are ordered in a chronological fashion with respect to their 

inception so as to give an idea how this field developed itself in various aspects over the time. 

 

 

3.1 Using Cross Document Structure Theory (CST) 
 

One of the foremost ideas was the use of cross-document structure based on inter-document 

relationships such as paraphrase, citation, attribution, modality, and development. Radev 

argued that a CST-based analysis of related documents can facilitate multi-document 

summarization. Rhetorical Structure Theory (RST) (Mann & Thompson, 1988) is a 

comprehensive theory of text organization. It is based on “text coherence”, or the presence in 

“carefully written text” of unity that would not appear in random sequences of sentences. 

RST posits the existence of relations among sentences. Most relations consist of one or more 

nuclei (the central components of a rhetorical relation) and zero or more satellites (the 

supporting components of the relation). An example of an RST relation is evidence which is 

decomposed into a nucleus (a claim) and a satellite (text that supports the claim). RST is 

intentionally limited to single documents. With CST, we attempt to describe the rhetorical 

structure of sets of related documents. Unlike RST, CST cannot rely on the deliberateness of 

writing style. However some observations of structure across documents which, while clearly 

not deliberate in the RST sense, can be quite predictable and useful. In a sense, CST 

associates certain behavior to a “collective document author” (that is, the collectivism of all 

authors of the related documents). A pioneering study in the typology of links among 

documents is described in (Trigg and Weiser, 1986). Trigg introduces taxonomy of link types 

across scientific papers. The 80 suggested link types such as citation, refutation, revision, 

equivalence, and comparison are grouped in two categories: Normal (inter-document links) 

and Commentary (deliberate cross-document links). While the taxonomy is quite exhaustive, 

it is by no means appropriate or intended for general domain texts (that is, other than 

scientific articles). A large deal of research in the automatic induction of document and hyper 

document structure is due to Salton’s group at Cornell (Salton et al., 1997).SUMMONS 

(Radev and McKeown, 1998) is a knowledge-based multi-document summarization system, 

which produces summaries of a small number of news articles within the domain of 

terrorism. SUMMONS uses as input a set of semantic templates extracted by a message 

understanding system (Fisher et al., 96) and identify some patterns in them such as change of 

perspective, contradiction, refinement, agreement, and involved a large amount of knowledge 

engineering even for a relatively small domain of text and are not directly suitable for 

domain-independent text analysis. 
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3.1.1 Representing cross-document structure 

Two complementary data structures to represent multi-document clusters are the multi-

document cube and the multi-document graph 

 

3.1.1.1 Multi-document Cube 

 

A multi-document cube C is a three dimensional structure that represents related documents. 

The three dimensions are t (time), s (source) and p (position within the document). 

A document unit U is a tuple (t,s,p). Document units can be defined at different levels of 

granularity, e.g., paragraphs, sentences, or words. 

A document D is a sequence of document units U1U2…Un which corresponds to a one-

dimensional projection of a multi-document cube along the source and time dimensions. 

Some additional concepts can be defined based on the above definitions. 

A snapshot is a slice of the multi-document cube over a period of time Δt  

An evolving document is a slice of the multi-document cube in which the source is fixed and 

time and position may vary. 

An extractive summary S of a cube C is a set of document units, S ⊂C,  

A summarization operator transforms a cube C into a summary S 

 

3.1.1.2 Multi-document Graphs 

 

While multi-document cubes are a useful abstraction, they cannot easily represent text 

simultaneously at different levels of granularity (words, phrases, sentences, paragraphs, and 

documents). The second formalism that we introduce is the multi-document graph. Each 

graph consists of smaller sub-graphs for each individual document. Two types of links are 

used. The first type represents inheritance relationships among elements within a single 

document. These links are drawn using thicker lines. The second type represents semantic 

relationships among textual units. 

 

 

3.1.2 Using CST for Information fusion 

 

In this section it is described how CST can be used to generate personalized multi-document 

summaries from clusters of related articles in four steps: clustering, document structure 

analysis, link analysis, and personalized graph based summarization. 

The first stage, clustering, can be either query independent (e.g., based on pure document 

similarity (Allan et al. 98)) or based on a user query (in which case clusters will be the sets of 

documents returned by a search engine). 

 

The second stage, document analysis, includes the generation of document trees representing 

the sentential and phrasal structure of the document (Hearst 94, Kan et al. 98). 

 

The third stage is the automatic creation and typing of links among textual spans across 

documents. Four techniques for identifying related textual units across documents can be 

used:   Lexical distance 

Lexical chains 

Information extraction 

Linguistic template matching 
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Lexical distance (Allan, 96) uses cosine similarity across pairs of sentences. Lexical chains 

(Barzilay & Elhadad, 97) are more robust than lexical matching as they take into account 

linguistic phenomena such as synonymy and hypernymy. The third technique, information 

extraction (Radev & McKeown, 98) identifies salient semantic roles in text (e.g., the place, 

perpetrator, or the effect of a terrorist event say for instance) and converts them to semantic 

templates. Two textual units are considered related whenever their semantic templates are 

related. Finally, a technique that will be used to identify some relationships such as citation, 

contradiction, and attribution is template matching which takes into account transformational 

grammar (e.g., relative clause insertion). For link type analysis, machine learning using 

lexical metrics and cue words is most appropriate.  

The final step is summary extraction, based on the user-specified constraints on the 

summarizer. A graph-based operator defines a transformation on a multi-document graph 

(MDG) G which preserves some of its properties while reducing the number of nodes. An 

example of such an operator is the link-preserving graph cover operator. Its effect is to 

preserve only these nodes from the source MDG that are associated with the preferred cross-

document links. 

 

 

3.2 Cut and Paste Text Summarization 
 

The name cut and paste might suggest an extractive based idea but this was one of earliest 

abstractive summarization technique developed by Jing (2000). This method was not pure 

abstraction as it incorporated many features of extraction based summarization. Back then, 

abstractive summarization had not developed to much extent and the primary focus of his 

work was to bridge the gap between automatically generated summaries and human-written 

abstracts. Instead of simple extraction of key features, this method aims to reuse the text in 

the given document to form summary. There are six independent modules present in this 

method which can form the summary from a given text and they work in tandem with 

syntactic knowledge, context and statistics learned from corpus analysis. It also decomposes 

human written abstracts to train and test the sentence reduction and sentence combination 

module. Around 300 human abstracts were analyzed for this technique. 

 

 

3.2.1 Sentence Reduction 
 

Extraneous phrases are removed. They can be at any granularity level a word, a phrase or a 

clause. The removal is done so that only spurious information is omitted keeping the relevant 

information intact. This is achieved by grammar checking, context information analysis and 

corpus analysis. The context information can be checked by extracting words and assigning 

importance score to them. Corpus of input articles and human generates abstracts are 

analyzed and three types of corpus probabilities are calculated which are probability that a 

phrase is completely removed, probability a phrase is partially removed and probability the 

phrase is unchanged. Taking into consideration all the steps we discussed so far final 

reduction takes place. 
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3.2.2 Sentence Combination 
 

From analyzing the training set corpus, a set of rules are devised which are to be followed for 

sentence merging. The implementation of sentence combination involves joining two parse 

trees, substituting a subtree with one another or adding additional nodes. Formalism based on 

tree adjoining grammars was used for this action. 

 
he combining actions involves 

3.2.3 Syntactic Transformation 
 

In both sentence reduction and combination, syntactic transformation may be involved such 

positional shift among words and phrases. Since this method is a supervised technique the 

manner in which such transformation is to be done depends upon the corpus and training 

dataset. 

 

 

3.2.4 Lexical Paraphrasing 
 

Common phrases are replaced with paraphrases. There must exist an external lexicon and 

dictionary from which such change can be made possible depending upon context. 

 

 

3.2.5 Generalization 
 

This stage re-arranges and replaces phrases and clauses with more general or specific 

description.  

 

 

3.2.6 Reordering 
 

The order of extracted sentences can be changed. For instance, like placing an ending 

sentence in an article at the beginning of an abstract.  

 

 

3.3.6 System Architecture  
 

Not only does this architecture given in Fig 3.1 pertain to the cut and paste summarization 

method but also provides a generic structure as to how most of the abstraction summarization 

process works. The input text is fed to the system. Sentence extraction techniques are 

incorporated to obtain key sentences of relevant information. The cut and paste generation 

module comes next which takes in the extracted sentences and performs sentence reduction 

and combination on them. This module takes help from the corpus of human abstracts which 

helps it to further analyze the sentences and make a better choice as to what should be 

removed and how the merging should be done. Also the parser, WordNet and various 

lexicons help with the paraphrasing task, re-arranging and reordering of the final text and 

final generation of the output summary. It must be kept in mind this method is quite primitive 

in its application and is highly dependent on user statistics but nevertheless it provides us 

with a rudimentary idea as to how one should proceed to the task of abstraction. 

 



29 
 

Input Text 

 

 

 

 

 
Extracted Relevant Sentences 

 

 

 

 

 

 

 

 

Output Summary 

 

Figure 3.1: Cut and Paste Summarization Architecture 

 

3.3 Text-to text Generation via Sentence Alignment 
 

Text-to-text generation is an emerging area of research in NLP. Unlike in traditional concept-

to-text generation, text-to-text generation applications take a text as input and transform it 

into a new text satisfying specific constraints, such as length in summarization or style in text 

simplification. One exciting new research direction is the automatic induction of such 

transformation rules. This is a particularly promising direction given that there are naturally 

occurring examples of comparable texts that convey the same information yet are written in 

different styles. Presented with two such texts, one can pair sentences that convey the same 

information, thereby building a training set of rewriting examples for the domain to which the 

texts belong. Automating this process will provide researchers in text-to-text generation with 

valuable training and testing resources. Barzilay and Elhadad investigate a novel approach 

informed by text structure for sentence alignment. This method emphasizes the search for an 

overall alignment, while relying on a simple local similarity function. They incorporate 

context into the search process in two complementary ways:  

 

 

 

1. Mapping large text fragments using hypotheses learned in a supervised fashion. 

2. Further refining the match through local alignment within mapping fragments to find 

sentence pairs. 

Sentence Extraction 

Cut and Paste based Generation 

Sentence Reduction 

Sentence Combination 

Parser 

Co-reference 

Wordnet 

Combined 

Lxicon 

Corpus of Human 

Abstracts 

Decomposition 



30 
 

When the documents in the collection belong to the same domain and genre, the fragment 

mapping takes advantage of the topical structure of the texts. This structure is derived in an 

unsupervised fashion by analyzing commonalities among texts on each side of the 

comparable corpora separately. 

Given a comparable corpus consisting of two collections and a training set of manually 

aligned text pairs from the corpus, the algorithm follows four main steps. Steps 1 and 2 take 

place at training time. Steps 3 and 4 are carried out when a new text pair (Text1, Text2) is to 

be aligned. 

 

1. Topical structure induction: by analyzing multiple instances of paragraphs within the 

texts of each collection, the topics characteristic of the collections are identified through 

clustering. Each paragraph in the training set gets assigned the topic it verbalizes. 

2. Learning of structural mapping rules: using the training set, rules for mapping 

paragraphs are learned in a supervised fashion. 

3. Macro alignment: given a new unseen pair (Text1, Text2), each paragraph is 

automatically assigned its topic. Paragraphs are mapped following the learned rules. 

4.  Micro alignment: for each mapped paragraph pair, a local alignment is computed at the 

sentence level. The final alignment for the text pair is the union of all the aligned sentence 

pairs 

 

In the field of text generation, methods for representing the semantic structure of texts have 

been investigated through text schemata (McKeown, 1985) or rhetorical structures (Mann and 

Thompson, 1986). In this framework, the different topics of the text are identified, but much 

concern isn’t shown with the relations holding between them or the order in which they 

typically appear. It is proposed to identify the topics typical to each collection in the 

comparable corpus by using clustering, such that each cluster represents a topic in the 

collection. The process of learning paragraph mapping rules is accomplished in two stages: 

first, identify the topics of each collection, Corpus1 and Corpus2, and label each paragraph 

with its specific topic. Second, using a training set of manually aligned text pairs, learn rules 

for mapping paragraphs from Corpus1 to Corpus2. Two paragraphs are considered mapped if 

they are likely to contain sentences that should be aligned. 

