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Abstract

The principal objective of Natural Language Generation (NLG) process is to produce

human readable and understandable natural language text from different forms of non-

textual data. There are many tremendous application areas of NLG and it evens growing

day by day. From automatic customer-support systems to real-time weather report gen-

eration software, NLG technique plays a huge role in this modern digital world.

Presently many NLG systems are available in world. Although those systems can gen-

erate fluent and good natural text, but most of them either takes a long time or too much

human work to do that text generation task.

In this thesis work, we present an automatic statistical natural language generation sys-

tem which can convert tuple formed non-textual data into corresponding natural textual

data without taking any human efforts. Proposed system doesnt required long time to

produced textual document. The proposed NLG system needs an initial parallel (data/-

text) corpus for training purpose. There are two major steps to build this system. At

firstly a special kind of graph (Attribute Graph) needs to be created for storing corpuss

data properly. Secondly some prediction through that graph has been made to generate

natural language textual data. In our text generation system we have maintained both

informativeness and linguistic quality of generated output text data. For holding infor-

mativeness property we make a prediction to incorporate more input non-textual data

into output generated text. We also concern with linguistic quality of resulted text data

with imposing language model on it.

We have evaluated our system with both automatic and human evaluation techniques.

From both of those evaluation results we have found that our system occupy on a good

rank compared to the other NLG systems. The results are even quite encouraging when

we look the fact that, this system doesnt require any human effort compared to the others

natural language systems. . .



Acknowledgements

First and foremost, I would like to thank my advisers Dr. Sudip Kumar Naskar and

Dr. Sivaji Bandyopadhyay for their guidance and support during my research. They

provided me with the opportunities to pursue my research interests and helped in devel-

oping a thinking processes required for the research.

I would also like to thank all my friends belonging to the Natural Language Processing

Lab of Jadavpur University which include Manish Babu, Tapas Nayak, Alapan kulia,

Somnath Banerjee, Pintu Lohar, Tanik Sk., Sandip Sarkar and Shouvik Roy from whom

I learnt a lot about NLP.

My acknowledgment would not be complete without the mention of my classmates of

PG CSE JU 2014 batch at Jadavpur University.

v



Contents

Declaration of Authorship iii

Abstract iv

Acknowledgements v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Natural Language Generation (NLG) . . . . . . . . . . . . . . . . . . . 1
1.2 Application Areas of NLG . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Where NLG Systems Are Not Usable . . . . . . . . . . . . . . . . . . 3
1.4 Inefficient Template Based Techniques . . . . . . . . . . . . . . . . . 3
1.5 Approaches for Construction of NLG Systems . . . . . . . . . . . . . . 4
1.6 Subtasks of an NLG System . . . . . . . . . . . . . . . . . . . . . . . 4

1.6.1 Content Determination . . . . . . . . . . . . . . . . . . . . . . 5
1.6.2 Discourse Planning . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.3 Sentence Aggregation . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Lexicalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Referring Expression Generation . . . . . . . . . . . . . . . . . . . . . 7
1.9 Sentence Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.10 Architecture of NLG Systems . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Problem with this NLG Architecture . . . . . . . . . . . . . . . . . . . 11
1.12 Our Proposed NLG system . . . . . . . . . . . . . . . . . . . . . . . . 11
1.13 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.14 Structure Of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Related Works 14
2.1 Rule Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 SumTime System . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 FoG System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



Contents vii

2.1.3 PLANDOC System . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Handcrafted Grammar Based System . . . . . . . . . . . . . . . . . . . 15

2.2.1 Probabilistic Context Free Grammar Based NLG System . . . . 16
2.3 Automatic Statistical Surface Realization System . . . . . . . . . . . . 16

2.3.1 HPSG-based sentence realizer . . . . . . . . . . . . . . . . . . 16
2.4 Semi-automatically Extracted Rule Based Generator . . . . . . . . . . 17

2.4.1 Probabilistic Synchronous Context-Free Grammar Based Gen-
erator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Fully Automatic Language Generation Systems . . . . . . . . . . . . . 17
2.5.1 Mountain System . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Generation Through Phrase-based Statistical Machine Translation 18
2.5.3 Case Based Natural Language Generation . . . . . . . . . . . . 18
2.5.4 Neural Network Based Automatic Language Generator . . . . . 19

3 Problem Overview 20
3.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Design Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Development Phase (Text Generation) 23
4.1 Attribute Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Intuition of Attribute Graph . . . . . . . . . . . . . . . . . . . 23
4.1.2 Building of Attribute Graph . . . . . . . . . . . . . . . . . . . 24

4.2 Text Generation Using Attribute Graph . . . . . . . . . . . . . . . . . . 25
4.2.1 Informativeness Management Module . . . . . . . . . . . . . . 26
4.2.2 Linguistic Quality Management Module . . . . . . . . . . . . . 30
4.2.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Dataset and Evaluation 32
5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Automatic Evaluation . . . . . . . . . . . . . . . . . . . . . . 34
5.2.2 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusions and Future Work 37
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 39



List of Figures

1.1 Tasks of an NLG system . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Application of NLG in Dialog System . . . . . . . . . . . . . . . . . . 2
1.3 An architecture for NLG system . . . . . . . . . . . . . . . . . . . . . 10

3.1 Basic input-output structure of our system . . . . . . . . . . . . . . . . 21
3.2 Designing strategy behind our proposed model . . . . . . . . . . . . . 22

4.1 Word lattice formation and generation of text . . . . . . . . . . . . . . 24
4.2 Attribute Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Transformation of Prodigy-METEO corpus non-textual data represen-
tation for our proposed system’s input . . . . . . . . . . . . . . . . . . 33

5.2 An sample of input and outputs of different NLG system . . . . . . . . 34
5.3 Comparison of through human-based evaluation . . . . . . . . . . . . . 36

viii



List of Tables

5.1 Comparison through automatic metric evaluation . . . . . . . . . . . . 35

ix



Chapter 1

Introduction

1.1 Natural Language Generation (NLG)

The Natural Language Generation (NLG) process actually wants to imitate the humans

brain capability of speaking and writing in natural language by real-time (even faster

than human brain). So, basically NLG is a part of artificial intelligence (AI) which is

very common term nowadays. Alternatively, it can be seen that NLG is dealing with

document generation in natural language. We know that the division of AI which con-

centrate on natural language tasks is named as Natural Language Processing (NLP).

By this way, it is not tough to declare that NLG is a special sub-division of NLP. The

main objective of an NLG system is to convert non-textual data (e.g. image, numerical

data, graph, table, flowchart etc.) in to corresponding meaningful, fluent and easy un-

derstandable natural language text document. So basically an NLG system transforms

obscure non-linguistic data to linguistically acceptable data.

1.2 Application Areas of NLG

There are huge application areas of NLG techniques in this present decade. Firstly an

NLG system can be great equipment for a workspace where producing linguistic reports

need every moment of time. Some example of such areas are news industries, real-time

simulation systems, weather reporting and forecasting purpose, teaching environment,

software reporting and many others. Before NLG come into research focus, those above

mentions workspace were mainly used human support and previous database storages

1



Introduction 2

FIGURE 1.1: Tasks of an NLG system

to use the same report in the future. But those human techniques used to take too much

time and also were quite expensive as there was a need to hired human writers as much

as production required. Suddenly after the NLG concept eruption and their application

in place of human stenographers, those workspace getting more and more cost effi-

cient and also take very less time to generate report than a human writer can do. Some

tremendous examples of application of NLG in current age are weather report genera-

tion from graphical map [1], representing medical information in a way so that patient

could understand in easy way [2], to answer a question from a given knowledge base

[3], automatic textual news generation from a short-script representation of reporter.