 

 

3.3.1 Vertical Paragraph Clustering 

 

A clustering at the paragraph level for each collection is performed. This stage is called 

Vertical Clustering because all the paragraphs of all the documents in Corpus1 get clustered, 

independently of Corpus2; the same goes for the paragraphs in Corpus2. At this stage, the 

only interesting thing is in identifying the topics of the texts in each collection, each cluster 

representing a topic. Then applying a hierarchical complete link clustering, similarity is 

calculated upon a simple cosine measure based on the word overlap of the paragraphs, 

ignoring function words. Since we want to group together paragraphs that convey the same 

type of information across the documents in the same collection, we replace all the text-

specific attributes, such as proper names, dates and numbers, by generic tags. This way, it is 

ensured that two paragraphs are clustered not because they relate the same specific 

information, but rather, because they convey the same type of information. 
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3.3.2 Horizontal Paragraph Mapping 

 

Once the different topics, or clusters, are identified inside each collection, this information 

can be used to learn rules for paragraph mapping (Horizontal Mapping between texts from 

Corpus1 and texts from Corpus2). Using a training set of text pairs, manually aligned at the 

sentence level, two paragraphs are considered to map each other if they contain at least one 

aligned sentence pair. The problem can be framed as a classification task: given training 

instances of paragraph pairs (P, Q) from a text pair, classify them as mapping or not. The 

features for the classification are the lexical similarity of P and Q, the cluster number of P, 

and the cluster number of Q. Here, similarity is again a simple cosine measure based on the 

word overlap of the two paragraphs. These features are weak indicators by themselves. 

Consequently, one can use the publicly available classification tool BoosTexter1(Singer and 

Schapire, 2000) to combine them accurately. 

 

 

3.3.3 Macro Alignment: Find Candidate Paragraph(s) 

 

At this stage, the clustering and training are completed. Given a new unseen text pair (Text1, 

Text2), the goal is to find a sentence alignment between them. Two sentences with very high 

lexical similarity are likely to be aligned. We allow such pairs in the alignment independently 

of their context. This step allows catching the “easy” paraphrases. Focusing next on how the 

algorithm identifies the less obvious matching sentence pairs. For each paragraph in each 

text, identify the cluster in its collection it is the closest to. Similarity between the paragraph 

and each cluster is computed the same way as in the Vertical Clustering step, followed by 

apply mapping classification to find the mapping paragraphs in the text pair. 

 

 

3.3.4 Micro Alignment: Find Sentence Pair(s) 

 

Once the paragraph pairs are identified in (Text1, Text2), that we want to find, for each 

paragraph pair, the (possibly empty) subsets of sentence pairs which constitute a good 

alignment. Context is used in the following way: given two sentences with moderate 

similarity, their proximity to sentence pairs with high similarity can help us decide whether to 

align them or not. To combine the lexical similarity (again using cosine measure) and the 

proximity feature, we compute local alignments on each paragraph pair, using dynamic 

programming. The local alignment we construct fits the characteristics of the data that are 

considered. In particular, it is adapted to the framework to allow many-to-many alignments 

and some flips of order among aligned sentences. Given sentences i and j, their local 

similarity sim(i , j) is: 

 

sim(i,j) = cos(i, j) – mismatch penalty 

 

 

The weight s(i,j) of the optimal alignment between the two sentences is computed as follows: 

 

          s(i,j) = max { s(i, j-1) – skip penalty 

  s(i-1, j) – skip penalty 

                                                           
1https://www.cs.princeton.edu/~schapire/boostexter.html 
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  s(i-1, j-1) + sim(i,j) 

  s(i-1, j-2) + sim(i,j) + sim(i, j-1) 

  s(i-2, j-1) + sim(i,j) + sim(i-1, j) 

  s(i-2, j-2) + sim(i, j-1) + sim(i-1, j) } 

 

The mismatch penalty penalizes sentence pairs with very low similarity measure, while the 

skip penalty prevents only sentence pairs with high similarity from getting aligned. 

 

 

3.4 Using Dependency Graph Compression 
 

Filippova and Strube (2008) use groups of related sentences as input to a sentence fusion 

system and thus need to be identified first. Then the dependency trees of the sentences are 

modified and aligned. Syntactic importance and word informativeness scores are used to 

extract a new dependency tree from a graph of aligned trees. Finally, the tree is linearized. 

 

 

3.4.1 Sentence Alignment 

 

Sentence alignment for comparable corpora requires methods different from those used in 

machine translation for parallel corpora. For example, given two biographies of a person, one 

of them may follow the timeline from birth to death whereas the other may group events 

thematically or tell only about the scientific contribution of the person. Thus one cannot 

assume that the sentence order or the content is the same in two biographies. Shallow 

methods like word or bigram overlap, (weighted) cosine or Jaccard similarity are appealing as 

they are cheap and robust. In particular, (Nelken & Schieber, 2006) demonstrate the efficacy 

of a sentence-based tf-idf score when applied to comparable corpora. Following them, we 

define the similarity of two sentences sim(S1, S2) as 

 

(S1 . S2) / (|S1|.|S2|) = Σt ws1(t).ws2(t) / (Σtw2s1(t). Σtw2s2(t))1/2 
 

Where S is the set of all lemmas but stop-words from s, and wS(t) is the weight of the term t: 

 

wS(t) = S(t) N-1t 

 

Where S(t) is the indicator function of S, Nt is the number of sentences in the biographies of 

one person which contain t. Identical or nearly identical sentences (sim(s1, s2) > 0.8) are 

discarded and greedily build sentence clusters using a hierarchical group wise average 

technique is used. As a result, one sentence may belong to one cluster at most. These 

sentence clusters serve as input to the fusion algorithm. 

 

 

3.4.2 Dependency Tree Modification 

 

We apply a set of transformations to a dependency tree to emphasize its important properties 

and eliminate unimportant ones. These transformations are necessary for the compression 

stage.  

Consider the sentence “Bohr studied mathematics and physics at the university in 

Copenhagen” 
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PREP preposition nodes (an, in) are removed and placed as labels on the edges to the 

respective nouns 

CONJ a chain of conjuncts (Mathematics and Physics) is split and each node is attached to 

the parent node (studied) provided they are not verbs 

APP a chain of words analyzed as appositions (Niels Bohr) is collapsed into one node 

FUNC function words like determiners (the), auxiliary verbs or negative particles are 

removed from the tree and memorized with their lexical heads (memorizing negative particles 

preserves negation in the output) 

ROOT every dependency tree gets an explicit root which is connected to every verb node 

BIO all occurrences of the biographee (Niels Bohr) are replaced with the bio tag. 

 

 

3.4.3 Node Alignment 

 

Once group of two to four strongly related sentences and their transformed dependency trees 

are obtained, the aim is to find the best node alignment. Using a simple, fast and transparent 

method one can align any two words provided that they– 

 

1. Are content words 

2. Have the same part-of-speech 

3. Have identical lemmas or are synonyms 

 

In case of multiple possibilities, the choice is made randomly. By merging all aligned nodes a 

dependency graph is obtained which consists of all dependencies from the input trees. In case 

it contains a cycle, one of the alignments from the cycle is eliminated. This very simple 

method is preferred to the bottom-up ones (Barzilay & McKeown, 2005) for two main 

reasons. Pursuing local subtree alignments, bottom-up methods may leave identical words 

unaligned and thus prohibit fusion of complementary information. On the other hand, they 

may force alignment of two unrelated words if the subtrees they root are largely aligned. 

Although in some cases it helps discover paraphrases, it considerably increases chances of 

generating ungrammatical output which must be avoided at any cost. 

 

 

3.4.4 Syntactic Importance Score 

 

Given a dependency graph the objective is to get a new dependency tree from it. Intuitively, 

one can retain obligatory dependencies (e.g. subject) while removing less important ones (e.g. 

adv). When deciding on pruning an argument, previous approaches either used a set of hand-

crafted rules (Barzilay and McKeown, 2005), or utilized a sub-categorization lexicon. The 

hand-crafted rules are often too general to ensure a grammatical argument structure for 

different verbs (e.g. PPs can be pruned). Sub-categorization lexicons are not readily available 

for many languages and cover only verbs. E.g. they do not tell that the noun son is very often 

modified by a PP using the preposition of, as in the son of Niels Bohr, and that the NP 

without a PP modifier may appear incomplete. To overcome these problems, they decide on 

pruning an edge by estimating the conditional probability of its label given its head, P(l|h). 

For example, P(subj|study) – the probability of the label subject given the verb study – is 

higher than P(in|study), and therefore the subject will be preserved whereas the prepositional 

label and thus the whole PP can be pruned,  
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3.4.5 Word Informativeness Score 

 

Retaining informative words in the output Tree are a necessity. There are many ways in 

which word importance can be defined. Here, they use a formula  

 

I(wi) = N-1. fi log FA / Fi 

 

wi is the topic word (either noun or verb), fi is the frequency of wi in the aligned biographies, 

Fi is the frequency of wi in the corpus, and FA is the sum of frequencies of all topic words in 

the corpus. l is the number of clause nodes above w and N is the maximum level of 

embedding of the sentence which w belongs to. By defining word importance differently, e.g. 

as relatedness of a word to the topic, one could apply this method to topic-based 

summarization 

 

 

3.4.6 New Sentence Generation 

 

The task of getting a tree from a dependency graph can be formulated as an optimization 

problem and solved ILP. In order to decide which edges of the graph to remove, for each 

directed dependency edge from head h to word w they introduce a binary variable xl
h,w , 

where l stands for the label of the edge: 

 

xl
h,w = 1 if the dependency is preserved 

 0 otherwise 

 

The goal is to find a subtree of the graph which gets the highest score of the objective 

function (1) to which both the probability of dependencies (P(l|h) ) and the importance of 

dependent words (I(w)) contribute: 

 

f(X) = Σx  x
l
h,w · P(l|h) · I(w) …….…….(1) 

 

The objective function is subject to three types of constraints presented below (W stands for 

the set of graph nodes minus root, i.e. the set of words). 

STRUCTURAL constraints allow getting a tree from the graph: (2) ensures that each word 

has one head at most, (3) ensures connectivity in the tree, (4) is optional and restricts the size 

of the resulting tree to α words (α = min (0.6 · |W|, 10)). 

 

For all w ε W, Σh,l  x
l
h,w ≤ 1…………………………….(2) 

For all w ε W, Σh,l  x
l
h,w –  |W|-1Σu,l  x

l
w,u ≥ 0……….….(3) 

Σx  x
l
h,w ≤ α………………………….….(4) 

 

SYNTACTIC constraints ensure the syntactic validity of the output tree and explicitly state 

which arguments should be preserved. We have only one syntactic constraint which 

guarantees that a subordinating conjunction (sc) is preserved if and only if the clause it 

belongs to serves as a subordinate clause (sub) in the output. 
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SEMANTIC constraints restrict coordination to semantically compatible elements. The idea 

behind these constraints is the following. It can be that one sentence says He studied math 

and another one He studied physics, so the output may unite the two words under 

coordination: He studied math and physics. But if the input sentences are He studied physics 

and He studied sciences, then one should not unite both, because sciences is the 

generalization of physics. Neither should one unite two unrelated words: He studied with 

pleasure and He studied with Bohr cannot be fused into He studied with pleasure and Bohr. 