There are many other application scope for NLG systems, one of them are in creating

automatic recommendation system. In building a human interacted dialog system for

any domain whether it game or gas station, NLG system provided a essential compo-

nent of the dialog system. From the following picture 1.2 we can easily differentiate two

FIGURE 1.2: Application of NLG in Dialog System

confusing task of natural language processing, one is Natural Language Understanding

(NLU) and another is NLG. Actually both are complement to each other from function

strategies point of view. NLU actually extract out semantic non-textual representation

from the textual document whereas NLG techniques do the just opposite work, it gen-

erate textual data from the underlying semantic or structure non-textual data. In dialog
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system where it is for displaying or speaking, NLG component is must. The NLG com-

ponent of the dialog system actually takes the dialog acts from the dialog manager and

convert into it textual data format.

1.3 Where NLG Systems Are Not Usable

Some times it may happen that NLG system are not necessary for some application [4].

NLG system will not be appropriate where every time different types non-textual data

need to be converted into corresponding textual document. In that case it would be

better if agency hires a human writer instead of paying a large amount of money to

NLG developers. Even in an application area where very high quality novel linguistic

structures need to be produced every time for report generation, NLG system is also

incapable of playing role in those application areas. So, there are few application fields

where human writers outperform NLG systems but the number of such application fields

is very low and most of the real world applications do not belong to those application

areas.

1.4 Inefficient Template Based Techniques

Few alternative text generation techniques are also available in comparison to the NLG

techniques. Among those alternative systems, template based generation systems are

quite popular. In fact before NLG system invention, researchers mainly used template

based system or mail-merge system for automatic report generation task. Although from

theoretical perspective there is no difference between a complex mail-merge technique

and a natural language generator, in terms of generated text quality and clarity [4].

But practically, one can observe some differences between template based generation

systems and NLG systems. This is because, building a complex template based system

is not a traceable task in any application domain as it takes a huge human effort and

time. Some researchers prompted the difference between mail merge technique and the

natural language generation technique, which are,

i. NLG system can give more syntactical language variation than a template based

system can show.
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ii. NLG systems are modular in structure and hence it is quite portable in nature.

Shifting a NLG system from one application area to other doesnt require too

much change in the existing NLG system. It only needs to change some modules

of existing NLG system for new application domain field. But in case of template

based system it needs to create almost the whole generation system for the new

application domain areas. So NLG system has higher priority than a template

based system with respect to this issue.

1.5 Approaches for Construction of NLG Systems

There are broadly two type of NLG system building approaches are present, first one

is knowledge-intensive approach and second one is knowledge-light approach [5]. In

knowledge-intensive approach the generation system takes lots of human and domain

expert concept, effort and consultation for improvement of the system beside taking

help from a parallel corpus. In one word knowledgeintensive approaches take many

human help and data addition with the given parallel corpus data. In this approach

if there are some wrong in parallel corpus it can be easily remove with a meeting to

the domain expert of the corpus domain areas. The second approach are knowledge-

light approach, compare to the knowledge-intensive approach it does not required any

human or domain experts view on the given parallel corpus data. Knowledge-light

generation systems are an actually fully statistical NLG system which doesnt require

anything rather than a parallel corpus of the application domain areas. Knowledge-

light approaches are mostly automatic in nature and use machine learning algorithms

to build it from the parallel corpus. In contrast with the knowledge-light approaches,

knowledge-intensive approaches are more like rule-based language generation systems.

Although the knowledge-intensive approaches are rule-based in nature but most of the

time the output quality of text from these approaches are quite good from human level

evaluation [5].

1.6 Subtasks of an NLG System

Reiter and Dale [4] in their most influential NLG paper, had divided the whole natural

language generation task into six almost disjoint subtasks. From many years after the

paper came into light, most of the NLG researchers are believe that those six sub-tasks
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of an NLG system are quite essential and exhaustive; hence most of them are consider

those sub-tasks as a standard for any NLG system. According to Reiter and Dale [4],

those six subtasks of an NLG are

i. Content Determination

ii. Discourse planning

iii. Sentence Aggregation

iv. Lexicalization

v. Referring Expression Generation

vi. Sentence realization

By the way, although there are six sub-task of the NLG are presents, but the task of an

NLG is to convert a non-textual data into an understandable natural language textual

data. It also be a valid NLG system, if any designer can assure to fulfill the task of NLG

system without any consideration on the six subtasks of NLG system.

1.6.1 Content Determination

In content determination subtask, designer thinks about the central thought or expres-

sion which she/he going to express in natural language text. The central thought or

expression or context is represented by some message or a packet of information [4]. A

message can consist of several arguments or entity, a message identifier and a message

relation. Messages relation is typically represented principal semantic orientation of

that message. Messages entities are connected each other through the message relation.

Message identifiers are actually used to distinguish different messages from message

database. A NLG system can be expressed as a manipulator of a large collection of

message. Remember one thing for every linguistic expression there will be unique mes-

sage for a particular NLG system. Although message representation can be vary from

one NLG system to other NLG systems.
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1.6.2 Discourse Planning

In discourse planning, the appropriate sequence and association between multiple mes-

sages which is going to be part of output natural language text are mainly concerned [4].

It can be easily understand that any arbitrary sequences of messages will never express

a fluent and semantic statement. There is particular sequence or order need to be im-

posed among collection of messages such that they can represent a real life thought

and meaning. Association among the messages are represent the semantic collabora-

tion between two different message and also the way in which they are linked together.

Association between one than one simple message messages create a complex message.

To express association between two or more messages discourse relation need to be in-

corporated among them. Discourse relation connect multiple messages each other with

related semantic meaning. The output of discourse planning stage are treelike structure

where root node stand for whole central thought of the conversation and leaf node of

that tree represent simple messages which are part of the output natural language text.

Like content determination subtask discourse planning is also a hefty subtask which re-

quired human effort and predefined knowledge about application areas of NLG system.

Currently most of the NLG systems having discourse planning stage are mainly using

rule base technique for it.

1.6.3 Sentence Aggregation

In this subtasks, possibility of merging multiple messages into a single sentence is been

searched. Actually this subtask is not as essential as rest of the five subtask of an NLG

system. But this subtask enhances readability and realization of the output generated

text by alleviating very simple sentences and merging them into complex sentence [4].

There are some possible ways for sentence aggregation,

i. By conjunction

Two sentence can be added with together by coordinating conjunction.

ii. By ellipsis

Multiple sentences can be joined together by removing some recurring or repeated

parts from those sentence.
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1.7 Lexicalization

Till now above three subtasks only deal with the fact that how does look like syntactic

structure of the output natural language text data. But this subtask, Lexicalization [6],

is responsible for choosing appropriate vocabulary for each entities of message. From

the context determination subtask, we learned that each entities of message represent a

concept of the message. But context determination subtask does do select appropriate

word or phrase for each concept. Lexicalization is one of the important subtasks of an

NLG system, because it not only increases readability and clarity of output generated

text but also responsible for carry out actual semantic values for each domain entities.

Lexicalization subtask is also do selection for choosing word or phrases in place for

messages and discourses relation.

There are numerous methods and rules are available for how to choose appropriate word

for messages entities and relations from a collection of vocabulary set. One of most

influential technique used for lexicalization purpose is graph rewriting technique [4],

which is quite famous and has been applied in many application areas.

1.8 Referring Expression Generation

Actually referring expression generation does quite similar task of choosing appropriate

word or phrase just like lexicalization subtask. Referring expression generation mainly

further smooth words or phrases selection summary which resulted from lexicalization

process. That means, even after lexicalization done its work, still there can be some

ambiguities in the message, e.g. same naming object may be occurred in a message

multiple times. Same named objects cannot create good surface sentences most of the

times. That why referring expression generation plays a vital role here. Rather than

choosing same object name, referring expression took some other form of the objects

like pronoun or other name descriptors. Selecting appropriated referring expression

for each domain or messages entities is not an easy-task its takes a lots observation on

context of the output text.

For choosing most likely referring expression for a entity, designed should goes through

three steps: Firstly initial introduction of the entity in text need to be accounted; Sec-

ondly for more than one occurrence choose appropriate pronoun for the entity; Thirdly

in future reference incorporate definite descriptors for the same entity which has been
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already occurred in preceding text. There are some referring expression generation tech-

niques available into the research areas. Dale and Reiter [7] was proposed a technique

for generating referring expression.

The output of lexicalization and referring expression generation subtask is tree-like

structure same as output of the discourse planning subtask except in this tree-like struc-

ture all relations name and the leaf node entities are replaced by their appropriate refer-

ence vocabularies.

1.9 Sentence Realization

Sentence realization is one of important and last subtask of an NLG system among six

earlier specified subtasks. This subtask sometimes also called as surface generation

subtask. The objective of sentence realization subtask is take referring expression gen-

eration subtasks tree-like structure output and converts it into the real world linguistic

sentence. Sentence realization subtask need to care about fluency and authenticity of

output natural language text. This subtask should produce output text which are syn-

tactically, semantically, morphologically and orthography correct. Syntactically correct

means the output text must follow appropriate grammar rules and regulations. Seman-

tically correct output text gives assurance of authenticity for the generated natural lan-

guage text data. Through correct use of morphological form resulted text from sentence

realization subtask are remained fluent and readable. Orthographically correct means

put appropriate letter case in the out text; e.g. always start a sentence with uppercase

letter and write any abbreviation word in all uppercase letters.

There are many available approaches are used for sentence realization subtask. There

are some unique qualities among those each approaches. Some of them are fully rule

based and other are automatic (fully and partial) generation approaches. One approach

of sentence realization subtask is inversing of parsing [8]. In parsing system, parser

creates a parse tree from a valid linguistic surface sentence. If we look at the sentence

realization subtask, it can be easily seen that this subtask takes tree-like information

from its preceding subtasks output and generate corresponding meaningful sentence

from that intermediate tree-like structure. Hence the job of sentence realization subtask

is exactly reverse job of a general parser, except parse tree and tree-like structure input of

sentence realization are quite different. So by this concept, sentence realization subtask

can be build from a Bi-directional grammar where the grammar can generate real world
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sentences from their corresponding tree like structures [8]. Another approach of fulfill-

ing sentence generation task is Meaning Text Theory [9]. It is one of the most popular

sentence realization techniques which have been used in most of NLG system available

by the date. MTT sentence realization takes deep syntactic tree structures of input data

forms and turned those into corresponding textual sentential data. There is an another

way to performing sentence realization subtask, with using Systematic Functional Lin-

guistic (SFL) [10, 11]. SFL concerns with a collection of functions corresponding to a

language and also have systematic grammar component which mapped those functions

in to surface form of the language. This systematic grammar does the job of selecting

appropriate functions for semantic results and keeps an order between them. Unlike

other linguistic grammars in natural language, systematic grammars doesnt select ap-

propriate grammar rules in every steps of its performance, rather it make choice of

putting function from the fine-grain level to higher.

1.10 Architecture of NLG Systems

Over the years many architecture for NLG system has been proposed. The most im-

portant criteria in selecting an appropriate NLG system architecture are modular in de-

signer, because modular design gives flexibility to modify and update existing NLG

system through some more information and modification in future.

We will discuss the mostly accepted modular NLG architecture which based on the

earlier mention six subtasks [12]. One thing needs to be noted here that, based on the

six subtasks there are many modular architecture were evolved. One simple type of

architecture, make module for each subtasks of NLG system. That means six modules

will present in this architecture. But the problem in this type of architecture is with too

many module existence and some of modules do the same objective.For example refer-

ring expression generation and lexicalization modules work on close to same objective

with choosing appropriate word or phrases for entities. So there is no need to make

two different modules for a single objective, it will be better if we merge them into one

module. The most popular modular NLG architecture which is accepted by almost all

NLG researchers, has three different modules and their objectives are totally different

from one another. These three modules are given below,
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FIGURE 1.3: An architecture for NLG system

i. Text Planer

This module actually made of content determination and discourse planning sub-

task. Responsibility of a text planner is to choose appropriate structure and se-

mantic focus for natural language text. The output of this module is tree-like

structure of intermediated language. The output of text planner is named as text

plan.

ii. Sentence Planner

This module do accumulated task of sentence aggregation, lexicalization and re-

ferring expression generation subtask. The main concern of this module is to

generate right pre-platform for actual surface formed text output of NLG system.

The output of sentence planner is also a tree like structure, but quite similar to

surface natural language text rather than simplified tree-like structure output of

text planner. The output of sentence planner is known as sentence plan.

iii. Surface realizer

This is the last module of the above mention NLG architecture. This module

is stand for the sentence realization subtask. It takes tree structure output from

sentence plans and generates real linguistic sentence form of that tree structure.
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1.11 Problem with this NLG Architecture

Up to this point, we discussed the most acceptable and recognizable NLG systems de-

scription and its architecture. Basically the aforementioned NLG systems guideline

leads us to the knowledge intensive natural language generation technique. But as we

mention earlier that although knowledge intensive natural language generation system

can generate good and grammatically correct sentence, they take huge human effort and

most of the time become domain biased. In this type of NLG building strategy, sentence

planner and text planner both module take lots of human effort and explicit understand-

ing about the language, specially the text planner module required lots of helps from

experts and designers.

Compared to these knowledge intensive approaches, knowledge light approaches take

very less humans and domain experts helps or interactions. Knowledge light approaches

mainly work with different type of available automatic machine learning algorithms and

technique which dont take much of human effort. It is also need to say here that output

text quality of knowledge light approaches are quite appreciable and understandable to

anyone, although sometimes not as good as knowledge intensive approaches. Knowl-

edge light approach is basically a statistical automatic NLG system building strategy.

But only one thing that a knowledge light approaches are not assured that whether the

built NLG system through these approaches are domain independent or not. If one can

give assurance of domain independent properties in knowledge light approaches then it

will be turned into a better and efficient approach.

1.12 Our Proposed NLG system

In this thesis work we have been proposed a novel knowledge light approach to build

NLG system, which does not require any human helps or efforts and also domain inde-

pendent in nature. Our proposed NLG system belong to the category of statistical su-

pervised learning system. For learning or training purpose, the proposed system takes a

parallel corpus as input, where non-textual tuple formed data and corresponding textual

data are present.