To formalize these intuitions we define two functions hm(w,u) and rel(w,u): hm(w,u) is a 

binary function, whereas rel(w,u) returns a value from (0, 1). We also introduce additional 

variables yl
w,u : 

 

yl
w,u  = 1 if h, l : xl

h,w = 1 && xl
h,u = 1……………...(5) 

0 otherwise 

 

For two edges sharing a head and having identical labels to be retained check in WordNet and 

in the taxonomy derived from Wikipedia (Kassner et al., 2008) that their dependents are not 

in the hyponymy or meronymy relation (6). Verb coordination is prohibited unless it is found 

in one of the input sentences. If the dependents are nouns, also check that their semantic 

relatedness as measured with WikiRelate! (Strube & Ponzetto, 2006) is above a certain 

threshold (7). They empirically determined the value of ß = 0.36 by calculating an average 

similarity of coordinated nouns in the corpus. 

 

For all yl
w,u  , hm(w, u) · yl

w,u  = 0………….…..…. (6) 

For all yl
w,u  , (rel(w, u) – ß) · yl

w,u  ≥ 0………........ (7) 

 

(6) Prohibits that physics (or math) and sciences appear together since, according to 

WordNet, physics is a hyponym of science, (7) blocks taking both pleasure and Bohr because 

rel(pleasure,Bohr) = 0.17. math and physics are neither in IS-A, nor part-of relation and are 

sufficiently related (rel(Mathematics, Physics) = 0.67) to become conjuncts. 

 

 

3.4.7 Linearization 

 

The “overgenerate-and-rank” approach to statistical surface realization is very common.  

Unfortunately, in its simplest and most popular version, it ignores syntactical constraints and 

may produce ungrammatical output. For example, an inviolable rule of German grammar 

states that the finite verb must be in the second position in the main clause. Since it is hard to 

enforce such rules with an n-gram language model, syntax-informed linearization methods 

have been developed for German. Applying this method to order constituents and, using the 

CMU toolkit, one can build a trigram language model from Wikipedia (approx. 1GB plain 

text) to find the best word order within constituents. Some constraints on word order are 

inferred from the input. Only inter-clause punctuation is generated. 

 

 

3.5 Using Word Graphs 
 

Filippova (2010) considers the task of summarizing a cluster of related sentences with a short 

sentence which is called multi-sentence compression and presents a simple approach based on 

shortest paths in word graphs. The advantage and the novelty of the proposed method is that 
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it is syntax lean and requires little more than a tokenizer and a tagger. Given a cluster of 

similar, or related sentences, the most salient theme aim is summarizing in a short single 

sentence. Two challenges of sentence compression as well as text summarization are 

 

(i) Important content selection 

(ii) Its readable presentation. 

 

Most existing systems use syntactic information to generate grammatical compressions. 

Incidentally, syntax also provides clues to what is likely to be important–e.g., the subject and 

the verb of the main clause are more likely to be important than a prepositional phrase or a 

verb from a relative clause. Of course, syntax is not the only way to gauge word or phrase 

importance. In the case of sentence compression being used for text summarization, one 

disposes of a rich context to identify important words or phrases. A well-known challenge for 

extractive multi-document summarization systems is to produce non-redundant summaries. 

There are two standard ways of avoiding redundancy: either one add sentences to the 

summary one-by-one and each time checks whether the sentence is significantly different 

from what is already there, or one clusters related sentences and selects only one from each 

cluster. In both cases a selected sentence may include irrelevant information, so one wishes to 

compress it, usually by taking syntactic and lexical factors into account. However, such an 

approach is suboptimal. Instead of compressing a single sentence, a word graph is built from 

all the words of the related sentences and compresses this graph. A word graph is a directed 

graph where an edge from word A to word B represents an adjacency relation. It also contains 

the start and end nodes. Word graphs have been widely used in natural language processing 

for building language models, paraphrasing, alignment, etc. Compared with dependency 

graphs, their use for sentence generation has been left largely unexplored, presumably 

because it seems that almost all the grammatical information is missing from this 

representation. Indeed, a link between a finite verb and an article does not correspond to any 

grammatical relation between the two. However, the premise for this work is that redundancy 

should be sufficient to identify not only important words but also salient links between 

words. 

 

 

3.5.1 Word Graphs 

 
Given a set of related sentences S = {s1, s2, ...sn}, a word graph is built by iteratively adding 
sentences to it. As an illustration, consider the four sentences below and the graph obtained 
from them. Edge weights are omitted and italicized fragments from the sentences are replaced 
with dots for clarity. 
 
(1) The wife of a former U.S. president Bill Clinton Hillary Clinton visited China last Mon-

day.  
 
(2) Hillary Clinton wanted to visit China last month but postponed her plans till Monday last 

week.  
 
(3) Hillary Clinton paid a visit to the People Re-public of China on Monday. 

 
(4) Last week the Secretary of State Ms. Clinton visited Chinese officials. 
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Figure 3.2: Filippova’s Word Graph 

 

A word from a sentence is mapped onto a node in the graph provided that they have the exact 

same lowercased word form and the same part of speech and that no word from this sentence 

has already been mapped onto this node. Using part of speech information reduces chances of 

merging verbs with nouns and generating ungrammatical sequences. If there is no candidate 

in the graph a new node is created. Word mapping and creation is done in three steps for the 

following three groups of words: 

 

1. Non-stopwords for which no candidate exists in the graph or for which an unambiguous 

mapping is possible. 

2. Non-stopwords for which there are either several possible candidates in the graph or which 

occur more than once in the sentence. 

3. Stopwords. 

 

This procedure is similar to the one used by (Barzilay and Lee, 2003) in that this also first 

identify “backbone nodes” (unambiguous alignments) and then add mappings for which 

several possibilities exist. However, they build lattices, i.e., directed acyclic graphs, whereas 

this graph may contain cycles. For the groups of words where mapping is ambiguous the 

immediate context (the preceding and following words in the sentence and the neighboring 

nodes in the graph) is checked and the candidate which has larger overlap in the context, or 

the one with a greater frequency (i.e., the one which has more words mapped onto it) is 

selected. For example, in word graph when sentence (4) is to be added, there are two 

candidate nodes for last. The one pointing to week is selected as week is the word following 

last in (4). Stopwords are mapped only if there is some overlap in non-stopword neighbors, 

otherwise a new node is created. Once all the words from the sentence are in place, we 
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connect words adjacent in the sentence with directed edges. For newly created nodes, or 

nodes which were not connected before, we add an edge with a default weight of one. Edge 

weights between already connected nodes are increased by one. The same is done with the 

start and end nodes. Nodes store id’s of the sentences their words come from as well as all 

their offset positions in those sentences. The described alignment method is fairly simple and 

guarantees the following properties of the word graph: 

 

(i) Every input sentence corresponds to a loopless path in the graph 

 

(ii) Words referring to the same entities or actions are likely to end up in one node 

 

(iii) Stopwords are only joined in one node if there is an overlap in context. 

 

The graph may generate a potentially endless amount of incomprehensible sequences 

connecting start and end. It is also likely to contain paths corresponding to good 

compressions, like the path connecting the nodes highlighted with blue in Figure 3.1. In the 

following we describe two methods of finding the best path, that is, the best compression for 

the input sentences. 

 

 

3.5.2 Shortest Path as Compression 

 

Characteristic of a good compression is it should neither be too long, nor too short. It should 

go through the nodes which represent important concepts but should not pass the same node 

several times. It should correspond to a likely word sequence. To satisfy these constraints we 

invert edge weights, i.e., link frequencies, and search for the shortest path (i.e., lightest in 

terms of the edge weights) from start to end of a predefined minimum length. This path is 

likely to mention salient words from the input and put together words found next to each 

other in many sentences. This is the first method. A minimum path length (in words) to eight 

is set which appears to be a reasonable threshold on development set–paths shorter than seven 

words were often incomplete sentences. Furthermore, to produce informative summaries 

which report about the main event of the sentence cluster, paths which do not contain a verb 

node are filtered. 

For example, Ozark’s “Winter’s Bone” at the 2010 Sundance Film Festival might be a good 

title indicating what an article is about. However, it is not as informative as “Winter’s Bone” 

earned the grand jury prize at Sundance which indeed conveys the gist of the event. Thus, K 

shortest paths are generated and all those which are shorter than eight words or do not contain 

a verb are filtered. The path with the minimum total weight is selected as the summary. 

 

 

3.5.3 Improved Scoring and Re-ranking 

 

The second configuration of a more sophisticated weighting function. The purpose of this 

function is two-fold: 

 

(i) To generate a grammatical compression, it favors strong links, i.e., links between 

words which appear significantly often in this order 
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(ii) To generate an informative compression, it promotes paths passing through salient 

nodes. 

 

3.5.3.1 Strong links: Intuitively, it is desirable that the compression path follow edges 

between words which are strongly associated with each other. Inverted edge frequency is not 

sufficient for that because it ignores the overall frequency of the nodes the edge connects. For 

example, edge frequency of three should count more if the edge connects two nodes with 

frequency of three rather than if their frequencies are much higher. Thus, we redefine edge 

weight as follows: 

 

w(ei,j) = [freq(i) + freq(j)] / freq(ei,j) 
 

Furthermore, we also promote a connection between two nodes if there are multiple paths 

between them. For example, if some sentences speak of president Barack Obama or 

president of the US Barack Obama, and some sentences are about president Obama, we want 

to add some reward to the edge between president and Obama. However, longer paths 

between words are weak signals of word association. Therefore, the weight of an edge 

between the nodes i and j is reduced for every possible path between them but reduced 

proportionally to its length: 

 

w′(ei,j) = [freq(i) + freq(j)] /Σs ∈ S diff(s, i, j)-1 

 

Where the function diff(s, i, j) refers to the distance between the offset positions (pos(s, i)) of 

words i and j in sentence s and is defined as follows: 

 

diff(s, i, j) = pos(s, i) − pos(s, j), if pos(s, i) < pos(s, j) 

0 otherwise 

 

3.5.3.2 Salient words: The function above only indicates how strong the association between 

two words is. It assigns equal weights to edges connecting words encountered in a single 

sentence and words encountered next to each other in every sentence. To generate a summary 

concerning the most salient events and entities, the path is forced to go through most frequent 

nodes by decreasing edge weight with respect to the frequency of the nodes it connects. Thus, 

edge weight is further defined as follows: 

 

w′′(ei,j) = w′(ei,j) / (freq(i) × freq(j)) 

 

The K-shortest paths algorithm is implemented to find the fifty shortest paths from start to 

end using the weighting function in. The paths which are shorter than eight words are filtered 

and which do not pass a verb node. Finally, re-rank the remaining paths by normalizing the 

total path weight over its length. This way the path which has the lightest average edge 

weight is obtained. 

 

 

3.5.5 Baseline 

 

As a first baseline we are searching for the most probable string with respect to the sentence 

cluster. In particular, the Viterbi algorithm is used to find the sequence of words of a 

predefined length n which maximizes the bigram probability (MLE based): 
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p(w1,n) = p(w1|s)p(w2|w1)...p(e|wn) 
 

Similar to the shortest path implementation, compression length is specified and is set to 

eight tokens. However, the compressions obtained with this method are often unrelated to the 

main theme. The reason for that is that a token subsequence encountered in a single sentence 

is likely to get a high probability–all transition probabilities are equal to one–provided that 

the probability of entering this sequence is not too low. To amend this problem and to 

promote frequent words (i.e., words which are likely to be related to the main theme) 

maximize the following baseline score which takes into account both the bigram probabilities 

and the token likelihood, p(wi), which is also estimated from the sentence cluster:  

 
b(w1,n) = p(w1|s)p(w2|w1)...p(e|wn)πi p(wi) 

 

3.6 N-best Re-ranking in Multi Sentence Compression 
 

Boudin and Morin (2013) extends the work of Filippova (2010) and slightly modifies her 

approach to output a slightly better model. In Filippova’s approach, punctuation marks are 

excluded. To generate well-punctuated compressions, they simply added a fourth step for 

adding punctuation marks in the graph. When mapping is ambiguous, they select the 

candidate which has the same immediate context. Once the words from a sentence are added 

to the graph, words adjacent in the sentence are connected with directed edges. Edge weights 

are calculated using the weighting function defined as: 

 

w(i, j) = cohesion(i, j) / freq(i) × freq(j) 

cohesion(i, j) = freq(i) + freq(j) / ΣsεS d(s.i.j)-1 

 

Where freq(i) is the number of words mapped to the node i. The function d(s, i, j) refers to the 

distance between the offset positions of words i and j in sentence s. The purpose of this 

function is twofold: 

(i) To generate a grammatical compression, links between words which appear often 

in this order are favored 

(ii) To generate an informative compression, the weight of edges connecting salient 

nodes is decreased. 