We have made some assumption on dataset or corpus and the type of the dataset. Our

proposed approach will performed its best if those assumptions are fulfilled. There are

mainly two assumption are need to hold on the dataset,
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i. Assumption 1

The non-textual data of corresponding to textual data of dataset must be tabular

in nature. So that we can say that each non-textual data is represented by a tuple

of the non-textual portion of dataset or corpus.

ii. Assumption 2

Most of attribute values or slot values of a non-textual data must be present into

its corresponding textual data.

As we have mentioned earlier that our proposed approach is knowledge light approach,

so it basically is a statistical tools and use mostly machine learning algorithms. In this

approach we generate natural language text from the appropriate form of non-textual

tuple data in basically two steps.

Step 1 We build a special type of graph (namely Attribute graph) to express the whole

parallel dataset or corpus through that single graph. We have used that particular

graph to efficiently perform prediction tasks on the given parallel dataset.

Step 2 After successfully creation of attribute graph, we basically perform some predic-

tions on that graph to generate appropriate textual output for a given new tuple

formed non-textual data. At the end we also consider linguistic quality of text and

some issues regarding hefty search space of output text data.

1.13 Contribution

The following points are the main contributions which are part of this thesis:

i. We proposed a domain independent knowledge light approach based NLG sys-

tem.

ii. We have shown an efficient structure of storing tabular form parallel dataset or

corpus (where non-textual data are represented by a tuple).

iii. An extensive evaluation and comparison of the different existing NLG systems

against our proposed system has been carried out to reflect the performance of

our System.



Introduction 13

1.14 Structure Of This Thesis

The thesis is structured as follows.

Chapter 1: This chapter mainly gives a broad overview of NLG systems and corresponding

state of arts. In this chapter we also try to introduce our proposed system in brief

manner.

Chapter 2: This chapter discusses mostly about state of arts NLG systems which are quite

parallel to nature of our proposed NLG approach.

Chapter 3: This chapter gives a general overview and description of our task and also de-

scribe design strategy which lies behind our proposed system.

Chapter 4: This chapter elaborates the construction process of attribute graph from a parallel

corpus and text generation process using attribute graph.

Chapter 5: This chapter describes the dataset which we have been used for evaluation pur-

pose. In this chapter we also include the evaluation results of the proposed system

and compared them against other NLG systems.

Chapter 6: This chapter concludes the thesis and provides avenues for future work.



Chapter 2

Related Works

In this chapter we introduce some work and research areas that are related to our topic

of this thesis. Here we mainly present five type of techniques used in the NLG systems

so far by today. We briefly mention the five types of NLG system building techniques.

2.1 Rule Based Techniques

This technique is also known as handcrafted technique for building NLG systems. In

this technique, all the subtasks of an NLG system mentioned in the 1, used to be done

though human helps and effort. All functional sections of an NLG system are depend

on the rule which are written by some human designers manually in past. All the gram-

mar rules of the system are also created manually. This type of techniques required too

much human effort. These types of NLG building technique falls into the category of

Knowledge Intensive approaches. This type of system are not only time consuming but

also very domain and language dependent. Suppose, if one thinks to modify NLG sys-

tem from an application domain to another different application domain then almost all

part of the NLG system needs to be changed by manually, which is very cumbersome

process. The same situation is also occurred in case of changing language of an NLG

system building through rule-based techniques. But it need to be mentioned, although

rule based techniques take too much cost, some of them generate quite good and ex-

ceptional natural language text most of the time. Following we gives some examples of

rule base technique/systems.

14
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2.1.1 SumTime System

SumTime System [6] is one of most popular NLG system among the all available

NLG systems in this age . This is a rule-based system, which has two modules: a

content-determination module and a sentence planner and realisation module. Without

the content-determination module the SumTime system is known as SumTime-Hybrid

system. SumTime system is also applied to the real life application. One notable thing

of the SumTime system is that it output text qualities are fantastic and easily readable

and understandable. But the problem that has in the SumTime system, is too much time

and human effort need to be incorporated to build this system. The SumTime system

designer took almost 12 person-months to build this NLG system and takes 24 person-

months to get feedback from the weather forecasting experts to improve performance

of the system [13].

2.1.2 FoG System

FoG was one of another popular rule based NLG system which discovered by Gold-

berg [1]. FoG is a bilingual system that generates English and French marine forecasts

from a basic content representation, and was one of the first commercially used NLG

systems.

2.1.3 PLANDOC System

PLANDOC [14] is an example of rule based handcrafted NLG system. It was build

with the purpose of generating summary in a telephone network. The system takes

simulation log as input, and produces a natural language text summary as description

for the input simulation log record.

2.2 Handcrafted Grammar Based System

Any NLG system for a particular domain can be created with a set of grammar rules.

Sometimes for building NLG system, this set of grammar rules are acquired by hand-

crafted way. The set of grammar rules must maintain the criteria that any possible

sentences of a particular a NLG system can be generated through the set of rules.
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2.2.1 Probabilistic Context Free Grammar Based NLG System

Here in this NLG system, context free grammar are used for natural language text gen-

eration purpose. But probability is associated with each context free grammar rule.

Those probabilities used to determine the most possible sentence among many gener-

ated sentences through a set of grammar rules. There are many ways of constructing

PCFG grammar. But Blez [15] discussed the Probabilistic Context-free Representation-

ally Underspecified (PCRU) [13] language generation approach for constructing PCFG

grammar. In this approach, a CFG is created manually through human observer that

encompasses the whole set of all possible generation processes from inputs meaning

representation to outputs natural language text, but this CFG has no decision-making

ability. A probability distribution over this handcrafted CFG is calculated from a cor-

pus, with this probability parameters the CFG acquired the decision making capabilities.

Through the PCRU techniques one can build several different type of PCFG NLG sys-

tems: like Greedy-PCFG System, Viterbi PCFG system, Greedy roulette-wheel PCFG

system etc.

2.3 Automatic Statistical Surface Realization System

In this type of NLG system, the text planner and sentence planner are remained as hand-

crafted module but the surface/sentence realizer become fully automatic. The grammar

rules for sentence realisation are extracted directly from treebanks using statistical meth-

ods. The advantage of extracting the grammar rules automatically from treebank is that

it reduces the manual effort in writing the rules. Another benefits of this technique is

that the sentence realization module become domain independent and also language in-

dependent if a treebank of corresponding language are present in the past. We give an

example of such system in below.

2.3.1 HPSG-based sentence realizer

In this type of generator uses Head-driven phrase structure grammar. But with HPSG

most of the time ambiguities are aroused. So to alleviate those ambiguities, statistical

methods are applied to the HPSG surface realization module. Those statistical methods

keep the surface realization module as automatic.
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2.4 Semi-automatically Extracted Rule Based Genera-

tor

This type of sentence generator uses grammar rules which are made through both hand-

crafted and automatic statistical policy. Most of the time, designer picks the gram-

mar rules through handcrafted techniques and apply those manually chosen grammar

rules probabilistically in sentence generation. Automatic nature of sentence generator

is mainly concern with choosing best generated sentence among several possible sen-

tences which can be generated.