 

A K-shortest paths algorithm is then used to find the 50 shortest paths from start to end nodes 

in the graph. Paths shorter than eight words or that does not contain a verb are filtered. The 

remaining paths are re-ranked by normalizing the total path weight over its length. The path 

which has the lightest average edge weight is then considered as the best compression. 

 

 

3.6.1 Re-ranking paths using Keyphrases 

 

The main difficulty of MSC is to generate sentences that are both informative and 

grammatically correct. Here, redundancy within the set of input sentences is used to identify 

important words and salient links between words. Although this approach seemingly works 

well, important information is missing in 48% to 60% of the generated sentences (Filippova, 

2010). One of the reasons for this is that node salience is estimated only with the frequency 

measure. To tackle this issue, they propose to re-rank the N-best list of compressions using 

keyphrases extracted from the set of related sentences. Intuitively, an informative sentence 
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should contain the most relevant keyphrases. Re-ranking of generated compressions should 

be done according to the number and relevance of keyphrases they contain. Keyphrase 

extraction can be divided into two steps. First, a weighted graph is constructed from the set of 

related sentences, in which nodes represent words defined as word and POS tuples. Two 

nodes (words) are connected if their corresponding lexical units co-occur within a sentence. 

Edge weights are the number of times two words co-occur. TextRank (Mihalcea and Tarau, 

2004), a graph-based ranking algorithm that takes into account edge weights, is applied for 

computing a salience score for each node. The score for node Vi is initialized with a default 

value and is computed in an iterative manner until convergence using this equation: 

 

S(Vi) = (1−d)+d×ΣVj ε adj(Vi) wji S(Vi) / ΣVk ε adj(Vi) wjk 

 

Where adj(Vi) denotes the neighbors of Vi and d is the damping factor set to 0.85. The second 

step consists in generating and scoring keyphrase candidates. Sequences of adjacent words 

satisfying a specific syntactic pattern are collapsed into multi-word phrases. They use 

(ADJ)*(NPP|NC)+(ADJ)* for French, in which ADJ are adjectives, NPP are proper nouns 

and NC are common nouns. The score of a candidate keyphrase k is computed by summing 

the salience scores of the words it contains normalized by its length + 1 to favor longer n-

grams 

score(k) = Σwεk TextRank(w) / (length(k) + 1) 
 

The small vocabulary size as well as the high redundancy within the set of related sentences 

is two factors that make keyphrase extraction easier to achieve. On the other hand, a large 

number of the generated keyphrases are redundant. Some keyphrases may be contained 

within larger ones, e.g. giant tortoise and Pinta Island giant tortoise. To solve this problem, 

generated keyphrases are clustered using word overlap. For each cluster, select the keyphrase 

with the highest score. This filtering process enables the generation of a smaller subset of 

keyphrases while having a better coverage of the cluster content. Re-ranking techniques can 

suffer from the limited scope of the N-best list, which may rule out many potentially good 

candidates. For this reason, it’s advisable to use a larger number of paths than the one in 

(Filippova, 2010). Accordingly, the K-shortest paths algorithm is used to find the 200 shortest 

paths. Finally re-ranking the paths by normalizing the total path weight over its length 

multiplied by the sum of keyphrase scores it contains. The score of a sentence compression c 

is given by: 

 

score(c) = Σi,j ε path(c) w(i,j) / length(c) × Σk ε c score(k) 
 

 

3.7 Using Single-Stage Inference 

 

Previous approaches to fusion have often relied on dependency graph combination (Barzilay 

and McKeown, 2005), (Filippova and Strube, 2008) to produce an intermediate syntactic 

representation of the information in the sentence. Linearization of output fusions is usually 

performed by ranking hypotheses with a language model (LM), sometimes with language-

specific heuristics to filter out ill-formed sentences. This approach is also known as 

overgenerate-and-rank and is often found to be a source of errors in T2T problems (Barzilay 

and McKeown, 2005). Although syntactic representations are natural for assembling text 

across sentences, recent work in unsupervised multi-sentence fusion has shown that well-

formed output can often be constructed purely on the basis of adjacency relationships in a 

word graph (Filippova, 2010). Similarly, systems for related T2T tasks such as sentence 
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compression and strict sentence intersection have also seen promising results by linearizing 

n-grams without explicitly relying on syntactic representations. Thadani and McKeown 

takes a similar perspective and assembles output text directly from n-grams over input tokens, 

but we employ a discriminative structured prediction approach in which likelihood under an 

LM is one of many features of output quality and parameters for all features are learned from 

a training corpus. Moreover, rather than rely on pipelined stages to first select the output 

content and then linearize an intermediate representation, this method jointly address token 

selection alongside phrase-based ordering thereby yielding a single stage approach to fusion. 

 

 

3.7.1 ILP Formulation 

 

The starting point for this work is the sequential structured transduction model of Thadani 

and McKeown (2013), originally devised for single sentence compression. This approach 

relies on integer linear programming (ILP) to find a globally optimal solution to generation 

problems involving heterogeneous substructures. ILP has been used frequently in recent T2T 

generation systems for sentence fusion and compression as well as other natural language 

processing tasks. Although LPs with integer constraints are NP-hard in the general case, the 

availability of optimized general-purpose ILP solvers and the natural limits on English 

sentence length make ILP inference attractive for sentence-level optimization problems. 

Consider a single fusion instance involving k source sentences S= {S1… Sk}. The notation FS 

is used to denote a fusion of the sentences in S. The inference step aims to retrieve the output 

sentence F*
S that is the most likely fusion of S, i.e., the sentence that maximizes p(Fs|S) or 

equivalently maximizes some scoring function score(FS). In this feature-based discriminative 

setting, score(FS) is defined as a dot product of weights w and a feature map X(S,FS) defined 

over the fusion and its input; in other words 

 

F*S = argmax FSwT  X(S,FS)…………..(1) 
 

The feature map X for an arbitrary fusion sentence is defined to factor over the words and 

potential n-grams from the input text. Let T = {ti : 1 ≤ i ≤ Nj , 1 ≤ j ≤ |S|} represent the set of 

tokens (including duplicates) in S and let xi E{0,1} represent a token indicator variable whose 

value corresponds to whether token ti is present in the output sentence FS. Also consider n-

gram phrases defined over the tokens in T and assume the use of bigrams without loss of 

generality. Let U represent the set of all possible bigrams that can be constructed from the 

tokens in T; in other words 

 

U = {<ti, tj> : ti ε T u {START}, tj ε T u {END}, i != j} 
 

Following the notation for token indicators, let yij ε {0,1} represent a bigram indicator 

variable for whether the contiguous pair of tokens <ti,tj> is in the output sentence. We 

represent entire token and bigram configurations with incidence vectors x = <xi>ti ε Tand y= 

<yij><ti,tj>εU which are equivalent to some subset of T and U respectively. With this notation, 

(1) can be rewritten as 

 

F*S = argmax x,y  ΣtiεT  xi . wTtok  Φtok(ti) + Σ<ti,tj>εU  yij . wTngr Φngr(<ti, tj>) 
 

       = argmax x,y  x
T Θtok + yT Θngr …………..…..(2) 
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Where Φ is a feature vector for tokens or bigrams and w is a corresponding vector of weight 

parameters. Each Θ = <wT Φ(s)> is therefore a vector of feature-based scores for either 

tokens or bigrams. The joint objective in (2) conveniently permits content-based features in 

Φtok for content selection and fluency features such as LM log-likelihoods in Φngr for 

linearization. However, decoding a valid sentence with this objective is non-trivial. Merely 

selecting the tokens and bigrams that maximize (2) is liable to produce degenerate structures, 

i.e., cycles, disconnected components, branches and inconsistency between the token and 

bigram configurations in x and y. Most prior T2T linearization approaches such as the 

Viterbi-based approaches cannot be applied when the tokens in the input do not have a total 

ordering, as is the case when the input consists of more than one sentence. 

 

 

3.7.2 Structural Constraints 

 

Now briefly the structural constraints proposed by Thadani and McKeown (2013) are 

described to address the problem of degeneracy in sentential structure. First, one must 

consider the problem of output consistency—more formally, bigram variables yij that are non-

zero must activate their token variables xi and xj while token variables can only activate a 

single bigram variable in the first and second position each. 

 

xi –  Σj yij = 0 , for all tj ε T ………….(3) 

xj –  Σi yij = 0 , for all ti ε T…………..(4) 

 

The second requirement for non-degenerate output is that non-zero yij must form a sentence 

like linear ordering of tokens, avoiding cycles and branching. For this purpose, auxiliary 

variables are introduced to establish single-commodity flow between all pairs of tokens that 

may appear adjacent in the output. Linear token ordering is maintained by defining real-

valued commodity flow variables Γij which are non-negative. 

 

Γij ≥ 0, for all <ti, tj> ε U………….. (5) 

 

Each active token in the solution must have some positive incoming commodity and 

consumes one unit of this commodity, transmitting the remaining value to outgoing flow 

variables. This ensures that cycles cannot be present in the flow structure. 

 

Σi Γij – Σk Γjk = xj ,  for all tj ε T 

 

The acyclic flow structure can be imparted to y by constraining bigram indicators to be active 

only if their corresponding tokens have positive commodity flow between them. 

Γij – Cmax yij ≤ 0; for all <ti, tj> ε U where Cmax is the maximum amount of commodity that the 

Γij variables may carry and serves as an upper bound on the number of output tokens. Finally, 

in order to establish connectivity in the output, they also introduce indicator variables y*j and 

yi* to denote the sentence-starting and terminating bigrams <START, tj> and <ti, END> 

respectively. A valid output sentence must be started and terminated by exactly one bigram. 

 

Σj y*j = 1 and Σi yi* = 1  

 

Flow variables y*j and yi* , are also defined for START and END respectively. Since START 

has no incoming flow variables, the amount of commodity in y*j are unconstrained. This 
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provides the only point of origin for the commodity and, in conjunction with (7), induces 

connectivity in y. 

 

 

3.7.3 Redundancy constraints 

 

While it is expected to get largely positive weights on features for supporting tokens, this will 

also have the effect of encouraging of more than one token from the same group to occur in 

the output. In order to avoid this problem, we add a constraint for each group Gk ε G that 

prevents tokens within a group from appearing more than once. 

 

Σi:ti ε Gk xi ≤ 1; for all Gk ε G 

 

3.7.4 Features 

 

The features Φ over tokens and bigrams that guide inference for fusion instances are 

described here. 

 

1. Salience: Fluent output fusions might require specific words to be preserved, 

highlighted or perhaps rejected. This can be expressed through features on token 

variables that indicate a priori salience, for which one consider patterns of part-of-

speech (POS) tags and dependency arc labels obtained from input parses. Specifically, 

they define indicator features for POS sequences of length up to 2 that surround the 

token and the POS tag of the token’s syntactic governor conjoined with the label. 