2.4.1 Probabilistic Synchronous Context-Free Grammar Based Gen-
erator

This type of language generation system is based on synchronous context-free gram-

mars, which are mostly used in machine translator. In synchronous context-free gram-

mar, a pair of grammar is used. One grammar in that pair is responsible for generation

of meaning representation for the input data and the other grammar of the pair is re-

sponsible for generating natural language text for corresponding input data. For each

rule of a meaning representation grammar there will be at least one rule for the output

natural language text generation grammar. Belz [13] used the WASP−1 method [16] to

generate the PSCFG grammar almost automatically from a parallel corpus where input

representation and corresponding natural language text co-exist. The training process

of PSCFG grammar in this WASP−1 method is gone though two phrases, one is ac-

quisition phrase and another is parameter estimation rule. In acquisition phrase, lexical

rule construction is concerned. The parameter estimation phrase associate probability

as a parameter to those rule which are discovered in the acquisition phrase.

2.5 Fully Automatic Language Generation Systems

This type of NLG system are fully automatic and does not need any human effort or

handcrafted knowledge in construction unlike above mentioned four type of NLG sys-

tem. In the most of cases of automatic language generator become statistical supervised

system. Till date, a lots of knowledge-light approached based automatic language gen-

erator system has been proposed and also achieved quite good results in generation task.
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Few of earlier statistical natural language generation systems were Nitrogen [17, 18] and

Oxygen [19]. These two NLG system were based on statistical sentence realizer.

2.5.1 Mountain System

Recently Mountain system [20] has been designed, which used a concept of machine

translation into the natural language generation process. This Mountain generation sys-

tem takes helps from MOSES1 toolkit [21] for the machine translation task.

2.5.2 Generation Through Phrase-based Statistical Machine Trans-
lation

Another statistical machine translation based NLG was present in Phrase-based statis-

tical machine translation (PB-SMT) [15] model. PB-SMT based NLG systems are be-

long to statistical knowledge light approached based language generation system. The

MOSES toolkit offers an efficient way for building the PB-SMT model. However, the

linguistic quality and readability of PB-SMT based NLG systems was not good com-

pared to relevant statistical NLG system.

2.5.3 Case Based Natural Language Generation

Another type of automatic NLG systems made through case-based reasoning or instance

based learning. This category of CBR based NLG system based on the concept that

similar set of problem will appear in future and same set of solution will compensate

or solve for that problems. SEGUE NLG system [22] was partly CBR based NLG

system, more accurately SEGUE had been made with mix of CBR approach and rule

based policy. In article [5], a CBR approach based weather forecasting text generation

tool, CBR-METEO has been designed. The advantage of CBR based system was it

takes very little manual helps and if given prior dataset contains almost all type of input

instances then CBR based system also performs better.

1http://www.statmt.org/moses
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2.5.4 Neural Network Based Automatic Language Generator

Recently, some neural network based NLG systems has been proposed. With the advent

of recurrent neural based language model (rnnlm) [23] many rnn based NLG system has

been proposed. An idea of generating text through recurrent neural network based ap-

proach with Hessian free optimization has been proposed [24]. But this method used to

take a large training time. An influential rnn based NLG techniques has been proposed

on [25] which based on a joint recurrent and convolutional neural network structure.

That system has able to get trained on dialogue act-utterance pairs without any seman-

tic alignments or predefined grammar trees.



Chapter 3

Problem Overview

As in chapter 1, we have mention that The task of natural language generation (NLG) is

to generate textual data from any form of non-textual data which can graphics, figure,

raw numerical databased etc. This our project we mainly concentrated on tuple formed

slot-value pair non-textual data.

We proposed a knowledge-light approach based, statistical, supervised NLG system for

generating natural language text data from a non-textual tuple formed data. Like any

other computer software system, the proposed system goes through similar develop-

ment stages. Primarily those major development stages are task definition, requirement

analysis, designing strategy, development and maintenance. For our case we dont show

the maintenance stage into this thesis as we are not concern with that stage. In this

chapter we have considered only the task definition, requirement analysis and design-

ing strategy stage. In next chapter we have shown the development phase of proposed

NLG system.

3.1 Task Definition

The principle objective of the proposed system is to generate natural language text out-

put from tuple record of a non-textual table structure dataset. The table contains a set

of different attributes (qualitative or quantitative). Each row or tuple of the table repre-

sents a single unit of non-textual data which represents a vector of that particular tuples

attribute values. Figure 3.1 visualizes this task. According to that figure, the task is to

generate textual data ttx from a tuple-formed non-textual data tntx of the Tntx dataset

20
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FIGURE 3.1: Basic input-output structure of our system

(table). The Tntx dataset (table) has ten attributes, ax, where x = 1....10; however, the

actual attribute names and attribute values are not shown in the figure.

3.2 Requirement Analysis

Being a supervised statistical model, the proposed system needs a parallel corpus for

training purpose which should be a collection of non-textual tuple data and the corre-

sponding textual data. We make an assumption here, that most of the attribute values

present in any non-textual data should also appear in the corresponding textual data for

that non-textual data. For our experiments we used the Prodigy METEO1 [? ]

3.3 Design Strategy

To generate human readable and easily understandable textual data from non-textual

data, an NLG system must ensure two criteria. Firstly, output natural language text

should be related to the corresponding non-textual datas topic, i.e., output text must

1http://www.nltg.brighton.ac.uk/home/Anja.Belz/Prodigy
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contain appropriate information. Secondly, the output text must be fluent, i.e., the output

text must ensure its Linguistic quality.

FIGURE 3.2: Designing strategy behind our proposed model

This concept is illustrated in figure 3.2. It shows the steps which are necessary for main-

taining informativeness of the output textual data. The example shown in the figure 3.2

is taken from a non-textual tuple formed data from a temperature and rainfall weather

dataset which is not our actual experimental dataset; it is presented only for illustration

purpose.
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Development Phase (Text Generation)

This chapter is dedicated to the development phase of our proposed NLG system. The

chapter is consisted of two parts. In the first part we concern with building of Attribute

Graph from a given parallel corpus, where non-textual data and textual data are coexist.

The second part elaborate how we can generate natural language text from the built

attribute graph.

4.1 Attribute Graph

4.1.1 Intuition of Attribute Graph

The NLG technique presented in this thesis is focused around Attribute-Graph. The

notion of Attribute-Graph partly resembles with word lattice [17] which gives an idea

for natural language generation without incorporating any hard content determination

effort on training knowledge base. A word lattice is defined as a directed acyclic graph

with one starting and final state. Each edge in word lattice is labeled with a word from

the given knowledge base. A walk from the starting state (or vertex, or node) to the final

state results in one of the possible text outputs from the word lattice. Vertices having

more than one outdegree are sources for multiple text outputs. However, all random

walks on the word lattice do not produce real world text as output because of too much

freedom in the random walk and existing ambiguity in the word lattice.Figure 4.1 shows

a word lattice built from three sentences. It also shows two example sentences generated

through random walks in this word lattice, one of which is semantically correct while

23
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the other is not. We adapt the idea of word lattice to our text generation framework

FIGURE 4.1: Word lattice formation and generation of text

by introducing two important modifications in word lattice to arrive at the concept of

attribute graph. The first modification is that vertices’s in an attribute graph represent

words corresponding to values of an attribute from the given tuple formed non-textual

data. The second change is that an edge in an attribute graph can represent not just

a word, but a sequence of words as well. We noticed that it is possible to generate

good quality text by making predictions along an ‘appropriate’ path in the attribute

graph from the starting state to the final state. The notion of an appropriate path comes

from answering the question - “Which attributes of a tuple-formed non-textual data will

be present in the corresponding generated textual data and what will be the order of

those attributes in the generated textual data?”. In the work presented in this paper we

predicted the answer of that question by observing the training dataset. Surprisingly,

after ensuring this prediction we found that the output of our NLG system becomes

semantically more relevant to its corresponding non-textual tuple-formed data.