Features for whether tokens appear within parentheses and if they are part of a 

capitalized sequence of tokens (an approximation of named entity markup) are also 

maintained. 

2. Fluency: These features are intended to capture how the presence of a given bigram 

contributes to the overall fluency of a sentence. The bigram variables are scored with 

a feature expressing their log-likelihood under an LM. Also included are features that 

indicate the sequence of POS tags and dependency labels corresponding to the tokens 

an bigram variable covers 

3.  Fidelity: One might reasonably expect that many bigrams in the input sentences will 

appear unchanged in the output fusion. Therefore Boolean features are proposed that 

indicate whether a bigram was seen in the input. 

4. Pseudo-normalization: A major drawback of using linear models for generation 

problems is an inability to employ output sentence length normalization when scoring 

structures. Word penalty features are used for this purpose following their use in 

machine translation (MT) systems. These features are simply set to 1 for every token 

and bigram and their parameters are intended to balance out biases in output length 

that are induced by other features. 

5. Support: The amount of support— repetitions across input sentences—for nouns, 

verbs, adjectives and adverbs are noted. Features that count the number of repetitions 

for each of these tokens are defined, and conjoined with the POS class of each token. 

They also include binary variants of these features that indicate whether a token has 

support across 2, 3 or 4 input sentences. Each scale-dependent feature is recorded 

absolutely as well as normalized by the average length of an input sentence. This was 

done in order to encourage the model to be robust to variation in sentence length 

during training.  
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4. A Case Study: MultiGen 
 

 

4.1 Overview 
 

MultiGen2 is part of the Columbia Summarization System3. It operates on a set of news 

articles describing the same event, creating a summary which synthesizes common 

information across documents. The system runs daily over real data within Newsblaster4, a 

tool which collects news articles from multiple sources, organizes them into topical clusters 

and provides a summary for each of the clusters. In the case of multidocument summarization 

of articles about the same event, source articles can contain both repetitions and 

contradictions. Extracting all the similar sentences would produce a verbose and repetitive 

summary, while extracting only some of the similar sentences would produce a summary 

biased towards some sources. MultiGen uses a comparison of extracted similar sentences to 

select the appropriate phrases to include in the summary and reformulates them as new text. 

MultiGen consists of an analysis and a generation component. The analysis component 

(Hatzivassiloglou, Klavans, & Eskin, 1999) identifies units of text which convey similar 

information across the input documents using statistical techniques and shallow text analysis. 

Once similar text units are identified, they are clustered into themes. Themes are sets of 

sentences from different documents that contain repeated information and do not necessarily 

contain sentences from all the documents. For each theme, the generation component 

(Barzilay et al., 1999) identifies phrases which are in the intersection of the theme sentences 

and selects them as part of the summary. The intersection sentences are then ordered to 

produce a coherent text. At the end, for each theme there will be a single corresponding 

generated output sentence in the summary.  

 

 

4.2 Theme Construction 
 

The analysis component of MultiGen, Simfinder5 (Hatzivassiloglou et al., 2001), identifies 

themes, groups of sentences from different documents that each says roughly the same thing. 

Each theme will ultimately correspond to at most one sentence in the output summary, 

generated by the fusion component, and there may be many themes for a set of articles. 

Sentences within a theme are not exact repetitions of each other; they usually include phrases 

expressing information that is not common to all sentences in the theme. If one of such 

sentences were used to represent the theme, the summary would contain extraneous 

information. Also, errors in clustering might result in the inclusion of some unrelated 

sentences. Evaluation involving human judges revealed that Simfinder identifies similar 

sentences with 49.3% precision at 52.9% recall. To identify themes, Simfinder extracts 

linguistically motivated features for each sentence, including WordNet synsets (Miller et al. 

1990) and syntactic dependencies, such as subject–verb and verb–object relations. A log-

linear regression model is used to combine the evidence from the various features into a 

single similarity value. The model was trained on a large set of sentences which were 

manually marked for similarity. The output of the model is a listing of real-valued similarity 

                                                           
2http://www.cs.columbia.edu/diglib/sumDemo/multiGen/main.html 
3http://www.cs.columbia.edu/~hjing/summarization.html 
4http://newsblaster.cs.columbia.edu 
5http://academiccommons.columbia.edu/catalog/ac:160766 
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values on sentence pairs. These similarity values are fed into a clustering algorithm that 

partitions the sentences into closely related groups. 

 

 

4.3 Theme Selection 
 

To generate a summary of predetermined length, MultiGen induces a ranking on the themes 

and select the n highest. This ranking is based on three features of the theme: size measured 

as the number of sentences, similarity of sentences in a theme, and salience score. The first 

two of these scores are produced by Simfinder, and the salience score is computed using 

lexical chains as described below. Combining different rankings further filters common 

information in terms of salience. Since each of these scores has a different range of values, it 

performs ranking based on each score separately, then induce total ranking by summing ranks 

from individual categories: 

 

Rank (theme) = Rank (Number of sentences in theme) + Rank (Similarity of sentences in 

theme) + Rank (Sum of lexical chain scores in theme) 

 

Lexical chains—sequences of semantically related words—are tightly connected to the 

lexical cohesive structure of the text and have been shown to be useful for determining which 

sentences are important for single-document summarization (Barzilay and Elhadad, 1997). In 

the multi-document scenario, lexical chains can be adapted for theme ranking based on the 

salience of theme sentences within their original documents. Specifically, a theme that has 

many sentences ranked high by lexical chains as important for a single document summary is, 

in turn, given a higher salience score for the multi-document summary. In this 

implementation, a salience score for a theme is computed as the sum of lexical chain scores 

of each sentence in a theme. 

 

 

4.4 Theme Ordering 
 

Once the themes are filtered out that have a low rank, the next task is to order the selected 

themes into coherent text. The ordering strategy aims to capture chronological order of the 

main events and ensure coherence. To implement this strategy in MultiGen, it selects for each 

theme the sentence which has the earliest publication time (theme time stamp). To increase 

the coherence of the output text, it identifies blocks of topically related themes and then 

applies chronological ordering on blocks of themes using theme time stamps (Barzilay, 

Elhadad and McKeown, 2002). These stages produce a sorted set of themes which are passed 

as input to the sentence fusion component, described in the next section. In this section, two 

algorithms for ordering sentences are described suitable for multi-document summarization in 

the news genre. The first algorithm, Majority Ordering (MO), relies only on the original 

orders of sentences in the input documents. The second one, Chronological Ordering (CO), 

uses time-related features to order sentences.  

 

 

 

 

 



47 
 

4.4.1 Majority Ordering 

 

In single document summarization, the order of sentences in the output summary is typically 

determined by their order in the input text. This strategy can be adapted to multi-document 

summarization. Consider two themes, Th1 and Th2; if sentences from Th1 precede sentences 

from Th2 in all input texts, then presenting Th1 before Th2 is likely to be an acceptable order. 

To use the majority ordering algorithm when the order between sentences from Th1 and Th2 

varies from one text to another, one must augment the strategy. One way to define the order 

between Th1 and Th2 is to adopt the order occurring in the majority of the texts where Th1 

and Th2 occur. This strategy defines a pairwise order between themes. However, this pairwise 

relation is not necessarily transitive. For example, given the themes Th1, Th2 and Th3 and the 

following situation: Th1 precedes Th2 in a text, Th2 precedes Th3 in the same text or in 

another text, and Th3 precedes Th1 in yet another text; there is a conflict between the orders 

(Th1; Th2; Th3) and (Th3; Th1). Since transitivity is a necessary condition for a relation to be 

called an order, this relation does not form an order. Therefore, it has to expanded, this 

pairwise relation to provide a total order. In other words, we have to find a linear ordering 

between themes which maximizes the agreement between the orderings provided by the input 

texts. For each pair of themes, Thi and Thj , keep two counts, Ci,j and Cj,i; Ci,j is the number 

of input texts in which sentences from Thi occur before sentences from Thj, and Cj,i is the 

same for the opposite order. The weight of a linear order (Thi1….Thik ) is defined as the sum 

of the counts for every pair Cil,im, such that il ≤ im and l,m ϵ {1…k}. Stating this problem in 

terms of a directed graph where nodes are themes, and a vertex from Thi to Thj has the weight 

Ci,j , the aim is to find a path with maximal weight which traverses each node exactly once, 

such a graph is called a precedence graph. 

 

 

4.4.2 Chronological Ordering 

 

Multi-document summarization of news typically deals with articles published on different 

dates, and articles themselves cover events occurring over a wide range of time. Using 

chronological order in the summary to describe the main events helps the user understand 

what has happened. It seems like a natural and appropriate strategy. To identify the date an 

event occurred requires a detailed interpretation of temporal references in articles. While 

there have been recent developments in disambiguating temporal expressions and event 

ordering, correlating events with the date on which they occurred is a hard task. In this case, 

the theme time is approximated by its first publication time i.e., the first time the theme has 

been reported in the set of input articles. It is an acceptable approximation for news events 

that the first publication time of an event usually corresponds to its occurrence in real life. 

For instance, in a terrorist attack story, the theme conveying the attack itself will have a date 

previous to the date of the theme describing a trial following the attack. Articles released by 

news agencies are marked with a publication time, consisting of a date and a time with two 

fields (hour and minutes). Articles from the same news agency are thus guaranteed to have 

different publication times. This is also quite likely for articles coming from different news 

agencies. During the development of MultiGen, hundreds of articles were processed, and 

never was such a situation encountered where two articles had the same publication time. 

Thus, the publication time serves as a unique identifier over articles. As a result, when two 

themes have the same publication time, it means that they both are reported for the first time 
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in the same article. Chronological Ordering (CO) algorithm takes as input a set of themes and 

orders them chronologically whenever possible. Each theme is assigned a date corresponding 

to its first publication. To do so, select for each theme the sentence that has the earliest 

publication time. This is called the time stamp sentence and assigns its publication time as 

articles released by news agencies are marked with a publication time, consisting of a date 

and a time with two fields (hour and minutes).  

 

 

4.5 Sentence Fusion 
 

Given a group of similar sentences—a theme—the problem is to create a concise and fluent 

fusion of information, reflecting facts common to all sentences. To achieve this goal one 

needs to identify phrases common to most theme sentences, and then combine them into a 

new sentence. At one extreme, one might consider a shallow approach to the fusion problem, 

adapting the “bag of words” approach. However, sentence intersection in a set-theoretic sense 

produces poor results. The inadequacy of the bag-of-words method to the fusion task 

demonstrates the need for a more linguistically motivated approach. At the other extreme, 

previous approaches (Radev and McKeown, 1998) have demonstrated that this task is 

feasible when a detailed semantic representation of the input sentences is available. However, 

these approaches operate in a limited domain, where information extraction systems can be 

used to interpret the source text. The task of mapping input text into a semantic representation 

in a domain-independent setting extends well beyond the ability of current analysis methods. 

These considerations suggest that a new method is needed for the sentence fusion task. 

Ideally, such a method would not require a full semantic representation. Rather, it would rely 

on input texts and shallow linguistic knowledge (such as parse trees) that can be 

automatically derived from a corpus to generate a fusion sentence. In this approach, sentence 

fusion is modeled after the typical generation pipeline: content selection (what to say) and 

surface realization (how to say it). In contrast to that involved in traditional generation 

systems in which a content selection component chooses content from semantic units, our 

task is complicated by the lack of semantics in the textual input. At the same time, we can 

benefit from the textual information given in the input sentences for the tasks of syntactic 

realization, phrasing, and ordering, in many cases, constraints on text realization are already 

present in the input. 