4.1.2 Building of Attribute Graph

The concept of attribute graph draws from and resembles with both word lattice and

multipartite graph. The attribute graph GA(V,E) is a directed multipartite weighted

graph built from a parallel dataset (corpus) where textual data (titx ∈ Ttx) and corre-

sponding non-textual (tuple formed) data (tintx ∈ Tntx) coexist. In this discussion we

use the term ‘data’ (t∗tx/ntx) to represent each row in (Ttx/ntx) ‘dataset’ ,where‘*’ is a

number placeholder. For example, t1tx represents the textual data contained in the first
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row in the Ttx dataset. ax corresponds to the xth attribute name in Tntx and a
t1ntx
x repre-

sents the slot value of ax attribute for the t1ntx data.

Each partition set (pset∗) in an attribute graph corresponds to an attribute name (a∗)

from the non-textual dataset Tntx in the training data. For example, if a given non-

textual tuple formed data consists of the attributes: {temperature, wind-speed, humid-

ity}, then ‘temperature’, ‘wind-speed’ and ‘humidity’ will all be represented as different

partition sets in the attribute graph for that dataset. All the values of the ‘temperature’

attribute in the Tntx dataset create the partition set psettemparature in the attribute graph.

A vertex in the attribute graph represents a value of an attribute of Tntx suggested by the

corresponding partition set in which the vertex belongs.

For creating the edges (e∗ ∈ E) in an attribute graph during the construction phase, we

have made a tricky assumption that some of the attribute values of a non-textual data

(tintx) will appear in the corresponding textual data (titx).

An edge between two vertices in an attribute graph for a pair of non-textual (tkntx) and

textual (tktx) data represents interlinked words between two aligned adjacent vertices’

named attributes’ values in the textual data (tktx).

Algorithm 1 presents the procedure for building the attribute graph from a given parallel

data-text dataset. Figure 4.2 shows a sample attribute graph built from two textual data

(say, titx and tjtx) along with their corresponding non-textual tuple-formed data (tintx and

tjntx) taken from the training set.

4.2 Text Generation Using Attribute Graph

To generate human readable and easily understandable textual data from non-textual

data, an NLG system must ensure two criteria. Firstly, output natural language text

should be related to the corresponding non-textual data’s topic, i.e., output text must

contain appropriate information. Secondly,the output text must be fluent, i.e., the output

text must ensure its Linguistic quality.

In this generation phase, we divide our proposed system into two modules; one module

holds the responsibility of ensuring informativeness and the other module maintains

linguistic quality of the generated output text.
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Input: Parallel data-text dataset (T ) {textual data (titx ∈ Ttx) and non-textual tuple
formed data (tintx ∈ Tntx) and T = Ttx ∪ Tntx}

Output: Attribute-Graph GA(V,E)

Initially, create two vertices for endpoints of all textual data, v<s> ∈ V and v</s> ∈ V
along with the corresponding values, {< s >} and {< /s >}.

for each non-textual data (tintx ∈ Tntx) do
for each attribute ax in tintx do

Create partition psetax
end
for each attribute value a

tintx
p in tintx do

Create a vertex viap ∈ V in partition psetap

if the attribute value a
tintx
p appears in the corresponding textual data titx then

Replace the attribute value a
tintx
p with the attribute name ap in titx

end
end
for for each attribute value a

tintx
p and a

tintx
n of tintx which are replaced in titx do

Find out the attributes corresponding vertex viap and vian
if if ap and an are adjacent (have no other a∗ in between) in titx then

Insert a edge e(viap , v
i
an) ∈ E from vertex vian to vian , direction of the edge

will be same as occurring order of ap and an in titx
Find all the interlinked words iwtintx

p−n) between the two endpoints words ap

and an in titx and assign iw
tintx

p−n) as weight for the edge.
end

end
end

Algorithm 1: Build Attribute Graph

4.2.1 Informativeness Management Module

We define informative quality of a generated output text by considering how many at-

tribute values of its corresponding non-textual data are present in the generated output

text and in which order. It can be noted that if a given parallel corpus holds our re-

quirement analysis criteria mentioned in Section 3.2 then we can represent each textual

data as a sequence of attribute-names (later should be replaced with attribute-values) of

its corresponding non-textual data (which is also partition sets’ name sequence) with

interlinked word-groups between two adjacent attribute values present in that sequence.

So basically We subdivide the informativeness module into two submodules. First sub-

module is responsible for predicting the appropriate sequence of partition sets’ name
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FIGURE 4.2: Attribute Graph

while the second submodule’s job is to select all the interlinked word-groups that should

be present in the partition sets’ name sequence predicted by the first submodule.

Let assume we going convert a new test non-textual data tnewntx in to corresponding textual

data tnewtx . To achieve this we first need to find out the partition sets’ name sequence

pseqtnew
ntx

and thereafter identify all interlinked word-groups iwtnew
ntx
∗−∗ . Mathematically we
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can express this as in Equation 4.1 since tnewtx is made up of pseqtnew
ntx

an iw
tnew
ntx
∗−∗ .

P (tnewtx |tnewntx ) = P (pseqtnew
ntx

, iw
tnew
ntx
∗−∗ |tnewntx ) (4.1)

By applying probability chain rule we can write the equation 4.1 as below,

P (tnewtx |tnewntx ) = P (pseqtnew
ntx
|tnewntx ) ∗ P (iw

tnew
ntx
∗−∗ |tnewntx , pseqtnew

ntx
) (4.2)

Equation 4.2 rewrites Equation 4.1 as the product of two individual models where the

first model, P (stnew
ntx
|tnewntx ), denotes prediction of partition sets’ name sequence stnew

ntx
for

the non-textual data tnewntx , while the second model, P (iw
tnew
ntx
∗−∗ |tnewntx , pseqtnew

ntx
), denotes

prediction of all interlinked word-groups iw
tnew
ntx
∗−∗ for tnewntx in the partition sets’ name

sequence stnew
ntx

predicted by the first model.

i. Predicting partition sets’ Name Sequence
This model predicts the probable partition sets’ name sequence for a given tuple-

formed non-textual data. For this prediction, firstly each attribute value of a non-

textual data needs to be identified in the corresponding textual data. It may so hap-

pen that some of the attribute values of the non-textual data might not be present

in the corresponding textual data.But we must add those attribute values(as fea-

tures) in predicting partition sets’ name sequence, because they can provide some

significant part in that predictions.

Let us consider that we want to find the partition sets’ name sequence pseqtnew
ntx

corresponding to some non-textual data tnewntx . Let the non-textual dataset Tntx

(tnewntx ∈ T new
ntx ) contains a1, a2, ...an attributes and the corresponding attribute val-

ues in tnewntx are a
tnew
ntx
1 , a

tnew
ntx
2 , ...a

tnew
ntx
n . Then we can express the partition sets’ name

sequence prediction for tntx as given in Equation 4.3.