 

4.5.1 Identification of Common Information 

 

The task is to identify information shared between sentences. This is done by aligning 

constituents in the syntactic parse trees for the input sentences. This alignment process differs 

considerably from alignment for other NL tasks, such as machine translation, because one 

cannot expect a complete alignment. Rather, a subset of the subtrees in one sentence will 

match different subsets of the subtrees in the others. Furthermore, order across trees is not 

preserved, there is no natural starting point for alignment, and there are no constraints on 

crosses. For these reasons a bottom-up local multi-sequence alignment algorithm is 

developed that uses words and phrases as anchors for matching. This algorithm operates on 

the dependency trees for pairs of input sentences, using a dependency-based representation 

because it abstracts over features irrelevant for comparison such as constituent ordering. 

Given a pair of sentences, determine which sentence constituents convey information 

appearing in both sentences. This algorithm will be applied to pairwise combinations of 

sentences in the input set of related sentences. The intuition behind the algorithm is to 
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compare all constituents of one sentence to those of another and select the most similar ones. 

Of course, how this comparison is performed depends on the particular sentence 

representation used. A good sentence representation will emphasize sentence features that are 

relevant for comparison, such as dependencies between sentence constituents, while ignoring 

irrelevant features, such as constituent ordering. A representation which fits these 

requirements is a dependency-based representation (Melcuk, 1988). 

 

 

4.5.1.1 Sentence Representation 

 

The sentence representation is based on a dependency tree, which describes the sentence 

structure in terms of dependencies between words. The similarity of the dependency tree to a 

predicate–argument structure makes it a natural representation for a comparison. This 

representation can be constructed from the output of a traditional parser. In fact, they have 

developed a rule-based component that transforms the phrase structure output of Collins’s 

parser into a representation in which a node has a direct link to its dependents. It also mark 

verb– subject and verb–node dependencies in the tree. The process of comparing trees can be 

further facilitated if the dependency tree is abstracted to a canonical form which eliminates 

features irrelevant to the comparison, hypothesizing that the difference in grammatical 

features such as auxiliaries, number, and tense has a secondary effect when the meaning of 

sentences is being compared. Therefore, they represent in the dependency tree only non-

auxiliary words with their associated grammatical features. For nouns, it records their 

number, articles, and class (common or proper). For verbs, tense, mood (indicative, 

conditional, or infinitive), voice, polarity, aspect (simple or continuous), and taxis (perfect or 

none) are recorded. The eliminated auxiliary words can be re-created using these recorded 

features. The system also transforms all passive-voice sentences to the active voice, changing 

the order of affected children. 

 

 

4.5.1.2 Alignment 

 

The alignment of dependency trees is driven by two sources of information, the similarity 

between the structure of the dependency trees and the similarity between lexical items. In 

determining the structural similarity between two trees, take into account the types of edges 

(which indicate the relationships between nodes). An edge is labeled by the syntactic function 

of the two nodes it connects (e.g., subject– verb). It is unlikely that an edge connecting a 

subject and verb in one sentence, for example, corresponds to an edge connecting a verb and 

an adjective in another sentence. The word similarity measures take into account more than 

word identity. They also identify pairs of paraphrases, using WordNet and a paraphrasing 

dictionary. It automatically constructs the paraphrasing dictionary from a large comparable 

news corpus using the co-training method. The dictionary contains pairs of word-level 

paraphrases as well as phrase-level paraphrases.  During alignment, each pair of non-identical 

words that do not comprise a synset in WordNet is looked up in the paraphrasing dictionary; 

in the case of a match, the pair is considered to be a paraphrase. 

Now an intuitive explanation of how their tree similarity function, denoted by Sim, is 

computed. If the optimal alignment of two trees is known, then the value of the similarity 

function is the sum of the similarity scores of aligned nodes and aligned edges. Since the best 

alignment of given trees is not known a priori, the maximal score among plausible alignments 

of the trees is selected. Instead of exhaustively traversing the space of all possible alignments, 

recursively construct the best alignment for trees of given depths, assuming that we know 
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how to find an optimal alignment for trees of shorter depths. More specifically, at each point 

of the traversal two cases must be considered. In the first case, two top nodes are aligned with 

each other and their children are aligned in an optimal way by applying the algorithm to 

shorter trees. In the second case, one tree is aligned with one of the children of the top node 

of the other tree; again we can apply our algorithm for this computation, since we decrease 

the height of one of the trees.  

When T is a tree with root node v, let c(T) denote the set containing all children of v. 

For a tree T containing a node s, the subtree of T which has s as its root node is denoted by 

Ts. 

Given two trees T and T*with root nodes v and v*, respectively, the similarity Sim(T, T*) 

between the trees is defined to be the maximum of the three expressions 

NodeCompare(T,T*), maxs∈c(T)Sim(Ts, T*), and maxs*∈c(T* )Sim(T, T*s*).  

 

The maximization in the NodeCompare formula searches for the best possible alignment for 

the child nodes of the given pair of nodes and is defined by 

 

NodeCompare(T, T*) = NodeSimilarity(v, v*)  

 

+ maxm∈ M(c(T),c(T*))(Σ(s,s*)∈ m(EdgeSimilarity((v,s),(v*,s*)) + Sim(Ts, T*s*))) 

 

where M(A,A*) is the set of all possible matchings between A and A*, and a matching 

(between A and A*) is a subset m of A × A*such that for any two distinct elements (a, a*), (b, 

b*) ∈ m, both a!= b and a* != b*. In the base case, when one of the trees has depth one, 

NodeCompare(T, T*) is defined to be NodeSimilarity(v, v* ). 

 

The similarity score NodeSimilarity(v, v*) of atomic nodes depends on whether the 

corresponding words are identical, paraphrases, or unrelated. The similarity scores for pairs 

of identical words, pairs of synonyms, pairs of paraphrases, and edges are manually derived 

using a small development corpus. While learning of the similarity scores automatically is an 

appealing alternative, its application in the fusion context is challenging because of the 

absence of a large training corpus and the lack of an automatic evaluation function. The 

similarity of nodes containing flattened subtrees, such as noun phrases, is computed as the 

score of their intersection normalized by the length of the longest phrase. The similarity 

function Sim is computed using bottom-up dynamic programming, in which the shortest 

subtrees are processed first. The alignment algorithm returns the similarity score of the trees 

as well as the optimal mapping between the subtrees of input trees. In the resulting tree 

mapping, the pairs of nodes whose NodeSimilarity positively contributed to the alignment are 

considered parallel. Every node in one tree is mapped to at most one node in another tree. 

This restriction is necessary because the problem of optimizing many-to-many alignments is 

NP-hard. The subtree flattening performed during the preprocessing stage aims to minimize 

the negative effect of the restriction on alignment granularity. Another important property of 

this algorithm is that it produces a local alignment. Local alignment maps local regions with 

high similarity to each other rather than creating an overall optimal global alignment of the 

entire tree. This strategy is more meaningful when only partial meaning overlap is expected 

between input sentences, as in typical sentence fusion input. Only these high-similarity 

regions, which are called intersection subtrees, are included in the fusion sentence. 
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4.5.2 Fusion Lattice Computation 

 

Fusion lattice computation is concerned with combining intersection subtrees. During this 

process, the system will remove phrases from a selected sentence, add phrases from other 

sentences, and replace words with the paraphrases that annotate each node. Among the many 

possible combinations of subtrees, we are interested only in those combinations which yield 

semantically sound sentences and do not distort the information presented in the input 

sentences. Exploring every possible combination is infeasible, since the lack of semantic 

information in the trees prohibits us from assessing the quality of the resulting sentences. 

Instead, a combination already present in the input sentences is selected as a basis and 

transformed into a fusion sentence by removing extraneous information and augmenting the 

fusion sentence with information from other sentences. The advantage of this strategy is that, 

when the initial sentence is semantically correct and the applied transformations aim to 

preserve semantic correctness, the resulting sentence is a semantically correct one. The three 

steps of the fusion lattice computation are as follows: selection of the basis tree, 

augmentation of the tree with alternative verbalizations, and pruning of the extraneous 

subtrees. Alignment is essential for all the steps. The selection of the basis tree is guided by 

the number of intersection subtrees it includes; in the best case, it contains all such subtrees. 

The basis tree is the centroid of the input sentences— the sentence which is the most similar 

to the other sentences in the input. Using the alignment-based similarity score described 

earlier, one identify the centroid by computing for each sentence the average similarity score 

between the sentence and the rest of the input sentences, then selecting the sentence with the 

highest score. Next, augment the basis tree with information present in the other input 

sentences. More specifically, by adding alternative verbalizations for the nodes in the basis 

tree and the intersection subtrees which are not part of the basis tree. The alternative 

verbalizations are readily available from the pairwise alignments of the basis tree with other 

trees in the input computed in the previous section. For each node of the basis tree, record all 

verbalizations from the nodes of the other input trees aligned with a given node. A 

verbalization can be a single word, or it can be a phrase, if a node represents a noun 

compound or a verb with a particle. Finally, subtrees which are not part of the intersection are 

pruned off the basis tree. However, removing all such subtrees may result in an 

ungrammatical or semantically flawed sentence; for example, we might create a sentence 

without a subject. This over-pruning may happen if either the input to the fusion algorithm is 

noisy or the alignment has failed to recognize similar subtrees. Therefore, a more 

conservative pruning is performed, deleting only the self-contained components which can be 

removed without leaving ungrammatical sentences. Such components include a clause in the 

clause conjunction, relative clauses, and some elements within a clause (such as adverbs and 

prepositions). Once these subtrees are removed, the fusion lattice construction 

is completed.  

 

 

4.6 Generation 
 

The final stage in sentence fusion is linearization of the fusion lattice. Sentence generation 

includes selection of a tree traversal order, lexical choice among available alternatives, and 

placement of auxiliaries, such as determiners. Their generation method utilizes information 

given in the input sentences to restrict the search space and then chooses among remaining 

alternatives using a language model derived from a large text collection. For the word-

ordering task, one does not have to consider all the possible traversals, since the number of 
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valid traversals is limited by ordering constraints encoded in the fusion lattice. However, the 

basis lattice does not uniquely determine the ordering. The placement of trees inserted in the 

basis lattice from other theme sentences is not restricted by the original basis tree. While the 

ordering of many sentence constituents is determined by their syntactic roles, some 

constituents, such as time, location and manner circumstantial, are free to move. Therefore, 

the algorithm still has to select an appropriate order from among different orders of the 

inserted trees. The process so far produces a sentence that can be quite different from the 

extracted sentence; although the basis sentences provides guidance for the generation process, 

constituents may be removed, added in, or reordered. Wording can also be modified during 

this process. Although the selection of words and phrases which appear in the basis tree is a 

safe choice, enriching the fusion sentence with alternative verbalizations has several benefits. 

In applications such as summarization, in which the length of the produced sentence is a 

factor, a shorter alternative is desirable. This goal can be achieved by selecting the shortest 

paraphrase among available alternatives. Alternate verbalizations can also be used to replace 

anaphoric expressions, for instance, when the basis tree contains a noun phrase with 

anaphoric expressions (e.g., his visit) and one of the other verbalizations is anaphora-free. 

Substitution of the latter for the anaphoric expression may increase the clarity of the produced 

sentence, since frequently the antecedent of the anaphoric expression is not present in a 

summary. Moreover, in some cases substitution is mandatory. As a result of subtree 

insertions and deletions, the words used in the basis tree may not be a good choice after the 

transformations, and the best verbalization might be achieved by using a paraphrase of them 

from another theme sentence. The task of auxiliary placement is alleviated by the presence of 

features stored in the input nodes. In most cases, aligned words stored in the same node have 

the same feature values, which uniquely determine an auxiliary selection and conjugation. 

However, in some cases, aligned words have different grammatical features, in which case 

the linearization algorithm needs to select among available Linearization of the fusion 

sentence involves the selection of the best phrasing and placement of auxiliaries as well as 

the determination of optimal ordering. Since MultiGen system do not have sufficient 

semantic information to perform such selection, their algorithm is driven by corpus-derived 

knowledge. It generates all possible sentences from the valid traversals of the fusion lattice 

and score their likelihood according to statistics derived from a corpus. This approach is a 

standard method used in statistical generation. They trained a trigram model with Good–

Turing smoothing over 60 megabytes of news articles collected by Newsblaster using the 

second version CMU–Cambridge Statistical Language Modeling toolkit. The sentence with 

the lowest length-normalized entropy (the best score) is selected as the verbalization of the 

fusion lattice. 

 

 

4.7 Evaluation 
 

Sentence fusion and summarization system are notoriously hard to evaluate against previous 

systems given that there is no standard domain or unified corpora to produce a gold standard 

baseline. Of the existing systems, all have their respective merits and flaws. Barzilay & 

McKeown’s system can be taken as a non-trivial baseline since no other system in general 

can outperform theirs. It is also difficult to evaluate generation and summarization systems as 

there are many dimensions in which the quality of the output can be assessed. In general, two 

evaluation methods are followed; one that uses automatic ROGUE measure and one that 

manually evaluates the generated sentence. 
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The ROUGE (Lin, 2004) measure is based on n-gram recall between the generated summary 

and the human-written gold abstracts. ROUGE-2 for instance, corresponds to the following 

formula: 

 

ROGUE-2 = ΣR Σbi ε R Countmatch (bi) / ΣR Σbi ε R Count (bi)   

 

Where R is the set of reference summaries, bi ε R are the bigrams in the current reference 

summary, Countmatch (bi) is the number of bigrams that are both in the candidate summary 

and current reference summary and Count (bi) is the number of bigrams in the current 

reference summary. 

As for manual evaluation, other than (Barzilay and McKeown, 2005), (Filippova, 2010) and 

(Boudin and Morin, 2013) are used to evaluate the grammaticality of the fused sentences on a 

3-points scale: perfect (2 pts), if the fusion is a complete grammatical sentence; almost (1 pt) 

if it requires minor editing, e.g. one mistake in articles, agreement or punctuation; 

ungrammatical (0 pts), if it is none of the above. 
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5. Experiment 
 

Text summarization can be effectively classified into two broad categories namely abstractive 

and extractive summarization. So far we discussed the previous works that have existed in the 

sentence fusion techniques and as we mentioned earlier our system is a compression based 

summarization system. Our work attempts to reach a compromise between these two 

extremes and formulate a summary containing elements from both the kinds. For doing so, 

we used two distinct methods and combined them. First we implemented a graph based 

technique to achieve sentence compression and information fusion. In the second step, we put 

grammatical rule based syntactic and semantic constraint to finally obtain a coherent and 

meaningful set of sentences for the complete summary. The system generated summaries are 

flexible in the sense that it does not have a pre-defined output length; it can generate output 

for any user-defined compression rate. We evaluated our system generated summaries by 

comparing them against the Opinosis gold summaries and our results on the Opinosis dataset 

are comparable with the Opinosis system and significantly better than the MEAD system. 

 

5.2 Sentence Compression 
 

Sentence compression can be defined as the method for obtaining shorter and more precise 

sentences from a group of similar sentences while maintaining a syntactic and semantic 

structure such that the result is grammatically coherent and informatively non-redundant. The 

sentence compression strategy used in (Filippova, 2010) requires only a POS tagger and list 

of stopwords to work. The NLTK6 suit was used for the POS tagging as well as for obtaining 

the stopwords. The word graph which represents the cluster of similar sentences operates on 

the assumption that redundancy in a given set of similar sentences is enough to generate 

informative texts comprising the important terms because presence of redundancy will ensure 

that spurious words which do not have much association with other words will get filtered out 

since the weighting function is designed in such a way that redundant nodes are assigned less 

importance. 
 
 

5.2.1 Word Graph Construction 

 

Given a set of similar sentences, a word graph is a weighted directed graph where the nodes 

represent the words of a sentence while the edges represent the connectivity between two 

adjacent words. At the beginning the word graph has only a start and an end node. The steps 

for a word graph generation are as follows. 

 

a. Starting with the first sentence, the words are added as nodes to the graph one by one. 

b. With the addition of every new node, a directed edge from its previous node to the new 

node is created. 

c. With every new node, the connecting directed edges acquire an edge weight of 1. 

                                                           
6 http://www.nltk.org 
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d. If such a word is encountered which has its equivalent node with a same lowercased 

form and POS tag then no new node is generated rather the word is mapped onto that 

existing node. 

e. Edge weights are incremented by 1 for the inclusion of an equivalent word node. 

 

The inclusion of words in the graph is carried out in the following order. 

 

a. Non-stopwords for which no candidates   exist in the graph or for which an ambiguous 

mapping is possible. 

b. Non-stopwords for which there are either several possible candidates in the graph or 

which occur more than once in a sentence. 

c. Stopwords. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Word Graph generated from sentences (1-4) and a possible compression path 

 

 

5.2.2 Illustration of Word Graph 

 

Let us consider the 4 sentences (1−4) to help understand the workings of a word graph. Edge 

weights are omitted and the italicized fragments in the sentences are replaced by dotted lines 

in the figure for the ease of understanding. 

 

The word graph generated from the 4 sentences is shown in Fig 5.1. 

 

1. The gravitational wave, one of Einstein’s predictions was verified last Thursday 

2. Einstein predicted the existence of gravitational wave and it was verified 

 

wave 

Einstein 
Start 

End 

The 

last 
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3. Last Thursday, gravitational wave was discovered 

4. The existence of gravitational wave predicted by Einstein was verified 

 

In case of ambiguous word mapping i.e. in case there exists such words for which multiple 

nodes during mapping is possible, the context in which the word is present, its neighboring 

nodes and the edge frequencies on the node in question are checked before assigning that 

word to any node. 

Once the graph is generated and every edge has their respective edge weights labeled on 

them, the initial edge weight (discussed in the next section) is applied for every edge between 

every edge pair to calculate the resultant compression path. 

 

 

5.2.3 Compressed Path 

 

While calculating for the compressed path, we set a minimum threshold of 8 words for the 

formation of a sentence and the presence of a verb node. We choose 8 words as any less 

might lead to incomplete sentences as observed from our dataset. Some of the desirable traits 

of the compressed path are as mentioned below. 

 

a. Informative nodes 

b. Salient nodes 

c. Proper order of appearance 

 

The initial weight function IW (eij) is defined as follows. 

 

𝐼𝑊(𝑒𝑖𝑗) =
𝑓𝑟𝑒𝑞(𝑖)+ 𝑓𝑟𝑒𝑞(𝑗)

log( 𝑖𝑛𝑐𝑑(𝑖)+ 𝑖𝑛𝑐𝑑(𝑗))
…………… (1) 

 

Where freq (i) and freq (j) are the number of edges connected to nodes i and j respectively 

and IW (eij) calculates the initial edge weights among adjacent nodes i and j; incd (i) and incd 

(j) are the number of   incoming edges incident on the nodes i and j respectively. 

The weight function defined in Equation (1) maintains the inclusion of strong grammatical 

compression links, i.e., it   favors links between words that occur significantly in an order. 

However this does not guarantee that salient nodes will be included in the compressed path. 

To ensure that the compressed path also include salient words, we do a minor modification to 

our initial weight function to obtain our final weight function. 

 

𝐹𝑊(𝑒𝑖𝑗) =
𝐼𝑊(𝑒𝑖𝑗)

𝑓𝑟𝑒𝑞(𝑖)×𝑓𝑟𝑒𝑞(𝑗)
………….…..(2) 

 

The above weight function in Equation (2) ensures that our compressed path passes through 

the nodes with highest traffic or frequency as it reduces edge weights among important 

nodes, i.e. edges with greater frequencies. There is also another implied advantage of using 

this procedure which is Prepositional Phrase (PP) reductions. Pruning of PP attachments is an 

important aspect of summarizing sentences as the attachments often do not contain any 

relevant information, can be ambiguous at times and can be redundant as well. With our 

weight function we try to ensure that such spurious additions get clipped due to their lack of 

coherent order and low frequency. It is to be noted that the PP reduction method works only 

if such an attachment exists at the start or at the end of sentence and provided there is not 
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enough high frequency nodes present in the vicinity. The word graph does not actively prunes 

the PP attachments; rather it is a structural and weighing function advantage. The pruning 

involving the prepositional phrases is by no means optimal; we have however discussed in 

the later section how we sought to rectify this using semantic constraints on the    formation 

of sentences. Once we have calculated all the edge weights involved, we use K-shortest path 

algorithm to find the fifty shortest paths from the start node to the end node in the graph.  

Sentences of minimum 8 words length and containing at least a verb node are extracted for 

the summary. We re-rank all those paths by normalizing the total path weight over their 

lengths. The path with the minimum average edge weight is our compressed path. Our 

weighting function is such that frequency of nodes as well as association between the nodes 

directly correlates with a lower edge weight. This is easily understandable from the weight 

function as the denominator increases if the node has higher frequency. Thus the minimum 

edge weight paths are favored. 

 

 

5.3 Syntactic and Semantic Modification 
 

To create an informative summary it is always   advisable to incorporate some language 

specific rules while generating the output sentences. If we solely depended on the word graph 

approach to create our summary it will suffer from grammatical incongruities at worst and 

redundant word representation at best. Grammatical incongruities may arise from the 

inclusion of a word pair which might not make any sense within the context but was 

nevertheless selected due to their high frequency. Redundant word representation although 

does not make the output summary incoherent it still degrades the overall quality of the 

summary. 

Once we have generated the set of compressed sentences using the word graph, we use them 

as the input for the next module. Here, we create the constituency based parsed tree7 for the 

compressed sentences. Observing and analyzing the   constituency parse trees, we put some 

grammatical constraints on the word graph generated compressed sentences to obtain our 

final set of sentences for the summary output. 

 

 

5.3.1 Parse Tree Modification 

 

After sentence compression has been performed, we can work on the assumption that we 

have all the relevant information present in a given sentence; therefore, re-ordering and re-

arranging in a grammatically coherent manner would not lead to any loss of information. We 

make a number of changes in the original structure of the parse tree based on its syntax and 

semantics. The changes are as follows. 

 

1. Chains of conjuncts are split and each of them is attached to its parent node. 

2. Synonyms (with the exception of stop words including determiners and common verb 

words) are merged into a single word. 

                                                           
 
7 As part of the Stanford CoreNLP suite: http://nlp.stanford.edu/software/corenlp.shtml 
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3. Any prepositional phrase (PP) attachment appearing at the start of a sentence is 

dropped iff there exists no such production in the form of S→NP VP rooted under that 

PP expansion. 

4. If two PP attachments are present such that one is rooted at a NP subtree and the other 

is at a VP node, then the PP attachment under VP is dropped provided 

i. The PP attachment rooted under a VP node is preceded by the PP at NP node in the 

sentence. 

ii. There does not exist any S production rooted under the PP subtree or VP subtree 

iii. There does not exist any verb phrase expansion under the PP subtree  

5. Basic sentence formation constraint must be maintained i.e. no sentence can have less 

than 8 words and they must have at least one verb node. 

 

Now we will proceed to show how some of the grammar rules we have outlined work. Let us 

take an example, 
 

Example 1: in recent times only few students are opting for STEM courses 

 

Its corresponding parse tree is given in fig 5.2. According to rule (3) stated above in section 

5.3.1 since a PP attachment exists at the start of the sentence and no production of the form 

S→NP VP lies beneath it, the attachment “in recent times” will get pruned. 