P (pseqtnew
ntx
|tnewntx ) = P (pseqtnew

ntx
|at

new
ntx
1 , a

tnew
ntx
2 , ..., at

new
ntx
n ) (4.3)

After predicting the partition sets’ name sequence for a test non-textual data, we

replace the partition sets’ names with their corresponding attribute names. So,at

the end of this prediction we will get attribute name sequence stnew
ntx

for given a

non-textual data tnewntx .

ii. Predicting interlinked word-groups
For a sequence containing n possible attribute names/values corresponding to a
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textual data, there will be n + 1 number of interlinked word(s) (or word-groups)

as we introduce two default pseudo-attributes, one at the start and the other at the

end of the text.

We predict the interlinking word(-group) between two attribute names along the

attribute name sequence predicted in the earlier step for a test textual data from a

context window of six attribute names around the two attribute names currently

being considered. We also consider the attribute names of the non-textual data

which do not appear in the attribute name sequence. Therefore, predicting the

interlinked word-groups for a textual data are independent of each other. Let us

consider that we want to predict the interlinking word-groups iw
tnew
ntx
∗−∗ for an at-

tribute name sequence stnew
ntx

of a non-textual data tnewntx . Let this stnew
ntx

sequence be

[...al am an ao ar as at au...] and we want to determine the intermediate

word-group between ao and ar. Let us also assume that some of the attributes’

(ae, af , ag) values of tntx are not present in stntx , which are a
tnew
ntx
e , at

new
ntx
f and a

tnew
ntx
g .

We model this task of predicting interlinking word-group between ao and ar for

tntx and stntx as in Equation 4.4.

P (iw
tnew
ntx
o−r |tnewntx , stnew

ntx
) = P (iw

tnew
ntx
o−r |at

new
ntx
m , at

new
ntx
n , at

new
ntx
o , at

new
ntx
r , at

new
ntx
s , atntx

t , atntx
e , atntx

f , atntx
g )

(4.4)

More precisely we can write the P (iw
tnew
ntx
∗−∗ |tnewntx , stnew

ntx
) term as the product of inde-

pendent interlinking word-group prediction tasks as in Equation 4.5, where prev

(previous) and next (next) are any of two adjacent attribute names in the stnew
ntx

.

P (iw
tnew
ntx
∗−∗ |tnewntx , stnew

ntx
) =

∏
P (iw

tnew
ntx

(prev)−(next)|t
new
ntx , stnew

ntx
) (4.5)

Therefore, Equation 4.2 can be rewritten as in Equation 4.6.

P (tnewtx |tnewntx ) = P (pseqtnew
ntx

, iw
tnew
ntx
∗−∗ |tnewntx ) (4.6)

From the earlier discussion it have been understood that, pseqtnew
ntx

and stnew
ntx

are

both same things, we just replace the partition set names with their corresponding

attribute names. So equation 4.6 can be write as equation 4.7.

P (tnewtx |tnewntx ) = P (pseqtnew
ntx
|tnewntx ) ∗ P (iw

tnew
ntx
∗−∗ |tnewntx , stnew

ntx
) (4.7)
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From equation 4.5 and 4.7 we can reduce the following equation 4.8.

P (tnewtx |tnewntx ) = P (pseqtnew
ntx
|tnewntx ) ∗

∏
P (iw

tnew
ntx

(prev)−(next)|t
new
ntx , stnew

ntx
) (4.8)

4.2.2 Linguistic Quality Management Module

The informativeness management module tries to answer “what will be content within

the output textual data ”, but it does not concern the linguistic quality, e.g., fluency,

readability, etc. In the linguistic quality management module we try to deal with the de-

ficiency of linguistic quality in the generated textual data. Statistical language modeling

is a well established technique for ensuring fluency and readability in natural language

text. Therefore, as a final component, we incorporate a language model in our system.

Hence, to maintain both informativeness and linguistic quality of the generated textual

data, we model the task of NLG as given in Equation 4.8, where PP (x) stands for the

perplexity of string x.

P (tnewtx |tnewntx ) = P (pseqtnew
ntx
|tnewntx ) ∗

∏
P (iw

tnew
ntx

(prev)−(next)|t
new
ntx , stnew

ntx
) ∗ PP−1(tnewtx )

(4.9)

For our experiments, we trained a trigram language model on the training set textual data

with a minor modification by replacing the attribute values with their attribute names.

4.2.3 Decoding

The search space of the NLG problem as modelled by Equation 4.9 is enormous. For

example, if we consider top ten attribute name sequences, and for each attribute name

sequence there are overall fifteen interlinked word-groups and for selecting each of these

interlinked word-group we consider only top five candidates, then the search space for

the generation task will contain 10 ∗ 515 candidates. To reduce the size of the search

space and keep the computation problem tractable, we implemented the task of text gen-

eration as modeled in Equation 4.9 using stack decoding [26] with histogram pruning

which limits the number of most promising hypotheses to be explored by the size of the

stack. In stack decoding with histogram pruning, the stack at any point of time contains
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only N (size of the stack) most promising partial hypotheses and during hypothesis ex-

pansion, a partial hypothesis is placed on the stack provided there is space in the stack,

or, it is more promising than at least one of the partial hypotheses already stored in the

stack. In case of stack overflow, the least promising hypothesis is discarded.



Chapter 5

Dataset and Evaluation

This section presents the dataset used in our experiments and the evaluation results of

proposed system compared to some other NLG systems.

5.1 Dataset

As mentioned in Section 3.2, to train our system a non-textual – textual parallel dataset

is required. The parallelism should be in such a form that each non-textual data can

be represented as a tuple of attribute value instances and most of those attribute values

should be present in its corresponding textual data.

We used the Prodigy-METEO1 corpus [27], a wind forecast dataset, for our experiment.

In the Prodigy-METEO corpus a single pair of non-textual–textual data stands for a par-

ticular day’s wind forecast report. A non-textual data in that dataset is represented by a

seven-component vector, where each component expresses a particular feature of wind

data measurement at a moment of time. The seven components belong to a vector repre-

sented by [id, direction, speed min, speed max, gust-speed min, gust-speed max, time].

In that vector representation id stands for identification of the vector, direction mentions

wind speed direction, speed max and speed min denote maximum and mnimum wind

speed respectively, gust max and gust min represent maximum and minimum wind gust

speed respectively, and the last component time denotes the specific time instance when

1http://www.nltg.brighton.ac.uk/home/Anja.Belz/Prodigy

32
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rest of components’ readings were measured. For example, 1st April, 2001 wind fore-

cast data is represented in this dataset as [[1, SW,28,32,42,-,0600],[2,-,20,25,-,-,0000]]

, where ‘-’ represents a missing reading value.

As mentioned earlier our proposed model can process only a single tuple formed non-

textual data at a time. However, the Prodigy-METEO corpus represents each non-

textual data (wind forecast data for a particular day) by a sequence of multi-component

vectors. For this reason, we merge all the vectors of a particular day’s wind forecast

data into a single tuple formed data. The merging of a a particular day’s wind forecast

data vectors is illustrated in Figure 5.1. In the Prodigy-METEO corpus, there are almost

490 non-textual tuple data are present with their corresponding textual data.

FIGURE 5.1: Transformation of Prodigy-METEO corpus non-textual data representa-
tion for our proposed system’s input

5.2 Evaluation

We evaluated our system using both automatic evaluation metrics and human evaluation.

For both human and automatic evaluation, we compared our proposed system with ten

existing NLG systems whose outputs on the Prodigy-METEO testset are also available

in the Prodigy-METEO corpus. These ten NLG systems are PCFG-Greedy, PSCFG-

Semantic, PSCFG-Unstructured, PCFG-Viterbii, PCFG-2gram, PCFG-Roulette, PBSMT-

Unstructured, SumTime-Hybrid, PBSMT-Structure and PCFG-Random [15]. Figure
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shows a sample input and outputs of all the above mentioned systems including our

proposed system.

FIGURE 5.2: An sample of input and outputs of different NLG system

5.2.1 Automatic Evaluation

For automatic evaluation, we used two automatic evaluation metrics; BLEU [28] and

METEOR 29. Both BLEU and METEOR were originally proposed for evaluation of

machine translation (MT) systems. However, due to the similarity between the two

tasks (i.e., MT and NLG) from the point of view of their working principles, most of

the NLG systems are also evaluated using these two automatic MT evaluation metrics.

BLEU metrics is particularly an n-gram based (modified) precision metric which mea-

sures similarity between two sentences (hypothesis and reference) by comparing their n-

gram matches. It also employs a brevity penalty to penalize hypotheses that are shorter

than their corresponding references. METEOR calculates unigram overlaps between

hypothesis and reference and it uses a reordering penalty on how many chunks in the

hypothesis need to be moved around to get the reference text. In addition to unigram

matching, METEOR also considers synonym and stem matching.
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System BLEU score Meteor score
Corpus 1 1
PCFG-Greedy 0.65 0.85
PSCFG-Semantic 0.64 0.83
PSCFG-Unstructured 0.62 0.81
Proposed System 0.61 0.82
PCFG-Viterbii 0.57 0.76
PCFG-2gram 0.56 0.76
PCFG-Roulette 0.52 0.76
PBSMT-Unstructured 0.51 0.81
SumTime-Hybrid 0.46 0.67
PBSMT-Structure 0.34 0.59
PCFG-Random 0.28 0.52

TABLE 5.1: Comparison through automatic metric evaluation

We experimented and evaluted our system on the predefined 5 splits of the dataset(Prodigy-

METEO) in a cross-validation framework.

Table 5.1 presents the evaluation results obtained on our proposed system along with

the ten other NLG systems BLEU and METEOR.

5.2.2 Human Evaluation

Evaluation using automatic evaluation metrics is very popular among researchers and

developers since automatic evaluation is very fast and cheap. Automatic evaluation

metrics are good indicators of system performance and they greatly help day-to-day

system development. However, despite being very time intensive and costly, human

evaluation still serves as the de-facto standard and the worth of automatic evaluation

metrics are typically judged based on how well they correlate with human evaluation.

We also evaluated the systems using human evaluation on a part of test dataset. We

carried out human evaluation to measure the clarity and readability of the texts gener-

ated by the NLG systems. Clarity measures truthfulness and fairness of a textual data

whereas readability concerns fluency of textual data. 30 instances (out of total 232)

were randomly chosen from the testset for the pilot human evaluation and the output

from 11 different systems along with the corresponding non-textual data were presented

to the human evaluators. Five students from different backgrounds who acted as human

evaluators were asked to rate 72 outputs each in a 10 point scale.

The output of human evaluation is presented in Figure 5.3.



Dataset and Evaluation 36

FIGURE 5.3: Comparison of through human-based evaluation

5.3 Result Analysis

As per the outcomes of automatic evaluation, our proposed system provided the third

and forth best results in METEOR and BLEU, respectively. According to the METEOR,

our system is only behind the PCGF-Greedy and PSCFG-Semantic systems while ac-

cording to BLEU, PCFG-greedy, PSCFG-Semantic and PSCFG-Unstructured systems

perform better than our proposed model. However, these systems which are ahead of

our system in performance as per automatic evaluation are not fully automatic, whereas

our system does not require any human efforts or external knowledge.

Human evaluation preferred rule based systems over automatic knowledge-light sys-

tems. The SumTime system, which is a rule based system and is placed in the ninth

position according to both BLEU and METEOR, is adjudged the best system in human

evaluation. Our proposed system ranks forth among the 11 systems according to human

evaluation. The gold standard reference set was also provided to the human evaluators

for evaluation without their knowledge and, surprisingly, the reference set was ranked

fourth.

We calculated Pearson correlation coefficient between scores produced by automatic

evaluation metrics (BLEU and METEOR) and human evaluation. For human evaluation

we considered the average of clarity and readability. The correlation coefficients were

r(Human, Bleu)=0.61 and r(Human, METEOR)=0.57 which can be considered as high

correlation.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis work we have presented a automatic statistical domain independent natural

language generation system, which falls in to knowledge light NLG system category.

The proposed NLG system doesn’t require any sort of human or application-domain

expert efforts and helps. Another advantage of our proposed system is this system don’t

need any changes to shift it from one application domain to another, only a parallel

dataset/corpus of new application domain area is required. Whereas others NLG system

may need huge modification in that case.

We evaluated our system through both automatic and human evaluation techniques for

checking informative and linguistic quality of generated natural language text data. For

the confusion of correlation between automatic and human evaluation, we also have

computed Pearson correlation term between those two evaluations and we have found

that the correlation value is also much greater that −1.

To avail good quality output text from the proposed system, one must conform to the

requirement specified in section 3.2. The NLG system will perform accurately if all

attributes present in the training tuple-formed non-textual data contain distinct values.

If this criterion can be assured, then it will be trivial to match each of those present

attribute values to their appearance in the corresponding textual data. However, if this

constraint isn’t possible to be satisfied our proposed system will still work. It is worth to

be mentioned here that, in situations when not a single attribute value of non-textual data

37
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can be found in the corresponding textual data, then our proposed system will behave

like an instance based NLG system.

6.2 Future Work

The natural language generation system and its approach presented in this thesis opens

up many avenues for future work. Based on the proposed system and its principles

discussed in this thesis work, the following future research ideas can be pursued.

• As discussed in Section 3.2, the proposed system is based on the assumption that

most of the attribute values present in any non-textual data should also appear

in the corresponding textual data. However, this assumption is not true for all

datasets or domains. A numeric attribute value might not be directly present in

the textual data as it is, instead it might be represented in words. e.g., 00:00am

might be represented as ‘midnight’ in text. Proper alignment of attribute values

in the non-textual data to words in the corresponding textual data would improve

the results for such cases.

• We mainly used our system for generation of textual data from tuple-formed non-

textual data. But, the proposed system can be applied to any dialog system’s NLG

component, in that case all dialog acts of a dialog system need to be converted

into tuple-formed representation.

• As we have already seen in Section 4.2.3 that there are huge number of possible

sentences that can be generated for a single non-textual tuple-formed data. There

is always scope for improving the search policy for generating better sentences.

• In the work reported in this thesis we carried out our experiments on a wind

forecast dataset. In future we would like to carry out experiments on some other

datasets from other domains.
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