 

 
 

Figure 5.2: Parse Tree generated for the Example 1 

 

Example 2: the existence of gravitational wave was announced yesterday in the early 

morning 

 

The corresponding parse tree is given below in fig 5.3. According to rule (4) described above, 

the PP attachment “in the early morning” is pruned as another PP attachment under a NP 

node already precedes it 
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Figure 5.3: Parse Tree generated for the Example 2 

 

 

Example 3: the lecturer in his haste skimmed through the presentation to make his evening 

appointment 

 

The corresponding parse tree is given below in fig 5.4. Despite having a PP attachment under 

VP subtree, it cannot be pruned according to rule (4) since there exists a S production beneath 

the VP subtree. 

 

 
 

Figure 5.4: Parse Tree generated for the Example 3 

 

 

5.3.2 Probabilistic Modification 

 

Even the most well crafted grammar rules might become too generic to filter out redundancy. 

Therefore, as a final restriction we introduce a probabilistic constraint parameter to prune 
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edges using conditional bigram probability. It might so happen that PP attachments, not 

covered under the previously discussed conditions, are still present in the generated 

sentences. In such cases, bigram probability of the preposition head term at the start of a PP 

attachment is calculated with respect to its previous term. Here the prepositional head term  

refers to the preposition node at which a PP subtree is rooted. If the conditional probability of 

a preposition head term occurring at a latter position down the sentence has a lower 

probability than that of a preposition term occurring at an earlier position within that sentence 

then the latter PP attachment is pruned, otherwise no pruning is carried out. The condition for 

this pruning is given as: 

 

𝑃𝑟(𝑃𝑃𝑙|𝑝𝑟𝑒𝑣 𝑡𝑒𝑟𝑚) < 𝑃𝑟(𝑃𝑃𝑓|𝑝𝑟𝑒𝑣 𝑡𝑒𝑟𝑚) 

 

 Where Pr (PP|prev term) is the conditional probability of the preposition term at the start of 

a prepositional phrase given the previous word. PPf and PPl are the two preposition terms 

among which we make our comparison where PPf  refers to the   preposition node which 

occurs earlier in the sentence and PPl  refers to the prepositional term occurring later in the 

sentence. This pruning follows the obvious logic that if such PP attachments are present in 

the sentence at such great depth it might be conveying important information. However, at 

the same time, given their position in the sentence we know that such attachments have 

persisted mainly because of their structure which allowed it to be retained so far into the 

process. Thus we reach a compromise by checking their probabilistic significance from a 

commonly used, versatile, annotated corpus to see how they fare. 

We use the Manually Annotated Sub Corpus (MASC)8 from which probability distribution 

was calculated. The MASC dataset was created from a portion of the Penn Treebank corpus, 

it has over half a million words in the form of written and spoken data including around 

25,000 words divided among 19 sub-topics with the data annotated in 17 different part of 

speech tag types. 

It is to be noted that all the above syntactic and semantic rules are not meant for universal 

application. Our summarization system mostly deals with formalized data as its input and as 

such all those data follow a particular grammatical structure. By studying and testing all the 

rules on our working data we have come to the conclusion of imposing them as they fit our 

work the best. For a different type of dataset, the application of the same rules might not yield 

in desired results. 

 

 

5.4 Evaluation 
 

It is difficult to evaluate abstractive summarization tasks objectively due to the lack of any 

concrete unified summary results. Both manual evaluation and automatic evaluation are 

constrained to their biases. Not every human generated summary will be the same and not all 

gold standard results are viable comparison samples. Nonetheless, we used the ROUGE 2.0 

(Lin, 2004) metric for automatic evaluation, comparing our system generated summaries 

against human generated summaries. For human generated summaries we instructed three 

reviewers to construct summaries of the original input files for three compression rates of 

90%, 80% and 85%.The purpose of this comparison is to test the system’s performance at 

different compression rates. This evaluation results are presented in Tables 1−2. We used the 

                                                           
 
8http://www.anc.org/data/masc/corpus/ 
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Opinosis9 dataset as the gold standard for comparing our system against the MEAD10and 

Opinosis systems. Ganesan et al. (2010) proposed a graph based abstractive summarization 

system called Opinosis11 in which the original input text is represented by a textual graph and 

the Opinosis system consequently explores this graph and scores the various sub-paths in the 

graph to generate the candidate summaries. The Opinosis dataset comprises extracted 

sentences from reviews on any particular topic. There are 51 such topics and the reviews on 

each topic provide the input text which needs to be summarized. The dataset also contains 

human generated summaries for the said topics which we use as the gold standard model 

summaries for comparison against our system generated summaries. MEAD (Radev et al., 

2004) is a very well acknowledged extractive summarization tool which uses three features 

namely centroid, text position and sentence length to score and rank sentences to generate 

summaries. We use both the Opinosis and MEAD for a comparative evaluation. In particular 

the reason we chose Opinosis is because of its operational proximity to our proposed system. 

In addition to being one of the best abstractive systems till date, it also uses a mix of graph 

based approach and statistical approach which is quite similar to ours. While evaluating 

against the Opinosis gold standard dataset we limited our compression rate to 95% since most 

of the gold summaries ranged from 2 sentences to 4 sentences and thus our system generated 

summaries with 95% compression rate which corresponded length wise with the gold 

standard summaries in the Opinosis dataset. We took all the input documents present in the 

Opinosis dataset to serve as our test set and generated respective summaries. We evaluated 

the results generated by the Opinosis system and MEAD against the gold standard (cf. Table 

3) for a better understanding of how our system performed in comparison to them. 

 

 

 

Compression 

Rate 

Average 

Precision 

Average 

Recall 

Average F-

Measure 

90% 0.9135 0.3831 0.5398 

85% 0.8956 0.6573 0.7581 

80% 0.8638 0.8185 0.8406 

 

Table 1: Evaluation with Rouge-1 against Human Summaries 

 

 

 

Compression 

Rate 

Average 

Precision 

Average 

Recall 

Average 

F-Measure 

90% 0.7576 0.3151 0.4451 

85% 0.8161 0.5966 0.6893 

80% 0.7956 0.7521 0.7732 

 

Table 2: Evaluation with Rouge-2 against Human Summaries 

 

 

                                                           
9http://kavita-ganesan.com/dataset 
10http://www.summarization.com/mead/ 
11http://kavita-ganesan.com/opinosis 
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ROUGE-1 Average 

Precision 

Average 

Recall 

Average  

F-Measure 

Gold 

Standard 

1 1 1 

Our System 0.21 0.52 0.30 

Opinosis 0.44 0.28 0.32 

MEAD 0.10 0.49 0.15 

 

Table 3: Evaluation with Rouge-1 against Opinosis Gold Standard 

 

 

5.5 Results and Analysis 
 

The evaluation results are presented in Tables 1−3.Results obtained by Rouge-1 and Rouge-

2against the human generated summaries are presented in Table1 and Table 2 respectively, 

while Table3 presents the Rouge-1 scores obtained against the Opinosis gold standard. 

Evaluation results on machine generated summaries from the Opinosis and MEAD systems 

are also presented in Table 3 to provide a comparative understanding of how our system fares 

with respect to Opinosis and MEAD. For the results obtained against our human reviewers, 

80% compression rate shows the most favorable results as opposed to a higher compression 

rate. At higher compression rates of 85% and 90%, there is a significant decrease in 

performance due to reduction in output size. This can be attributed to the fact that the human 

summaries were typically longer and match length wise with the system generated summaries 

obtained with 80% compression rate. 

As far the evaluation against the gold standard is concerned, the proposed system 

outperformed the MEAD baseline by a significant margin, a 100% improvement in F-

measure. Overall the Opinosis system performs best. Note that the Opinosis summaries 

ranged from 2 sentences to 4 sentences whereas our system generate summaries at desired 

compression rate and as we discussed earlier we had to set compression rate at 95%. And 

since our system is not optimal at such high compression rates, a slight dip in the F-measure 

in comparison to Opinosis’ best performance is within acceptable limits. Therefore, overall 

our system can be considered comparable to the Opinosis system. Our system fails to produce 

better results at higher compression rates primarily because of a restriction imposed during 

the initial sentence compression stage i.e. maintaining a minimum of 8 words in every 

generated sentence. It fails to produce informative summaries at higher compression where 

shorter sentences with more selective set of words might have been able to convey the 

information more succinctly. We focus more on the content and structure of the generated 

sentences over individual isolated words. Therefore, at higher compression rates, our system 

produces fewer sentences while maintaining the word count as opposed to generating greater 

number of shorter sentences. This is a limitation of the proposed system which can be 

addressed by incorporating keyphrase extraction methods, supervised content selection 

technique, or tuning the optimal sentence compression rate, sentence length, etc. Furthermore 

if we look at the ROUGE scores presented in Table 3it can be observed that precision of our 

system is quite low compared to that of the Opinosis system. This is because our system’s 

output were longer sentences with many spurious terms as opposed to theirs which were 

shorter and more relevant. Thus the fraction of relevant terms among the retrieved instances 

was lower for our system. However the data presented in table 1 and 2 shows a completely 

opposite picture where precision increases with higher compression. This is because the 
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human reviewers were instructed to maintain a minimum of 8 words in the summary 

sentences. In that scenario, precision was greater at higher compression rates since the 

fraction of relevant information among the retrieved instances were high. Despite the high 

precision, our system’s F-measure was still low at higher compressions against the human 

summaries. Recall scores were low because a machine generated summary will always be 

less intuitive than a human generated one. Even at higher compression rates, the human 

summaries can contain the majority of relevant information by intuitively structuring the 

sentences and fusing multiple sentences while maintaining the 8 word restriction. This is 

however not true for the system which can alter sentence structure or prune parts of sentence 

in a much less intuitive manner. Hence the fraction of relevant instances that are retrieved 

will be lesser at higher compression rates since the output size gets smaller which causes 

lesser amount of relevant information to be retrieved. Thus in both the cases of our 

evaluation, system output degrades at higher compression. 
 
 

6. Conclusions 
 

We presented in this thesis a compression based text summarization method which uses a 

graph based technique to generate the sentence compression. It does not rely on any 

supervised technique or similarity measure for content selection; instead, it uses an efficient 

weighting function to obtain the important and salient nodes from a cluster of related 

sentences obtained from multiple documents. We then apply some syntactical rules to ensure 

that any more redundancies, if present, are eliminated. As a final step, we introduced a 

Probabilistic constraint imposing a stricter selection in grammatical structure. Sentence 

compression using word graph is performed only once for the entire dataset. However the 

syntactic and statistical constraints can get re-iterated until a desired compression rate is 

achieved by the output summary. Lastly, we presented in details the evaluation of our system 

and explained what its strengths and shortcomings are. Our approach takes a compromise 

between abstraction and extraction as we incorporate features from both the types. However, 

it must be noted that there is not any hard line where one stops and the other begins. The 

extraction and abstraction are intertwined and occur at every step of the process. We also did 

a chronological study of sentence fusion and summarization techniques and showed how our 

work was derived from past research and what the future of abstractive summarization holds 

for us. 
 
 

7. Future Work 
 

Abstractive text summarization has a lot of potential and new methods and techniques are 

being applied with promising results. As for our approach, this too has room for 

improvement. Filippova (2010) used her own version of scoring mechanism, while we used 

our own scoring method; it is always possible to come up with a better scoring function 

which is more inclusive of all the information and salience present within the sentence 

context. As for the syntactic and semantic components of an abstractive summarization 

system, it is not very practical to always depend upon hand-crafted rules as exceptions are 

always there and can quite significantly degrade system performance. Reliance on a more 

statistical approach to grammar rules also makes it liable to be dependent upon an external 



64 
 

source for support, be it a training corpus or machine learning approach which might not 

always work in conjuncture with the input documents. The innate abstraction present in 

summaries makes the task of automatic abstractive text summarization considerably 

challenging to find a foolproof solution. In future we wish to improve our scoring algorithm 

which will lead to more informative summaries and also to incorporate more fine-grained 

phrase merging to enhance the grammatical texture of the output summaries, which in turn 

will help the system to perform better at higher compression rates. 
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